Reactive Postural Responses to Continuous Yaw Perturbations in Healthy Humans: The Effect of Aging
<p>(<b>a</b>) Mean (solid line) and standard deviation (dashed lines) of pelvis angle in the transverse plane for the eyes opened condition during the low frequency task. (<b>b</b>) Mean (solid line) and standard deviation (dashed lines) of pelvis angle in the transverse plane for the eyes opened condition during the high frequency task. The orange curves refer to young group, the blue ones to the older adults while the black curve is platform trajectory.</p> "> Figure 2
<p>(<b>a</b>) and (<b>b</b>) are phase portraits of the trunk and head body segment of one healthy young subject and one older subject during EO condition at low frequency, respectively. (<b>c</b>–<b>f</b>) Mean (solid line) and standard deviation (dashed lines) of CRP of the head-trunk couple for the EO and EC condition for the low frequency task and EO and EC conditions for the high frequency task, respectively. The orange curves refer to the young group, the blue ones to older adults.</p> "> Figure 3
<p>Mean (solid line) and standard deviation (dashed lines) of head, trunk, and pelvis displacement in the eyes opened condition during the high frequency task. The orange curves refer to the young group, the blue ones to older adults. In young group, medio-lateral sway of head is in phase opposition with respect to pelvis. Both have higher amplitude with respect to trunk, which acts as a pivot. This strategy is less evident in older subjects.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Setup
2.3. Experimental Procedure
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fuller, G.F. Falls in the elderly. Am. Fam. Physician 2000, 61, 2159–2168, 2173–2174. [Google Scholar]
- Boyé, N.D.A.; Van Lieshout, E.M.; Van Beeck, E.F.; Hartholt, K.A.; Van der Cammen, T.J.; Patka, P. The impact of falls in the elderly. Trauma 2013, 15, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Ganz, D.A.; Bao, Y.; Shekelle, P.G.; Rubenstein, L.Z. Will My Patient Fall? JAMA 2007, 297, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Runge, C.F.; Shupert, C.L.; Horak, F.B.; Zajac, F.E. Ankle and hip postural strategies defined by joint torques. Gait Posture 1999, 10, 161–170. [Google Scholar] [CrossRef]
- Rogers, M.W.; Mille, M.-L. Balance perturbations. In Handbook of Clinical Neurology; Elsevier: London, UK, 2018; Volume 159, pp. 85–105. [Google Scholar]
- Chaudhry, H.; Bukiet, B.; Ji, Z.; Findley, T. Measurement of balance in computer posturography: Comparison of methods-A brief review. J. Bodyw. Mov. Ther. 2011, 15, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Kharboutly, H.; Ma, J.; Benali, A.; Thoumie, P.; Pasqui, V.; Bouzit, M. Design of multiple axis robotic platform for postural stability analysis. IEEE Trans. Neural Syst. Rehabilit. Eng. 2015, 23, 93–103. [Google Scholar] [CrossRef]
