Systematic Security Analysis of Sensors and Controls in PV Inverters: Threat Validation and Countermeasures †
<p>An illustration of the IEMI threat: IEMI can affect PV inverters and cause DoS or physical damage, or damping the power output.</p> "> Figure 2
<p>A typical PV inverter can be modeled as a three-layer structure: Power conversion unit-Sensor-Control algorithms.</p> "> Figure 3
<p>The schematic of voltage and current sensors in the PV inverter.</p> "> Figure 4
<p>The principle of IEMI impact on voltage sensors. The IEMI signal is coupled into the sensor circuit, and then rectified, amplified by the op−amp, and ultimately turned into an offset on the output. (<b>a</b>) Transmission process of IEMI signals in the voltage sensor. (<b>b</b>) The parasitic capacitance of sensor’s PCB.</p> "> Figure 5
<p>The structure of the OPA2171 used in voltage and current sensors.</p> "> Figure 6
<p>Simulation of IEMI injection on different inputs of the op−amp chip.</p> "> Figure 7
<p>The principle of IEMI impact on Hall current sensors. The IEMI signal is injected into the Hall chip and generates a noise <math display="inline"><semantics> <msub> <mi>V</mi> <mi>H</mi> </msub> </semantics></math>. Then the noise will be rectified, amplified by the op−amp, and result in a deviation on the output.</p> "> Figure 8
<p>Setup of feasibility test on sensors.</p> "> Figure 9
<p>The voltage and current sensors’ PCB we designed for the initial feasibility test.</p> "> Figure 10
<p>The result of the IEMI frequency test on the voltage and current sensors. The IEMI power and distance are set to <math display="inline"><semantics> <mrow> <mn>10</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">W</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>50</mn> <mspace width="0.166667em"/> <mi>cm</mi> </mrow> </semantics></math>.</p> "> Figure 11
<p>The experiment result of manipulation with a single-frequency signal and an AM signal on the sensor. ①: Without EMI; ②: Single-frequency EMI; ③: AM-modulated EMI.</p> "> Figure 12
<p>The simulation of the DC bus voltage manipulation. We add a fake <math display="inline"><semantics> <msub> <mi>V</mi> <mi>a</mi> </msub> </semantics></math> on the measured DC bus voltage and record the real DC bus voltage under control. For <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo><</mo> <mn>0</mn> </mrow> </semantics></math>, ①: <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> V, ②: <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>50</mn> </mrow> </semantics></math> V, ③: <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>100</mn> </mrow> </semantics></math> V, ④: <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>200</mn> </mrow> </semantics></math> V, ⑤: <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>300</mn> </mrow> </semantics></math> V; for <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>></mo> <mn>0</mn> </mrow> </semantics></math>, ①: <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> V, ②: <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> V, ③: <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> V.</p> "> Figure 13
<p>Design of IEMI signals <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> of <tt>DoS</tt> and <tt>Damage</tt>.</p> "> Figure 14
<p>The simulations of grid current sensors spoofing. It gives the simulated waveform of the real current value and the sensor output value when the single-phase and three-phase grid current measurement is manipulated. (<b>a</b>) Single-phase PV inverter. ①: <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> A, ②: <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>50</mn> <mo form="prefix">sin</mo> <mi>ω</mi> <mi>t</mi> <mspace width="0.166667em"/> </mrow> </semantics></math> A, ③: <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>200</mn> <mo form="prefix">sin</mo> <mi>ω</mi> <mi>t</mi> <mspace width="0.166667em"/> </mrow> </semantics></math> A. (<b>b</b>) Three-phase PV inverter. ①: <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> A, ②: <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> A, ③: <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math> A.</p> "> Figure 15
<p>Simulation of injecting perturbations of different frequencies into the MPPT control system. The red dots represent the positions at which the perturbations are injected.</p> "> Figure 16
<p>Experiment setup of evaluation on PV inverters.</p> "> Figure 17
<p>The tested single-phase solar inverters and three-phase solar inverters under laboratory conditions.</p> "> Figure 18
<p>The experiment results of <tt>DoS</tt> and <tt>Damage</tt>. (<b>a</b>) Result of <tt>DoS</tt>. ①: Before EMI, ②: IEMI begins, ③: After EMI. (<b>b</b>) Result of <tt>Damage</tt>. ①: Before EMI, ②: IEMI begins, ③: Burning out, ④: After EMI.</p> "> Figure 19
