Validity and Reliability of Inertial Motion Unit-Based Performance Metrics During Wheelchair Racing Propulsion
<p>(<b>A</b>) Racing wheelchair used for the NPs. (<b>B</b>) Inertial measurement unit and the reflective plate positioned on the back of the frame.</p> "> Figure 2
<p>Cycle separation (<b>A</b>) and metric extraction (<b>B</b>). Panel A: Gray area highlights the propulsion cycles 5 to 7, which are illustrated in panel B. Panel B: Light-gray area highlights the acceleration phase (AccGain); dark-gray area highlights the deceleration phase (DecLoss). AccMin: minimal acceleration; AccMax: maximal acceleration; AccGain: speed gains during the acceleration phase; DecLoss: speed loss during deceleration.</p> "> Figure 3
<p>(<b>A</b>) Absolute velocity RMS error (RMSe); (<b>B</b>) velocity RMS error normalized to the maximal velocity over the ten first propulsion cycles. PCstable: propulsion cycles 3 to 10.</p> "> Figure 4
<p>(<b>A</b>): Wheelchair velocity curves of all NPs (gray) and WRAs (red). (<b>B</b>): Ranks of the WRAs within the entire group (for a total of 16 participants: 3 WRAs + 13 NPs). <span class="html-fig-inline" id="sensors-25-01680-i001"><img alt="Sensors 25 01680 i001" src="/sensors/sensors-25-01680/article_deploy/html/images/sensors-25-01680-i001.png"/></span> WRA1, <span class="html-fig-inline" id="sensors-25-01680-i002"><img alt="Sensors 25 01680 i002" src="/sensors/sensors-25-01680/article_deploy/html/images/sensors-25-01680-i002.png"/></span> WRA2, and <span class="html-fig-inline" id="sensors-25-01680-i003"><img alt="Sensors 25 01680 i003" src="/sensors/sensors-25-01680/article_deploy/html/images/sensors-25-01680-i003.png"/></span> WRA3. AccMin: minimal acceleration; AccMax: maximal acceleration; AvSpeed: average speed; AvSpeedGain: average speed gain between two cycles; AccGain: speed gains during the acceleration phase; DecLoss: speed loss during deceleration; PC1: first propulsion cycle; PCstable: propulsion cycles 3 to 10.</p> ">
Abstract
:1. Introduction
2. State of the Art
3. Materials and Methods
3.1. Participants
3.2. Instrumentation
3.3. Acquisition Protocol
3.4. Data Processing
3.5. Metric Extraction
3.6. Statistical Analysis
4. Results
4.1. Convergent Validity
4.2. Test–Retest Reliability
4.3. Comparison of NPs and WRAs
5. Discussion
5.1. Test–Retest Reliability
5.2. Convergent Validity
5.3. Comparison with WRAs
5.4. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AccGain | speed gains during the acceleration phase |
AccMax | maximal acceleration |
AccMin | minimal acceleration |
AvSpeed | average speed |
AvSpeedGain | average speed gain between two cycles |
CI | confidence interval |
DecLoss | speed loss during the deceleration phase |
Eq | equation |
GPS | global positioning system |
ICC | intraclass correlation coefficient |
IMUs | inertial motion units |
Lidar | light detection and ranging |
MDC | minimal detectable change |
NP | novice participant |
PC | propulsion cycle |
PC1 | first propulsion cycle |
PCstable | propulsion cycles 3 to 10 |
RMSe | root mean square error |
SEM | standard error of measurement |
WR | wheelchair racing |
WRA | wheelchair racing athlete |
References
- Mencarini, E.; Rapp, A.; Tirabeni, L.; Zancanaro, M. Designing wearable systems for sports: A review of trends and opportunities in human–computer interaction. IEEE Trans. Human-Mach. Syst. 2019, 49, 314–325. [Google Scholar] [CrossRef]
- Stieler, E.; de Mello, M.T.; Lôbo, I.L.; Gonçalves, D.A.; Resende, R.; Andrade, A.G.; Lourenço, T.F.; Silva, A.A.; Andrade, H.A.; Guerreiro, R.; et al. Current Technologies and Practices to Assess External Training Load in Paralympic Sport: A Systematic Review. J. Sport Rehabil. 2023, 32, 635–644. [Google Scholar] [CrossRef]
- Moss, A.; Fowler, N.; Goosey-Tolfrey, V. The intra-push velocity profile of the over-ground racing wheelchair sprint start. J. Biomech. 2005, 38, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Poulet, Y.; Brassart, F.; Simonetti, E.; Pillet, H.; Faupin, A.; Sauret, C. Analyzing Intra-Cycle Velocity Profile and Trunk Inclination during Wheelchair Racing Propulsion. Sensors 2022, 23, 58. [Google Scholar] [CrossRef] [PubMed]