- Amori, V.; Petrarca, M.; Patané, F.; Castelli, E.; Cappa, P. Upper body balance control strategy during continuous 3D postural perturbation in young adults. Gait Posture 2015, 41, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.A.; Jensen, J.L.; Korff, T.; Woollacott, M.H. The translating platform paradigm: Perturbation displacement waveform alters the postural response. Gait Posture 2001, 14, 256–263. [Google Scholar] [CrossRef]
- Mileti, I.; Taborri, J.; Rossi, S.; Del Prete, Z.; Paoloni, M.; Suppa, A.; Palermo, E. Measuring age-related differences in kinematic postural strategies under yaw perturbation. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–6. [Google Scholar]
- Taborri, J.; Mileti, I.; Del Prete, Z.; Rossi, S.; Palermo, E. Yaw Postural Perturbation Through Robotic Platform: Aging Effects on Muscle Synergies. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; pp. 916–921. [Google Scholar]
- Kanekar, N.; Aruin, A.S. Aging and balance control in response to external perturbations: Role of anticipatory and compensatory postural mechanisms. Age 2014, 36, 9621. [Google Scholar] [CrossRef] [Green Version]
- De Freitas, P.B.; Knight, C.A.; Barela, J.A. Postural reactions following forward platform perturbation in young, middle-age, and old adults. J. Electromyogr. Kinesiol. 2010, 20, 693–700. [Google Scholar] [CrossRef]
- Nardone, A.; Grasso, M.; Tarantola, J.; Corna, S.; Schieppati, M. Postural coordination in elderly subjects standing on a periodically moving platform. Arch. Phys. Med. Rehabil. 2000, 81, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Cappa, P.; Patanè, F.; Rossi, S.; Petrarca, M.; Castelli, E.; Berthoz, A. Effect of changing visual condition and frequency of horizontal oscillations on postural balance of standing healthy subjects. Gait Posture 2008, 28, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Allum, J.H.J.; Carpenter, M.G.; Honegger, F.; Adkin, A.L.; Bloem, B.R. Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man. J. Physiol. 2002, 542, 643–663. [Google Scholar] [CrossRef] [PubMed]
- Cenciarini, M.; Loughlin, P.J.; Sparto, P.J.; Redfern, M.S. Stiffness and Damping in Postural Control Increase With Age. IEEE Trans. Biomed. Eng. 2010, 57, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corna, S.; Tarantola, J.; Nardone, A.; Giordano, A.; Schieppati, M. Standing on a continuously moving platform: Is body inertia counteracted or exploited? Exp. Brain Res. 1999, 124, 331–341. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, A.M.; Nardone, A.; Schieppati, M. Head stabilization on a continuously oscillating platform: The effect of a proprioceptive disturbance on the balancing strategy. Exp. Brain Res. 2005, 165, 261–272. [Google Scholar] [CrossRef]
- Thelen, D.G.; Wojcik, L.A.; Schultz, A.B.; Ashton-Miller, J.A.; Alexander, N.B. Age differences in using a rapid step to regain balance during a forward fall. J. Gerontol. A. Biol. Sci. Med. Sci. 1997, 52, M8–M13. [Google Scholar] [CrossRef]