<p>The impact of <tt>DoS</tt> on a real-world PV microgrid’s frequency. Stage ①: real-world experiment, Stage ②: simulation. (<b>a</b>) Experiment setup in the real-world microgrid. (<b>b</b>) Impact of <tt>DoS</tt> on microgrid frequency.</p> "> Figure 20
<p>The influence of distance and power to manipulate inverter sensors and <tt>DoS</tt> a commercial inverter. The nonmonotonicity in (<b>c</b>) is mainly because the power will affect the electromagnetic field distribution of the antenna, which is not linear.</p> "> Figure 21
<p>The simulation result of Switching Attack with <tt>Damping</tt>.</p> "> Figure 22
<p>The detection method based on the distributed effect of IEMI. IEMI coupled before the transducer is converted to DC bias, while IEMI coupled behind the transducer remains AC noise, which can be regarded as a detection feature.</p> "> Figure 23
<p>The voltage sensor’s output under different IEMI attack frequencies. (<b>a</b>) is under normal state, (<b>b</b>–<b>f</b>) are under IEMI attack with the attack power of <math display="inline"><semantics> <mrow> <mn>7</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">W</mi> </mrow> </semantics></math> and frequency of <math display="inline"><semantics> <mrow> <mn>1604</mn> <mspace width="0.166667em"/> <mi>MHz</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>1236</mn> <mspace width="0.166667em"/> <mi>MHz</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>1560</mn> <mspace width="0.166667em"/> <mi>MHz</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>1740</mn> <mspace width="0.166667em"/> <mi>MHz</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>1726</mn> <mspace width="0.166667em"/> <mi>MHz</mi> </mrow> </semantics></math>.</p> "> Figure 24
<p>Sensor output’s STD under different IEMI frequencies.</p> "> Figure 25
<p>The sensor’s output under different IEMI attack power. (<b>a</b>) is under normal state, while (<b>b</b>–<b>f</b>) are under IEMI attack at a frequency of <math display="inline"><semantics> <mrow> <mn>1560</mn> <mspace width="0.166667em"/> <mi>MHz</mi> </mrow> </semantics></math> and power levels of <math display="inline"><semantics> <mrow> <mn>4.47</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">W</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>5.01</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">W</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>5.62</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">W</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>6.31</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">W</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>7.08</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">W</mi> </mrow> </semantics></math>, respectively.</p> "> Figure 26
<p>Sensor output’s STD under different IEMI power levels.</p> "> Figure 27
<p>The experiment result of the detection of <tt>Damping</tt> attack on the TI C2000 solar inverter. <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>∼</mo> <mn>0.8</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>: Initialization, <math display="inline"><semantics> <mrow> <mn>0.8</mn> <mo>∼</mo> <mn>3</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">s</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>3.2</mn> <mo>∼</mo> <mn>4</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>: Normal operation, <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>∼</mo> <mn>3.2</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>: <tt>Damping</tt> attack, <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>∼</mo> <mn>5</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">s</mi> </mrow> </semantics></math>: Manual reduce power by half.</p> "> Figure 28
<p>The impact of inverter working power and sensor’s deviation under attack on <math display="inline"><semantics> <mi>σ</mi> </semantics></math>. (<b>a</b>) The efficiency <math display="inline"><semantics> <mi>σ</mi> </semantics></math> under different working power. (<b>b</b>) The maximum deviation of efficiency <math display="inline"><semantics> <mi>σ</mi> </semantics></math> under different sensor’s deviation caused by IEMI attack.</p> "> Figure 29
<p>The structure of the lightweight CNN model. Including 2 convolution layers, a flattened layer and a fully connected layer.</p> "> Figure 30
<p>The comparison of the three methods. Method 1 is based on the distribution of IEMI, method 2 is based on the conservation of energy, and method 3 is based on neural networks. The “3” means excellent, “2” means good, “1” means fair.</p> ">
Abstract
:1. Introduction
- DoS: The PV inverter shuts down completely, causing an instantaneous power reduction in PV generation to the grid or consumers.