- Goosey-Tolfrey, V.L.; Mason, B.; Burkett, B. The role of the velocometer as an innovative tool for Paralympic coaches to understand wheelchair sporting training and interventions to help optimise performance. Sports Technol. 2012, 5, 20–28. [Google Scholar] [CrossRef]
- Fletcher, J.R.; Gallinger, T.; Prince, F. How Can Biomechanics Improve Physical Preparation and Performance in Paralympic Athletes? A Narrative Review. Sports 2021, 9, 89. [Google Scholar] [CrossRef]
- Forte, P.; Barbosa, T.M.; Marinho, D.A. Technologic Appliance and Performance Concerns in Wheelchair Racing—Helping Paralympic Athletes to Excel. New Perspect. Fluid Dyn. 2015, 101–121. [Google Scholar] [CrossRef]
- Carrington, P.; Chang, K.; Mentis, H.; Hurst, A. “But, I don’t take steps”: Examining the Inaccessibility of Fitness Trackers for Wheelchair Athletes. In Proceedings of the 17th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 2015), Lisbon, Portugal, 26–28 October 2015; Assoc Computing Machinery: Lisbon, Portugal, 2015. [Google Scholar]
- MacDuff, H.; Armstrong, E.; Ferguson-Pell, M. Technologies measuring manual wheelchair propulsion metrics: A scoping review. Assist. Technol. 2022, 37, S139–S147. [Google Scholar] [CrossRef]
- Brady, S. ‘A small leap for disabled man’: The athlete-led evolution of the sports wheelchair and adaptive sports. Sport Hist. 2023, 43, 103–127. [Google Scholar] [CrossRef]
- Ash, G.I.; Stults-Kolehmainen, M.; Busa, M.A.; Gregory, R.; Garber, C.E.; Liu, J.; Gerstein, M.; Casajus, J.A.; Gonzalez-Aguero, A.; Constantinou, D.; et al. Establishing a Global Standard for Wearable Devices in Sport and Fitness: Perspectives from the New England Chapter of the American College of Sports Medicine Members. Optom. Vis. Sci. 2020, 19, 45–49. [Google Scholar] [CrossRef]
- Rum, L.; Sten, O.; Vendrame, E.; Belluscio, V.; Camomilla, V.; Vannozzi, G.; Truppa, L.; Notarantonio, M.; Sciarra, T.; Lazich, A.; et al. Wearable Sensors in Sports for Persons with Disability: A Systematic Review. Sensors 2021, 21, 1858. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.B.; James, D.A.; Espinosa, H.G.; Thiel, D.V.; Rowlands, D.D. A Literature Review Informing an Operational Guideline for Inertial Sensor Propulsion Measurement in Wheelchair Court Sports. Sports 2018, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Van der Slikke, R.M.; Sindall, P.; Goosey-Tolfrey, V.L.; Mason, B.S. Load and performance monitoring in wheelchair court sports: A narrative review of the use of technology and practical recommendations. Eur. J. Sport Sci. 2022, 23, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.R.; Phillips, E.J.; Robertson, W.S.P.; Grimshaw, P.N.; Portus, M.; Winter, J. A practical assessment of wheelchair racing performance kinetics using accelerometers. Sports Biomech. 2021, 20, 1001–1014. [Google Scholar] [CrossRef]
- Lewis, A.R.; Haydon, D.S.; Phillips, E.J.; Grimshaw, P.N.; Pinder, R.A.; Winter, J.; Robertson, W.S.P.; Portus, M.R. Placement effects of inertial measurement units on contact identification in wheelchair racing. Sports Biomech. 2021, 20, 55–70. [Google Scholar] [CrossRef]
- Lewis, A.R.; Phillips, E.J.; Robertson, W.S.P.; Grimshaw, P.N.; Portus, M. Intra-Stroke Profiling of Wheelchair Propulsion Using Inertial Measurement Units. Proceedings 2018, 2, 256. [Google Scholar] [CrossRef]
- Liu, T.; Wassell, N.; Liu, J.; Zhang, M. Mapping Research Trends of Adapted Sport from 2001 to 2020: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 12644. [Google Scholar] [CrossRef]
- Currell, K.; Jeukendrup, A.E. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008, 38, 297–316. [Google Scholar] [CrossRef] [PubMed]
- Shei, R.J.; Holder, I.G.; Oumsang, A.S.; Paris, B.A.; Paris, H.L. Wearable activity trackers-advanced technology or advanced marketing? Eur. J. Appl. Physiol. 2022, 122, 1975–1990. [Google Scholar] [CrossRef]