- Madigan, M.L.; Lloyd, E.M. Age-Related Differences in Peak Joint Torques during the Support Phase of Single-Step Recovery from a Forward Fall. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2005, 60, 910–914. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.-Y.; Gadareh, K.; Bronstein, A.M. Forward–backward postural protective stepping responses in young and elderly adults. Hum. Mov. Sci. 2014, 34, 137–146. [Google Scholar] [CrossRef]
- Lockhart, T.E.; Smith, J.L.; Woldstad, J.C. Effects of aging on the biomechanics of slips and falls. Hum. Factors 2005, 47, 708–729. [Google Scholar] [CrossRef] [Green Version]
- Liaw, M.-Y.; Chen, C.-L.; Pei, Y.-C.; Leong, C.-P.; Lau, Y.-C. Comparison of the static and dynamic balance performance in young, middle-aged, and elderly healthy people. Chang Gung Med. J. 2009, 32, 297–304. [Google Scholar] [PubMed]
- Leach, J.M.; Mellone, S.; Palumbo, P.; Bandinelli, S.; Chiari, L. Natural turn measures predict recurrent falls in community-dwelling older adults: A longitudinal cohort study. Sci. Rep. 2018, 8, 4316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motta, C.; Palermo, E.; Studer, V.; Germanotta, M.; Germani, G.; Centonze, D.; Cappa, P.; Rossi, S.; Rossi, S. Disability and Fatigue Can Be Objectively Measured in Multiple Sclerosis. PLoS ONE 2016, 11, e0148997. [Google Scholar] [CrossRef] [PubMed]
- Pacilli, A.; Mileti, I.; Germanotta, M.; Di Sipio, E.; Imbimbo, I.; Aprile, I.; Padua, L.; Rossi, S.; Palermo, E.; Cappa, P. A wearable setup for auditory cued gait analysis in patients with Parkinson’s Disease. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Mileti, I.; Germanotta, M.; Alcaro, S.; Pacilli, A.; Imbimbo, I.; Petracca, M.; Erra, C.; Di Sipio, E.; Aprile, I.; Rossi, S.; et al. Gait partitioning methods in Parkinson’s disease patients with motor fluctuations: A comparative analysis. In Proceedings of the 2017 12th IEEE International Symposium on Medical Measurements and Applications, (MeMeA), Rochester, NY, USA, 7–10 May 2017; pp. 402–407. [Google Scholar]
- Mancini, M.; Salarian, A.; Carlson-Kuhta, P.; Zampieri, C.; King, L.; Chiari, L.; Horak, F.B. ISway: A sensitive, valid and reliable measure of postural control. J. Neuroeng. Rehabil. 2012, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Ghislieri, M.; Gastaldi, L.; Pastorelli, S.; Tadano, S.; Agostini, V. Wearable Inertial Sensors to Assess Standing Balance: A Systematic Review. Sensors 2019, 19, 4075. [Google Scholar] [CrossRef] [Green Version]
- Palermo, E.; Rossi, S.; Marini, F.; Patanè, F.; Cappa, P. Experimental evaluation of accuracy and repeatability of a novel body-to-sensor calibration procedure for inertial sensor-based gait analysis. Measurement 2014, 52, 145–155. [Google Scholar] [CrossRef]
- Germanotta, M.; Taborri, J.; Rossi, S.; Frascarelli, F.; Palermo, E.; Cappa, P.; Castelli, E.; Petrarca, M. Spasticity Measurement Based on Tonic Stretch Reflex Threshold in Children with Cerebral Palsy Using the PediAnklebot. Front. Hum. Neurosci. 2017, 11, 277. [Google Scholar] [CrossRef] [Green Version]
- Lamb, P.F.; Stöckl, M. On the use of continuous relative phase: Review of current approaches and outline for a new standard. Clin. Biomech. 2014, 29, 484–493. [Google Scholar] [CrossRef]