- Damage: The PV inverter can be physically burned out and has to be repaired or replaced.
- Damping: This type of threat causes the output power of PV inverters to be lower than their capability. Long-term continuous Damping will reduce the efficiency of the PV generation.
- We present a systematic security analysis of PV inverters and analyze the vulnerabilities of sensors and control algorithms susceptible to IEMI signals.
- We illustrate the adversarial scenarios that can shut down, permanently damage, and dampen the power output of PV inverters, and we validate the threat on commercial PV inverters and a real-world microgrid.
- We investigate the underlying causes of these vulnerabilities and propose three effective detection methods to counter these threats.
2. Related Works
2.1. Security of the Power Converters
2.2. Countermeasures Against IEMI Attacks
3. Background and Threat Model
3.1. Principle of PV Inverter
3.1.1. Power Conversion Unit
3.1.2. Control Algorithm
- DC bus over-voltage protection. The PV inverter continuously monitors the voltage of the DC bus. If the DC voltage exceeds a predefined threshold several times, the inverter disconnects from the grid and stops power generation.
- AC over and under voltage protection. When the inverter’s output voltage is detected to be higher than the threshold range, it will disconnect itself from the grid. If the output voltage drops outside the allowable range of low voltage crossing (20%), the low voltage crossing function will activate, triggering an alarm.
3.2. Sensors of PV Inverter
3.2.1. Non-Hall Voltage Sensor
3.2.2. Hall Current Sensor
3.3. Threat Model
4. Understanding the Impact of IEMI on Embedded Sensors of PV Inverters
4.1. Analysis of the IEMI Impact on Sensors
4.1.1. Impact of IEMI on Voltage Sensors
- EMI signal injection. Process ① in Figure 4a is IEMI injection. Electromagnetic fields around the sensor can be injected into sensor circuits (e.g., input nodes) via electromagnetic coupling. Generally, according to the IEMI transmission paths, IEMI coupling methods can be divided into conductive coupling, inductive coupling, capacitive coupling, and radiative coupling (also called radio frequency interference, RFI) [70,71]. Among them, radiative coupling refers to the far-field coupling of higher-frequency signals in the microwave frequency range, which can be transmitted over longer distances. Notably, the conductors (e.g., copper wires and component pins) and the insulator (e.g., PCB substrate) on the sensor’s PCB will form parasitic capacitance, as shown in Figure 4b. These parasitic capacitances are susceptible to the aforementioned high-frequency electric fields, which can introduce interfering signals.
- Nonlinear rectification effect. The amplifier can rectify the high-frequency AC signal at the input and generate a DC bias at the output. The main reason is that the bipolar junction transistor (BJT) in the op−amp chip contains p-n junction diodes, which are efficient rectifiers due to their nonlinear current–voltage characteristics, especially in low-power op−amps [72]. When a high-frequency signal is injected into the base-emitter junction of an op−amp BJT-based input stage, the output will generate an AC term at twice the input frequency and a DC term [72], which can be described by Equation (3):
- Asymmetric differential effect. The asymmetric design of the op−amp circuit on the PCB allows the output bias of the op−amp to be positive or negative. As shown in Figure 5, an op−amp channel consists of a differential amplification input stage, an intermediate amplification stage, and a push–pull output stage. The transfer relationship of the differential amplification input stage can be expressed as follows:Figure 5. The structure of the OPA2171 used in voltage and current sensors.
- Amplification effect. Amplification is the fundamental function of op−amp. Signal inputs will be amplified according to the set gain; however, IEMI signals can enter into various nodes via radiative coupling. As shown in Figure 3a, when the IEMI signal is injected into the node b, it can be considered that . Then, according to Equation (1), the gain will be abnormally large. In other words, even if injecting a millivolt signal at node b, it can be amplified to a few volts in process ③ of Figure 4a.
4.1.2. Impact of IEMI on Current Sensors
- Impact of magnetic field on Hall sensor. We assume the measured current generates a magnetic field B in the Hall element. Since the output is proportional to B, we quantify this as Equation (4). If IEMI generates a magnetic field nearby, will be superimposed on B. Therefore, the output of the Hall element may be directly manipulated by the IEMI signal, and this relation can described as Equation (5), and the output of the Hall element will be changed by .