- Mason, B.S.; Rhodes, J.M.; Goosey-Tolfrey, V.L. Validity and reliability of an inertial sensor for wheelchair court sports performance. J. Appl. Biomech. 2014, 30, 326–331. [Google Scholar] [CrossRef]
- Rietveld, T.; Vegter, R.J.K.; van der Slikke, R.M.A.; Hoekstra, A.E.; van der Woude, L.H.V.; de Groot, S. Wheelchair mobility performance of elite wheelchair tennis players during four field tests: Inter-trial reliability and construct validity. PLoS ONE 2019, 14, e0217514. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, M.P.; van der Slikke, R.M.; Rupf, R.; Hoozemans, M.J.; Berger, M.A.; Veeger, D.H. Obtaining wheelchair kinematics with one sensor only? The trade-off between number of inertial sensors and accuracy for measuring wheelchair mobility performance in sports. J. Biomech. 2021, 130, 110879. [Google Scholar] [CrossRef] [PubMed]
- Van der Slikke, R.M.A.; Mason, B.S.; Berger, M.A.M.; Goosey-Tolfrey, V.L. Speed profiles in wheelchair court sports; comparison of two methods for measuring wheelchair mobility performance. J. Biomech. 2017, 65, 221–225. [Google Scholar] [CrossRef]
- Rupf, R.; Tsai, M.; Thomas, S.; Klimstra, M. Original article: Validity of measuring wheelchair kinematics using one inertial measurement unit during commonly used testing protocols in elite wheelchair court sports. J. Biomech. 2021, 127, 110654. [Google Scholar] [CrossRef] [PubMed]
- Rietveld, T.; Mason, B.S.; Goosey-Tolfrey, V.L.; van der Woude, L.H.V.; de Groot, S.; Vegter, R.J.K. Inertial measurement units to estimate drag forces and power output during standardised wheelchair tennis coast-down and sprint tests. Sports Biomech. 2021, 23, 968–986. [Google Scholar] [CrossRef]
- Ferro, A.; Pérez-Tejero, J.; Garrido, G.; Villacieros, J. Relationship between Sprint Capacity and Acceleration of Wrists in Wheelchair Basketball Players: Design and Reliability of a New Protocol. Int. J. Environ. Res. Public Health. 2021, 18, 10380. [Google Scholar] [CrossRef]
- Macadam, P.; Cronin, J.; Neville, J.; Diewald, S. Quantification of the validity and reliability of sprint performance metrics computed using inertial sensors: A systematic review. Gait Posture 2019, 73, 26–38. [Google Scholar] [CrossRef]
- Setuain, I.; Lecumberri, P.; Ahtiainen, J.P.; Mero, A.A.; Häkkinen, K.; Izquierdo, M. Sprint mechanics evaluation using inertial sensor-based technology: A laboratory validation study. Scand. J. Med. Sci. Sports 2017, 28, 463–472. [Google Scholar] [CrossRef]
- Gurchiek, R.D.; McGinnis, R.S.; Needle, A.R.; McBride, J.M.; van Werkhoven, H. An adaptive filtering algorithm to estimate sprint velocity using a single inertial sensor. Sports Eng. 2018, 21, 389–399. [Google Scholar] [CrossRef]
- Apte, S.; Meyer, F.; Gremeaux, V.; Dadashi, F.; Aminian, K. A sensor fusion approach to the estimation of instantaneous velocity using single wearable sensor during sprint. Front. Bioeng. Biotechnol. 2020, 8, 838. [Google Scholar] [CrossRef]
- Clément, J.; Charbonneau, M.; Thompson, M. Instantaneous velocity estimation for the four swimming strokes using a 3-axis accelerometer: Validation on paralympic athletes. J. Biomech. 2021, 117, 110261. [Google Scholar] [CrossRef] [PubMed]
- Cloud, B.; Tarien, B.; Liu, A.; Shedd, T.; Lin, X.; Hubbard, M.; Crawford, R.P.; Moore, J.K. Adaptive smartphone-based sensor fusion for estimating competitive rowing kinematic metrics. PLoS ONE 2019, 14, e0225690. [Google Scholar] [CrossRef] [PubMed]
- Pla, G.A.; Martini, D.N.; Potter, M.V.; Hoogkamer, W. Assessing the validity of the zero-velocity update method for sprinting speeds. PLoS ONE 2024, 19, e0288896. [Google Scholar] [CrossRef]
- Bonett, D.G. Sample size requirements for estimating intraclass correlations with desired precision. Stat. Med. 2002, 21, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
- Simperingham, K.D.; Cronin, J.B.; Ross, A. Advances in Sprint Acceleration Profiling for Field-Based Team-Sport Athletes: Utility, Reliability, Validity and Limitations. Sports Med. 2016, 46, 1619–1645. [Google Scholar] [CrossRef]
- The Jamovi Project. Jamovi, version 2.5; The Jamovi Project: Sydney, Australia, 2022.