- Burgess-Limerick, R.; Abernethy, B.; Neal, R.J. Relative phase quantifies interjoint coordination. J. Biomech. 1993, 26, 91–94. [Google Scholar] [CrossRef]
- Miller, R.H.; Chang, R.; Baird, J.L.; Van Emmerik, R.E.A.; Hamill, J. Variability in kinematic coupling assessed by vector coding and continuous relative phase. J. Biomech. 2010, 43, 2554–2560. [Google Scholar] [CrossRef]
- Ranavolo, A.; Donini, L.M.; Mari, S.; Serrao, M.; Silvetti, A.; Iavicoli, S.; Cava, E.; Asprino, R.; Pinto, A.; Draicchio, F. Lower-Limb Joint Coordination Pattern in Obese Subjects. Biomed. Res. Int. 2012, 19. [Google Scholar] [CrossRef] [PubMed]
- Floor-Westerdijk, M.J.; Schepers, H.M.; Veltink, P.H.; Van Asseldonk, E.H.F.; Buurke, J.H. Use of inertial sensors for ambulatory assessment of center-of-mass displacements during walking. IEEE Trans. Biomed. Eng. 2012, 59, 2080–2084. [Google Scholar] [CrossRef] [PubMed]
- Cromwell, R.L.; Newton, R.A.; Forrest, G. Head stability in older adults during walking with and without visual input. J. Vestib. Res. Equilib. Orientat. 2001, 11, 105–114. [Google Scholar]
- Chiu, S.-L.; Lu, T.-W.; Chou, L.-S. Altered inter-joint coordination during walking in patients with total hip arthroplasty. Gait Posture 2010, 32, 656–660. [Google Scholar] [CrossRef]
- Winogrodzka, A.; Wagenaar, R.C.; Booij, J.; Wolters, E.C. Rigidity and bradykinesia reduce interlimb coordination in Parkinsonian gait. Arch. Phys. Med. Rehabil. 2005, 86, 183–189. [Google Scholar] [CrossRef]
- Greene, L.S.; Williams, H.G. Aging and coordination from the dynamic pattern perspective. Adv. Psychol. 1996, 114, 89–131. [Google Scholar]
- Yen, H.; Chen, H.; Liu, M.; Liu, H.; Lu, T. Age effects on the inter-joint coordination during obstacle-crossing. J. Biomech. 2009, 42, 2501–2506. [Google Scholar] [CrossRef]
- Spong, M.W. The swing up control problem for the Acrobot. IEEE Control Syst. 1995, 15, 49–55. [Google Scholar]
- Horak, F.B.; Nashner, L.M. Central programming of postural movements: Adaptation to altered support-surface configurations. J. Neurophysiol. 1986, 55, 1369–1381. [Google Scholar] [CrossRef]
- Robinovitch, S.N.; Feldman, F.; Yang, Y.; Schonnop, R.; Leung, P.M.; Sarraf, T.; Sims-Gould, J.; Loughin, M. Video capture of the circumstances of falls in elderly people residing in long-term care: An observational study. Lancet 2013, 381, 47–54. [Google Scholar] [CrossRef] [Green Version]
EO-L | EO-H | p-Values | EC-L | EC-H | p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Young Adults | Older Adults | Young Adults | Older Adults | AGE | FREQ | Young Adults | Older Adults | Young Adults | Older Adults | AGE | FREQ | ||
Head | G | 53.3 ± 19.4 | 21.5 ± 14.2 | 39.4 ± 16.1 | 15.6 ± 13.7 | <0.01 * | <0.01 * | 59.9 ± 21.2 | 41.2 ± 16.2 | 48.3 ± 17.8 | 25.2 ± 17.6 | 0.02 * | <0.01 * |
Φ | −4.8 ± 15.9 | −1.6 ± 23.3 | −25.3 ± 22.4 | −18.5 ± 45.8 | 0.45 | 0.04 * | -13.8 ± 23.7 | −2.4 ± 9.2 | −25.4 ± 17.0 | −13.3 ± 25.9 | 0.14 | 0.04 * | |