- Impact of electric field on Hall sensor. According to Equation (2), we have
4.2. Experimental Verification
4.2.1. Can IEMI Impact Voltage and Current Sensors
4.2.2. Whether the Impact Is Controllable
4.2.3. Verification of the Universality and Extensibility
5. Understanding the Impact of Sensor Spoofing on PV Inverters
5.1. Impact of DC Bus Voltage Sensor
5.1.1. Breakdown of DC Bus Capacitor
5.1.2. DC Bus Under-Voltage
5.2. Impact of Grid Voltage and Current Sensors
5.2.1. Single-Phase PV Inverter
5.2.2. Three-Phase PV Inverter
5.3. Impact of PV Voltage and Current Sensors
6. Threat Evaluation
6.1. Evaluation of PV Inverters
6.1.1. Experiment Setup
6.1.2. Evaluation of DoS
6.1.3. Evaluation of Damage
6.1.4. Evaluation of Damping
6.2. Evaluation of PV Microgrid
6.3. Influence Quantification
6.3.1. Influence of IEMI Distance and Power on Inverter Sensors
6.3.2. Influence of IEMI Distance and Power to DoS the Commercial Inverter
7. Discussion
7.1. Limitation
7.1.1. Subject to Power and Distance
7.1.2. Limited Impact Scale
7.2. Diversity
7.2.1. Diversity of the Impact
7.2.2. Diversity of the Victim
7.3. Exploitability
7.3.1. Large-Scale Impact
7.3.2. Closed-Loop Attack
7.4. Electromagnetic Compatibility Standards
8. Countermeasures
8.1. Detection on the Sensor Level
8.2. Detection on the Model Level
8.2.1. Detection Principle
8.2.2. Evaluation
8.2.3. Impact Factors
8.3. Detection on the Combination Level
- (1)
- Data: The input data need to take into account the intrinsic connections between different sensors, and the intrinsic connections between a sensor’s data frames;
- (2)
- Model: The training of the model before leaving the factory can be offline, but it needs to be online to detect anomalies after being deployed to the inverter, so it is important to conserve arithmetic as much as possible;
- (3)
- Deployment: Since IEMI attacks take effect in seconds, the inverter only needs to detect IEMI attacks at second-level intervals.
8.4. Comparison of the Three Detection Methods
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
ADC | Analog-to-Digital Converter |
EMI | Electromagnetic Interference |
STD | Standard Deviation |
DoS | Denial of Service |
EMC | Electromagnetic Compatibility |
BES | Battery Energy Storage System |
MPPT | Maximum Power Point Tracking |
P&Q | Power and Reactive Power |
DC | Direct Current |
AC | Alternating Current |
PCB | Printed Circuit Board |
op−amp | Operational Amplifier |
CNN | Convolutional Neural Network |
P&O | Perturb and Observe |
RFI | Radio Frequency Interference |
BJT | Bipolar Junction Transistor |
AM | Amplitude Modulation |
RES | Renewable Energy Sources |
FDI | False Data Injection |
References
- Moosavian, S.; Rahim, N.; Selvaraj, J.; Solangi, K. Energy policy to promote photovoltaic generation. Renew. Sustain. Energy Rev. 2013, 25, 44–58. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Renewables 2024: Executive Summary. 2024. Available online: https://www.iea.org/reports/renewables-2024/executive-summary (accessed on 18 February 2025).