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar]
- Mukaka, M.M. Statistics Corner: A guide to appropriate use of Correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- de Witte, A.M.; Hoozemans, M.J.; Berger, M.A.; van der Slikke, R.M.; van der Woude, L.H.; Veeger, D. Development, construct validity and test-retest reliability of a field-based wheelchair mobility performance test for wheelchair basketball. J. Sports Sci. 2018, 36, 23–32. [Google Scholar] [CrossRef]
- Xu, H.; Chua, J.C.; Burton, M.; Zhang, K.; Fuss, F.K.; Subic, A. Development of low cost on-board velocity and position measurement system for wheelchair sports. Procedia Eng. 2010, 2, 3121–3126. [Google Scholar] [CrossRef]
- Grimaldi, G.; Manto, M. Neurological tremor: Sensors, signal processing and emerging applications. Sensors 2010, 10, 1399–1422. [Google Scholar] [CrossRef] [PubMed]
- Taborri, J.; Keogh, J.; Kos, A.; Santuz, A.; Umek, A.; Urbanczyk, C.; van der Kruk, E.; Rossi, S. Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview. Appl. Bionics Biomech. 2020, 2020, 1–18. [Google Scholar] [CrossRef] [PubMed]
- de Klerk, R.; van der Jagt, G.; Veeger, D.; van der Woude, L.; Vegter, R. Learning of Wheelchair Racing Propulsion Skills Over Three Weeks of Wheeling Practice on an Instrumented Ergometer in Able-Bodied Novices. Front. Rehabil. Sci. 2022, 3, 777085. [Google Scholar] [CrossRef] [PubMed]
- Silveira, R.; Marinho, D.A.; Santos, C.C.; Barbosa, T.M.; Coelho, E.; Morais, J.; Forte, P. Resistive and propulsive forces in wheelchair racing: A brief review. AIMS Biophys. 2022, 9, 42–55. [Google Scholar] [CrossRef]
- Lenton, J.P.; Fowler, N.E.; van der Woude, L.; Goosey-Tolfrey, V.L. Wheelchair propulsion: Effects of experience and push strategy on efficiency and perceived exertion. Appl. Physiol. Nutr. Metab. 2008, 33, 870–879. [Google Scholar] [CrossRef]
- MacGillivray, M.K.; Lam, T.; Klimstra, M.; Zehr, E.P.; Sawatzky, B.J. Exploring the ecological validity and variability of a 10-min bout of wheeling. Disabil. Rehabil. Assist. Technol. 2017, 13, 287–292. [Google Scholar] [CrossRef]
Metric | Definition | Unit |
---|---|---|
Cycle duration | Time difference between the beginning and end of a PC | s |
Cycle frequency | Reciprocal of the cycle duration | Stroke/s |
Maximal acceleration (AccMax) | Maximal value of the anteroposterior acceleration within a PC | m/s2 |
Minimal acceleration (AccMin) | Minimal value of the anteroposterior acceleration within a PC | m/s2 |
Average speed (AvSpeed) | Average anteroposterior velocity during a PC | m/s |
Average speed variation (AvSpeedGain) | Changes in the AvSpeed in the current PC relative to the preceding PC * | m/s |
Velocity gain during the acceleration phase of the PC (AccGain) | Difference between the maximal velocity reached during a PC and the velocity at the beginning of the PC | m/s |