Trunk | G | 55.2 ± 19.5 | 36.2 ± 18.3 | 45.0 ± 16.8 | 29.00 ± 21.2 | 0.04 * | <0.01 * | 59.9 ± 21.1 | 47.2 ± 16.6 | 48.5 ± 17.1 | 30.0 ± 19.7 | 0.07 | <0.01 * |
Φ | −3.7 ± 13.9 | 8.3 ± 19.3 | −22.3 ± 22.3 | 5.8 ± 43.3 | 0.11 | 0.02 * | −12.6 ± 23.7 | 0.5 ± 8.9 | −22.9 ± 16.6 | −15.5 ± 35.8 | 0.24 | 0.06 | |
Pelvis | G | 57.0 ± 15.2 | 42.1 ± 14.5 | 48.0 ± 14.0 | 37.7 ± 16.8 | 0.09 | <0.01 * | 56.3 ± 15.3 | 48.2 ± 11.9 | 48.9 ± 13.9 | 39.0 ± 14.5 | 0.14 | <0.01 * |
Φ | 0.9 ± 9.8 | 6.00 ± 6.4 | −7.7 ± 11.7 | 1.1 ± 9.7 | 0.10 | <0.01 * | −2.1 ± 14.6 | 4.6 ± 6.0 | −8.8 ± 11.2 | 3.6 ± 6.9 | 0.03 * | 0.03 * |
EO-L | EO-H | p-Values | EC-L | EC-H | p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Young Adults | Older Adults | Young Adults | Older Adults | AGE | FREQ | YOUNG ADULTS | Older Adults | Young Adults | Older Adults | AGE | FREQ | ||
Head-Pelvis | G | 93.7 ± 17.8 | 47.0 ± 19.6 | 82.0 ± 23.9 | 39.5 ± 18.6 | <0.01 * | <0.01 * | 103.5 ± 18.0 | 83.0 ± 18.6 | 95.8 ± 18.3 | 61.2 ± 20.3 | <0.01 * | <0.01 * |
Φ | −6.5 ± 9.2 | −13.6 ± 35.3 | −7.4 ± 12.9 | −62.1 ± 54.0 | 0.03 | <0.01 * | −10.7 ± 14.6 | −20.4 ± 35.3 | −15.4 ± 11.1 | −27.8 ± 50.1 | 0.42 | 0.24 | |
Trunk-Pelvis | G | 101.4 ± 14.0 | 81.8 ± 17.9 | 93.3 ± 17.4 | 75.3 ± 23.8 | 0.02 * | 0.02 * | 103.1 ± 18.4 | 96.8 ± 13.1 | 97.0 ± 14.8 | 74.4 ± 20.5 | 0.05 | <0.01 * |
Φ | −5.0 ± 6.2 | −22.3 ± 59.2 | −10.2 ± 9.0 | −23.6 ± 37.7 | 0.32 | 0.46 | −9.3 ± 13.7 | −17.8 ± 37.4 | −13.3 ± 10.4 | −27.0 ± 46.4 | 0.41 | 0.12 | |
Head-Trunk | G | 91.7 ± 7.5 | 56.1 ± 16.6 | 85.4 ± 16.8 | 51.5 ± 17.4 | <0.01 * | 0.04 | 100.5 ± 1.9 | 84.8 ± 14.8 | 98.0 ± 6.5 | 82.5 ± 16.8 | <0.01 * | 0.12 |
Φ | −1.5 ± 3.7 | 8.7 ± 35.0 | 2.9 ± 14.4 | −38.5 ± 45.6 | 0.30 | 0.03 | −1.4 ± 1.6 | −2.5 ± 3.2 | −2.1 ± 2.8 | −0.8 ± 8.9 | 0.40 | 0.95 |
EO-L | EO-H | p-Values | EC-L | EC-H | p-Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Young Adults | Older Adults | Young Adults | Older Adults | AGE | FREQ | Young Adults | Older Adults | Young Adults | Older Adults | AGE | FREQ | |||
Head-Pelvis | MARP | 6.7 ± 2.2 | 27.7 ± 22.1 | 15.2 ± 9.7 | 36.9 ± 20.7 | <0.01 * | 0.12 | 6.1 ± 1.8 | 14.3 ± 7.8 | 14.6 ± 8.7 | 33.9 ± 26.2 | 0.02 * | 0.02 * | |
DP | 3.2 ± 1.4 | 23.4 ± 22.6 | 6.8 ± 5.4 | 23.9 ± 13.2 | <0.01 * | 0.57 | 3.8 ± 3.6 | 17.1 ± 20.6 | 5.6 ± 3.6 | 17.8 ± 9.9 | 0.02 * | 0.77 | ||
Trunk-Pelvis | MARP | 4.9 ± 2.5 | 26.5 ± 31.1 | 12.8 ± 10.4 | 32.1 ± 25.2 | 0.01 * | 0.43 | 5.4 ± 2.1 | 7.9 ± 4.0 | 11.2 ± 6.8 | 33.7 ± 35.2 | 0.08 | 0.04 * | |
DP | 1.8 ± 0.8 | 11.6 ± 10.4 | 5.9 ± 4.1 | 20.1 ± 14.4 | 0.01 * | 0.01 * | 3.4 ± 3.3 | 7.9 ± 12.2 | 5.5 ± 4.3 | 21.6 ± 15.4 | 0.03 * | 0.03 * | ||
Head-Trunk | MARP | 3.1 ± 1.4 | 21.4 ± 26.5 | 4.0 ± 1.3 | 34.0 ± 37.4 | 0.05 * | 0.08 | 1.7 ± 0.7 | 5.9 ± 4.3 | 3.3 ± 1.4 | 13.5 ± 10.8 | <0.01 * | 0.07 | |
DP | 1.8 ± 0.8 | 17.4 ± 19.4 | 2.3 ± 1.0 | 21.4 ± 21.05 | 0.02 * | 0.43 | 1.1 ± 0.6 | 10.4 ± 15.2 | 1.6 ± 0.4 | 10.4 ± 6.6 | 0.03 | 0.92 |
EO-L | EO-H | p-Values | EC-L | EC-H | p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Young Adults | Older Adults | Young Adults | Older Adults | AGE | FREQ | Young Adults | Older Adults | Young Adults | Older Adults | AGE | FREQ | ||