- Yang, F.; Dan, Z.; Pan, K.; Yan, C.; Ji, X.; Xu, W. ReThink: Reveal the Threat of Electromagnetic Interference on Power Inverters. arXiv 2024, arXiv:2409.17873. [Google Scholar]
- Teoh, W.Y.; Tan, C.W. An overview of islanding detection methods in photovoltaic systems. Int. J. Electr. Comput. Eng. 2011, 5, 1341–1349. [Google Scholar]
- Selvaraj, J.; Dayanıklı, G.Y.; Gaunkar, N.P.; Ware, D.; Gerdes, R.M.; Mina, M. Electromagnetic induction attacks against embedded systems. In Proceedings of the 2018 on Asia Conference on Computer and Communications Security, Incheon, Korea, 4–8 June 2018; pp. 499–510. [Google Scholar]
- Dayanıklı, G.Y.; Sinha, S.; Muniraj, D.; Gerdes, R.M.; Farhood, M.; Mina, M. Physical-Layer Attacks Against Pulse Width Modulation-Controlled Actuators. In Proceedings of the 31st USENIX Security Symposium (USENIX Security 22), Boston, MA, USA, 10–12 August 2022; pp. 953–970. [Google Scholar]
- Kune, D.F.; Backes, J.; Clark, S.S.; Kramer, D.; Reynolds, M.; Fu, K.; Kim, Y.; Xu, W. Ghost Talk: Mitigating EMI Signal Injection Attacks against Analog Sensors. In Proceedings of the 2013 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 19–22 May 2013; pp. 145–159. [Google Scholar] [CrossRef]
- Tu, Y.; Rampazzi, S.; Hao, B.; Rodriguez, A.; Fu, K.; Hei, X. Trick or heat? attack on amplification circuits to abuse critical temperature control systems. arXiv 2019, arXiv:1904.07110. [Google Scholar]
- Jie, H.; Zhao, Z.; Zeng, Y.; Chang, Y.; Fan, F.; Wang, C.; See, K.Y. A review of intentional electromagnetic interference in power electronics: Conducted and radiated susceptibility. IET Power Electron. 2024, 17, 1487–1506. [Google Scholar] [CrossRef]
- Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. [Google Scholar] [CrossRef]
- Electric, N.S. Inverter Basics and Selecting the Right Mode. 2023. Available online: https://www.solar-electric.com/learning-center/inverter-basics-selection.html/?srsltid=AfmBOorGaqr-Ia8tqZ1TvRR7-yK-GvfwL2k4nB1vzc2JSJud_qVPU7A0 (accessed on 25 February 2024).
- Barua, A.; Al Faruque, M.A. Hall Spoofing: A Non-Invasive DoS Attack on Grid-Tied Solar Inverter. In Proceedings of the 29th USENIX Security Symposium (USENIX Security 20), Berkeley, CA, USA, 12–14 August 2020; pp. 1273–1290. [Google Scholar]
- USDE. Grid Systems. 2025. Available online: https://www.energy.gov/oe/grid-systems (accessed on 19 February 2025).
- Lasseter, R.H.; Paigi, P. Microgrid: A conceptual solution. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), Aachen, Germany, 20–25 June 2004; Volume 6, pp. 4285–4290. [Google Scholar]
- Stracqualursi, E.; Di Lorenzo, G.; Calcara, L.; Araneo, R. EMC Issues in High-Power Grid-Connected Photovoltaic Plants: An Update After 15 Years. IEEE Trans. Electromagn. Compat. 2024, 66, 1633–1645. [Google Scholar] [CrossRef]
- Degner, T.; Enders, W.; Schülbe, A.; Daub, H. EMC and safety design for photovoltaic systems (ESDEPS). In Proceedings of the Sixteenth European Photovoltaic Solar Energy Conference, Glasgow, UK, 1–5 May 2020; pp. 2253–2256. [Google Scholar]
- Nooshabadi, M.T. Design Methodology for PV Converters Optimization Including the Impact of EMC. Ph.D. Thesis, University of Teheran, Tehran, Iran, 2024. [Google Scholar]
- Wu, H.; Fang, J.; Tang, H. Study on EMC of High Power Photovoltaic Grid-connected Inverter. In Proceedings of the High Power Converter Technology, Online, 22 October 2014; pp. 60–79. [Google Scholar]
- Williams, T. EMC for Product Designers; Newnes: Oxford, UK, 2016. [Google Scholar]
- Paul, C.R.; Scully, R.C.; Steffka, M.A. Introduction to Electromagnetic Compatibility; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Li, G.; Yang, J.; Huang, X. The Study of EMI/RFI and Its Rejection. Proc. Epsa 2002, 14, 36–44. [Google Scholar]
- Wang, X.; Wild, T.; Schaich, F.; Dos Santos, A.F. Universal filtered multi-carrier with leakage-based filter optimization. In Proceedings of the European Wireless 2014, 20th European Wireless Conference, Barcelona, Spain, 14–16 May 2014; pp. 1–5. [Google Scholar]