Velocity loss during the deceleration phase of the PC (DecLoss) | Difference between the velocity at the end of the PC and the maximal velocity reached during a PC ** | m/s |
T1 IMU | T2 IMU | T1 Lidar | T2 Lidar | |||
---|---|---|---|---|---|---|
Units | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||
PC1 | Cycle duration | s | 1.01 ± 0.25 | 1.03 ± 0.23 | - | - |
Push frequency | Hz | 1.07 ± 0.29 | 1.04 ± 0.31 | - | - | |
AccMax | m/s2 | 1.75 ± 0.33 | 1.70 ± 0.44 | 2.09 ± 0.41 | 2.15 ± 0.41 | |
AccMin | m/s2 | −0.34 ± 0.26 | −0.27 ± 0.33 | −0.44 ± 0.66 | −0.32 ± 0.33 | |
AvSpeed | m/s | 0.42 ± 0.1 | 0.44 ± 0.13 | 0.36 ± 0.12 | 0.39 ± 0.14 | |
AvSpeedGain | m/s | 0.42 ± 0.1 | 0.44 ± 0.13 | 0.36 ± 0.12 | 0.39 ± 0.14 | |
AccGain | m/s | 1.06 ± 0.26 | 1.05 ± 0.30 | 1.05 ± 0.30 | 1.09 ± 0.31 | |
PCstable | Cycle duration | s | 0.57 ± 0.08 | 0.53 ± 0.08 | - | - |
Push frequency | Hz | 1.81 ± 0.28 | 1.94 ± 0.30 | - | - | |
AccMax | m/s2 | 1.69 ± 0.60 | 1.70 ± 0.56 | 1.76 ± 0.55 | 1.84 ± 0.51 | |
AccMin | m/s2 | −1.04 ± 0.59 | −0.99 ± 0.53 | −0.99 ± 0.59 | −0.98 ± 0.47 | |
AvSpeed | m/s | 2.40 ± 0.36 | 2.40 ± 0.35 | 2.36 ± 0.33 | 2.42 ± 0.33 | |
AvSpeedGain | m/s | 0.25 ± 0.05 | 0.25 ± 0.05 | 0.24 ± 0.03 | 0.25 ± 0.04 | |
AccGain | m/s | 0.37 ± 0.12 | 0.35 ± 0.08 | 0.35 ± 0.11 | 0.34 ± 0.09 | |
DecLoss | m/s | −0.15 ± 0.11 | −0.12 ± 0.07 | −0.13 ± 0.11 | −0.11 ± 0.07 |
Reliability Analyses (T1 vs. T2) | Validity Analyses (Lidar vs. IMU; T1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
ICC | ICC CI | SEM | MDC | t-Test p-Value; Cohen’s D | t-Test p-Value; Cohen’s D | Correlation: r; p-Value | |||
PC1 | AccMax | IMU | 0.86 | 0.56–0.95 | 0.13 | 0.27 | 0.53; −0.13 | 0.001; 0.92 | 0.78; 0.002 |
Lidar | 0.68 | 0.08–0.90 | 0.23 | 0.45 | 0.76; 0.15 | ||||
AccMin | IMU | [0.47] | [5.38]–0.58 | 0.35 | 0.97 | 0.61; 0.24 | 0.55; −0.22 | 0.40; 0.17 | |
Lidar | 0.57 | [0.43]–0.87 | 0.34 | 0.94 | 0.47; 0.24 | ||||
AvSpeed | IMU | 0.67 | [0.08]–0.9 | 0.07 | 0.13 | 0.49; 0.17 | 0.01; −0.55 | 0.86; <0.001 | |
Lidar | 0.80 | 0.36–0.94 | 0.1 | 0.19 | 0.9; 0.23 | ||||
AvSpeedGain | IMU | 0.67 | [0.08]–0.9 | 0.07 | 0.13 | 0.49; 0.17 | 0.01; −0.55 | 0.86; <0.001 | |
Lidar | 0.80 | 0.36–0.94 | 0.1 | 0.19 | 0.9; 0.23 | ||||
AccGain | IMU | 0.40 | [1.21]–0.823 | 0.21 | 0.42 | 0.93; −0.04 | 0.42; −0.04 | 0.98; <0.001 | |
Lidar | 0.20 | [1.88]–0.75 | 0.28 | 0.56 | 0.94; 0.13 | ||||
Cycle duration | IMU | 0.67 | [0.14]–0.901 | 0.13 | 0.27 | 0.75; 0.08 | |||
Push frequency | IMU | 0.72 | 0.03–0.91 | 0.16 | 0.31 | 0.75; −0.1 | |||
PCstable | AccMax | IMU | 0.81 | 0.36–0.94 | 0.25 | 0.49 | 0.99; 0.02 | 0.047; 0.12 | 0.99; <0.001 |
Lidar | 0.77 | 0.28–0.93 | 0.25 | 0.49 | 0.45; 0.53 | ||||
AccMin | IMU | 0.86 | 0.53–0.96 | 0.21 | 0.57 | 0.68; 0.09 | 0.30; −0.08 | 0.97 <0.001 | |