Head | RoMML | 88.5 ± 33.8 | 43.4 ± 16.6 | 83.5 ± 33.1 | 45.2 ± 28.4 | 0.01 * | 0.08 | 109.5 ± 41.4 | 75.1 ± 34.0 | 117.8 ± 52.0 | 65.5 ± 37.2 | 0.04 * | 0.29 |
RoMAP | 40.8 ± 15.8 | 24.1 ± 5.0 | 38.4 ± 17.9 | 23.9 ± 8.2 | 0.25 | 0.38 | 54.7 ± 22.6 | 36.0 ± 7.2 | 52.8 ± 24.1 | 40.1 ± 14.6 | 0.18 | 0.52 | |
PATH | 0.4 ± 0.1 | 0.2 ± 0.1 | 0.4 ± 0.1 | 0.2 ± 0.1 | 0.02 * | <0.01 * | 0.5 ± 0.2 | 0.3 ± 0.1 | 0.6 ± 0.3 | 0.3 ± 0.2 | 0.02 * | <0.01 * | |
MV | 0.3 ± 0.1 | 0.1 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.02 * | <0.01 * | 0.3 ± 0.2 | 0.2 ± 0.1 | 0.4 ± 0.1 | 0.2 ± 0.1 | 0.02 * | <0.01 * | |
Trunk | RoMML | 31.9 ± 9.0 | 28.2 ± 8.7 | 40.1 ± 8.6 | 34.7 ± 13.8 | 0.27 | 0.01 * | 38.3 ± 12.6 | 34.2 ± 12.0 | 48.7 ± 18.8 | 41.5 ± 15.5 | 0.38 | 0.01 * |
RoMAP | 20.9 ± 3.5 | 20.4 ± 5.3 | 23.6 ± 4.8 | 24.7 ± 10.4 | 0.88 | 0.03 * | 24.4 ± 4.1 | 24.5 ± 5.5 | 27.6 ± 7.2 | 29.3 ± 9.5 | 0.75 | 0.01 * | |
PATH | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.68 | <0.01 * | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.52 | <0.01 * | |
MV | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.52 | <0.01 * | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.38 | <0.01 * | |
Pelvis | RoMML | 81.2 ± 25.7 | 57.0 ± 17.3 | 87.2 ± 20.1 | 63.2 ± 18.5 | 0.01 * | 0.08 | 83.0 ± 15.4 | 65.2 ± 17.1 | 83.0 ± 25.4 | 47.4 ± 15.1 | 0.04 * | 0.52 |
RoMAP | 52.1 ± 9.4 | 5.5 ± 3.0 | 52.9 ± 10.2 | 44.4 ± 15.0 | 0.25 | 0.38 | 52.6 ± 8.7 | 47.7 ± 14.9 | 57.5 ± 12.6 | 47.5 ± 15.1 | 0.18 | 0.29 | |
PATH | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.02 * | <0.01 * | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.02 * | <0.01 * | |
MV | 0.2 ± 0.1 | 0.2 ± 0.0 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.02 * | <0.01 * | 0.2 ± 0.1 | 0.2 ± 0.0 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.02 * | <0.01 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mileti, I.; Taborri, J.; Rossi, S.; Del Prete, Z.; Paoloni, M.; Suppa, A.; Palermo, E. Reactive Postural Responses to Continuous Yaw Perturbations in Healthy Humans: The Effect of Aging. Sensors 2020, 20, 63. https://doi.org/10.3390/s20010063
Mileti I, Taborri J, Rossi S, Del Prete Z, Paoloni M, Suppa A, Palermo E. Reactive Postural Responses to Continuous Yaw Perturbations in Healthy Humans: The Effect of Aging. Sensors. 2020; 20(1):63. https://doi.org/10.3390/s20010063
Chicago/Turabian StyleMileti, Ilaria, Juri Taborri, Stefano Rossi, Zaccaria Del Prete, Marco Paoloni, Antonio Suppa, and Eduardo Palermo. 2020. "Reactive Postural Responses to Continuous Yaw Perturbations in Healthy Humans: The Effect of Aging" Sensors 20, no. 1: 63. https://doi.org/10.3390/s20010063
APA StyleMileti, I., Taborri, J., Rossi, S., Del Prete, Z., Paoloni, M., Suppa, A., & Palermo, E. (2020). Reactive Postural Responses to Continuous Yaw Perturbations in Healthy Humans: The Effect of Aging. Sensors, 20(1), 63. https://doi.org/10.3390/s20010063