- Chen, C.; Willeke, K. Characteristics of face seal leakage in filtering facepieces. Am. Ind. Hyg. Assoc. J. 1992, 53, 533–539. [Google Scholar] [CrossRef]
- An, L.; Sepehri, N. Hydraulic actuator leakage fault detection using extended Kalman filter. Int. J. Fluid Power 2005, 6, 41–51. [Google Scholar] [CrossRef]
- Murata, Y.; Takahashi, K.; Kanamoto, T.; Kubota, M. Analysis of Parasitic Couplings in EMI Filters and Coupling Reduction Methods. IEEE Trans. Electromagn. Compat. 2017, 59, 1880–1886. [Google Scholar] [CrossRef]
- Qu, Z.; Zhu, Z.; Liu, Y.; Yu, M.; Ye, T.T. Parasitic capacitance modeling and measurements of conductive yarns for e-textile devices. Nat. Commun. 2023, 14, 2785. [Google Scholar] [CrossRef] [PubMed]
- Hammad, E.; Khalil, A.M.; Farraj, A.; Kundur, D.; Iravani, R. A Class of Switching Exploits Based on Inter-Area Oscillations. IEEE Trans. Smart Grid 2017, 9, 4659–4668. [Google Scholar] [CrossRef]
- Fan, L.; Knott, A.; Jørgensen, I.H.H. Layout capacitive coupling and structure impacts on integrated high voltage power MOSFETs. In Proceedings of the 2016 12th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Lisbon, Portugal, 27–30 June 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Sheng, H.; Lakshmikanthan, S. Reduction and Cancellation Techniques for the Near Field Capacitive Coupling and Parasitic Capacitance of Inductors. In Proceedings of the 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity, Long Beach, CA, USA, 30 July–3 August 2018; pp. 432–437. [Google Scholar] [CrossRef]
- Kjærsgaard, B.F.; Liu, G.; Nielsen, M.R.; Wang, R.; Dalal, D.N.; Aunsborg, T.S.; Jørgensen, J.K.; Yan, Z.; Jacobsen, J.; Wu, R.; et al. Parasitic Capacitive Couplings in Medium Voltage Power Electronic Systems: An Overview. IEEE Trans. Power Electron. 2023, 38, 9793–9817. [Google Scholar] [CrossRef]
- Westerhof, W. HORUS SCENARIO. Available online: https://horusscenario.com/ (accessed on 25 February 2024).
- Benkraouda, H.; Chakkantakath, M.A.; Keliris, A.; Maniatakos, M. Snifu: Secure network interception for firmware updates in legacy plcs. In Proceedings of the 2020 IEEE 38th VLSI Test Symposium (VTS), San Diego, CA, USA, 5–8 April 2020; pp. 1–6. [Google Scholar]
- Mo, Y.; Sinopoli, B. Secure control against replay attacks. In Proceedings of the 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 30 September–2 October 2009; pp. 911–918. [Google Scholar]
- Wang, H.; Ruan, J.; Ma, Z.; Zhou, B.; Fu, X.; Cao, G. Deep learning aided interval state prediction for improving cyber security in energy internet. Energy 2019, 174, 1292–1304. [Google Scholar] [CrossRef]
- Sahoo, S.; Peng, J.C.H.; Devakumar, A.; Mishra, S.; Dragičević, T. On detection of false data in cooperative DC microgrids—A discordant element approach. IEEE Trans. Ind. Electron. 2019, 67, 6562–6571. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Chen, Y.; Xie, L. False data injection attacks against state estimation in power grid systems. IEEE Trans. Power Syst. 2015, 30, 1166–1175. [Google Scholar] [CrossRef]
- Geetha, S.; Satheesh Kumar, K.; Rao, C.R.; Vijayan, M.; Trivedi, D. EMI shielding: Methods and materials—A review. J. Appl. Polym. Sci. 2009, 112, 2073–2086. [Google Scholar] [CrossRef]
- Kondawar, S.B.; Modak, P.R. Theory of EMI shielding. In Materials for Potential Emi Shielding Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 9–25. [Google Scholar]
- Thomassin, J.M.; Jérôme, C.; Pardoen, T.; Bailly, C.; Huynen, I.; Detrembleur, C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. Rep. 2013, 74, 211–232. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Z.; Zhang, Y.; Chen, L.; Cao, D.; Gu, J. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431. [Google Scholar] [CrossRef]
- Ye, S.; Eberle, W.; Liu, Y.F. A novel EMI filter design method for switching power supplies. IEEE Trans. Power Syst. 2004, 19, 1668–1678. [Google Scholar] [CrossRef]