Lidar | 0.87 | 0.56–0.96 | 0.19 | 0.52 | 0.93; 0.02 | ||||
AvSpeed | IMU | 0.52 | [0.71]–0.86 | 0.24 | 0.47 | 0.98; 0.00 | 0.5; −0.12 | 0.83; <0.001 | |
Lidar | 0.78 | 0.32–0.93 | 0.15 | 0.3 | 0.53; 0.33 | ||||
AvSpeedGain | IMU | 0.49 | [0.87]–0.85 | 0.03 | 0.06 | 0.92; 0.00 | 0.64; −0.25 | 0.79; 0.001 | |
Lidar | 0.77 | 0.32–0.93 | 0.02 | 0.04 | 0.12; −0.04 | ||||
AccGain | IMU | 0.77 | 0.26–0.93 | 0.05 | 0.1 | 0.36; −0.2 | 0.09; −0.17 | 0.95; 0.001 | |
Lidar | 0.78 | 0.29–0.93 | 0.05 | 0.09 | 0.9; 0.10 | ||||
DecLoss | IMU | 0.77 | 0.28–0.93 | 0.04 | 0.09 | 0.28; 0.33 | 0.1; 0.18 | 0.96; < 0.001 | |
Lidar | 0.78 | 0.33–0.93 | 0.04 | 0.08 | 0.51; 0.09 | ||||
Cycle duration | IMU | 0.74 | 0.17–0.92 | 0.04 | 0.08 | 0.08; −0.50 | |||
Push frequency | IMU | 0.81 | 0.35–0.94 | 0.13 | 0.25 | 0.06; 0.44 |
Study | Sport | Algorithm | Reference System | RMSe Stable (m/s; % Velocity) |
---|---|---|---|---|
Current | Wheelchair racing | Integrated acceleration with the drift corrected with time at 30 m | Lidar system (Speedtracker, SciencePerfo) | 0.30; 9.25% |
[32] | Paraswimming | Integrated acceleration with the drift corrected every 50 m | Cable linear transducer (1080 Sprint, 1080 Motion) | Freestyle: 0.14; 12.6% Butterfly: 0.36; 31.3% Breaststroke: 0.39; 46.4% Backstroke: 0.16; 17.0% |
[33] | Rowing | Complementary (CF) or Kalman (KF) filters to combine integrated acceleration with smartphone GPS | Differential GPS (model unknown) | CF: Elite: 0.33; 7.8% Club-level: 0.31; 7.9% KF Elite: 0.27; 6.4% Club-level: 0.32; 8.2% |
[31] | Sprint running | Kalman filter combining integrated acceleration with GPS, considering a sprint velocity theoretical model | Radar system (ATS PRO II, Stalker Sport) | 60 m: ≈ 0.65 m/s; 6.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouellet, R.; Turcot, K.; Séguin, N.; Campeau-Lecour, A.; Bouffard, J. Validity and Reliability of Inertial Motion Unit-Based Performance Metrics During Wheelchair Racing Propulsion. Sensors 2025, 25, 1680. https://doi.org/10.3390/s25061680
Ouellet R, Turcot K, Séguin N, Campeau-Lecour A, Bouffard J. Validity and Reliability of Inertial Motion Unit-Based Performance Metrics During Wheelchair Racing Propulsion. Sensors. 2025; 25(6):1680. https://doi.org/10.3390/s25061680
Chicago/Turabian StyleOuellet, Raphaël, Katia Turcot, Nathalie Séguin, Alexandre Campeau-Lecour, and Jason Bouffard. 2025. "Validity and Reliability of Inertial Motion Unit-Based Performance Metrics During Wheelchair Racing Propulsion" Sensors 25, no. 6: 1680. https://doi.org/10.3390/s25061680
APA StyleOuellet, R., Turcot, K., Séguin, N., Campeau-Lecour, A., & Bouffard, J. (2025). Validity and Reliability of Inertial Motion Unit-Based Performance Metrics During Wheelchair Racing Propulsion. Sensors, 25(6), 1680. https://doi.org/10.3390/s25061680