- Wang, S.; Lee, F.C.; Chen, D.Y.; Odendaal, W.G. Effects of parasitic parameters on EMI filter performance. IEEE Trans. Power Syst. 2004, 19, 869–877. [Google Scholar] [CrossRef]
- Luo, F.; Boroyevich, D.; Mattavelli, P. Improving EMI filter design with in circuit impedance mismatching. In Proceedings of the 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 5–9 February 2012; pp. 1652–1658. [Google Scholar]
- Adami, C.; Braun, C.; Clemens, P.; Jöster, M.; Ruge, S.; Suhrke, M.; Schmidt, H.U.; Taenzer, H.J. HPM detector system with frequency identification. In Proceedings of the 2014 International Symposium on Electromagnetic Compatibility, Raleigh, NC, USA, 4–8 August 2014; pp. 140–145. [Google Scholar]
- Adami, C.; Braun, C.; Clemens, P.; Suhrke, M.; Schmidt, H.; Taenzer, A. HPM detection system for mobile and stationary use. In Proceedings of the 10th International Symposium on Electromagnetic Compatibility, York, UK, 26–30 September 2011; pp. 1–6. [Google Scholar]
- Dawson, J.; Flintoft, I.; Kortoci, P.; Dawson, L.; Marvin, A.; Robinson, M.; Stojilovic, M.; Rubinstein, M.; Menssen, B.; Garbe, H.; et al. A cost-efficient system for detecting an intentional electromagnetic interference (IEMI) attack. In Proceedings of the 2014 International Symposium on Electromagnetic Compatibility, Raleigh, NC, USA, 4–8 August 2014; pp. 1252–1256. [Google Scholar]
- Tu, Y.; Tida, V.S.; Pan, Z.; Hei, X. Transduction shield: A low-complexity method to detect and correct the effects of emi injection attacks on sensors. In Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security, Hong Kong, 7–11 June 2021; pp. 901–915. [Google Scholar]
- Zhang, Y.; Rasmussen, K. Detection of Electromagnetic Signal Injection Attacks on Actuator Systems. In Proceedings of the 25th International Symposium on Research in Attacks, Intrusions and Defenses, Limassol, Cyprus, 26–28 October 2022; pp. 171–184. [Google Scholar]
- Köhler, S.; Baker, R.; Martinovic, I. Signal injection attacks against ccd image sensors. In Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security, Nagasaki, Japan, 30 May–3 June 2022; pp. 294–308. [Google Scholar]
- Ruotsalainen, H.; Treytl, A.; Sauter, T. Watermarking based sensor attack detection in home automation systems. In Proceedings of the 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vasteras, Sweden, 7–10 September 2021; pp. 1–8. [Google Scholar]
- Shoukry, Y.; Martin, P.; Yona, Y.; Diggavi, S.; Srivastava, M. Pycra: Physical challenge-response authentication for active sensors under spoofing attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 1004–1015. [Google Scholar]
- Fang, K.; Wang, T.; Yuan, X.; Miao, C.; Pan, Y.; Li, J. Detection of weak electromagnetic interference attacks based on fingerprint in IIoT systems. Future Gener. Comput. Syst. 2022, 126, 295–304. [Google Scholar] [CrossRef]
- Kasmi, C.; Esteves, J.L. IEMI threats for information security: Remote command injection on modern smartphones. IEEE Trans. Electromagn. Compat. 2015, 57, 1752–1755. [Google Scholar] [CrossRef]
- Kasmi, C.; Lopes-Esteves, J. Automated analysis of the effects induced by radio-frequency pulses on embedded systems for EMC Functional Safety. In Proceedings of the 2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC), Gran Canaria, Spain, 16–24 May 2015; p. 1. [Google Scholar]
- Muniraj, D.; Farhood, M. Detection and mitigation of actuator attacks on small unmanned aircraft systems. Control Eng. Pract. 2019, 83, 188–202. [Google Scholar] [CrossRef]
- Wang, K.; Mitev, R.; Yan, C.; Ji, X.; Sadeghi, A.R.; Xu, W. GhostTouch: Targeted Attacks on Touchscreens Without Physical Touch. In Proceedings of the 31st USENIX Security Symposium (USENIX Security 22), Boston, MA, USA, 10–12 August 2022; USENIX Association: Boston, MA, USA, 2022. Available online: https://www.usenix.org/conference/usenixsecurity22/presentation/wang-kai (accessed on 20 February 2025).
- Jie, H.; Zhao, Z.; Li, H.; Wang, C.; Chang, Y.; See, K.Y. Characterization and Circuit Modeling of Electromagnetic Interference Filtering Chokes in Power Electronics: A Review. IEEE Trans. Power Syst. 2025, 40, 920–943. [Google Scholar] [CrossRef]
- Islam, M.; Mekhilef, S.; Hasan, M. Single phase transformerless inverter topologies for grid-tied photovoltaic system: A review. Renew. Sustain. Energy Rev. 2015, 45, 69–86. [Google Scholar] [CrossRef]
- SUNGROW Technologies Co., Ltd. String Inverter of Sungrow. 2023. Available online: https://en.sungrowpower.com/ProductsHome/14/16/string-inverter (accessed on 25 February 2024).
- TMEIC Technologies Co., Ltd. PV Inverters. Available online: https://www.tmeic.com/products/pv-inverters (accessed on 25 February 2024).
- Huawei Technologies Co., Ltd. FusionSolar. Available online: https://solar.huawei.com/eu/Products/FusionSolar (accessed on 25 February 2024).
- Dogga, R.; Pathak, M. Recent trends in solar PV inverter topologies. Solar Energy 2019, 183, 57–73. [Google Scholar] [CrossRef]
- Motahhir, S.; El Hammoumi, A.; El Ghzizal, A. The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm. J. Clean. Prod. 2020, 246, 118983. [Google Scholar] [CrossRef]
- Sarvi, M.; Azadian, A. A comprehensive review and classified comparison of MPPT algorithms in PV systems. Energy Syst. 2022, 13, 281–320. [Google Scholar] [CrossRef]
- Harrag, A.; Messalti, S. Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller. Renew. Sustain. Energy Rev. 2015, 49, 1247–1260. [Google Scholar]
- Yang, Y.; Ruan, Y.; Shen, H.Q.; Tang, Y.Y.; Yang, Y. Grid-connected inverter for wind power generation system. J. Shanghai Univ. (Engl. Ed.) 2009, 13, 51–56. [Google Scholar] [CrossRef]
- Ti Technologies Co., Ltd. C2000 Solar Micro Inverter Quick Start Guide. 2014. Available online: https://www.ti.com/lit/pdf/tidu406 (accessed on 25 February 2024).
- Baekhyn0506. Characteristics and Diagramming of Operational Amplifier Circuits. [EB/OL]. 2022. Available online: https://www.elecfans.com/analog/202208161878428.html (accessed on 20 February 2025).
- Biglarbegian, M.; Nibir, S.J.; Jafarian, H.; Parkhideh, B. Development of current measurement techniques for high frequency power converters. In Proceedings of the 2016 IEEE International Telecommunications Energy Conference (INTELEC), Austin, TX, USA, 23–27 October 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Cadence System Analysis. EMI Types and Coupling Methods. Available online: https://resources.system-analysis.cadence.com/blog/msa2022-emi-types-and-coupling-methods (accessed on 10 February 2024).
- Soni, A. What is Electromagnetic Coupling? Available online: https://www.ansys.com/blog/saving-chips-from-electromagnetic-coupling (accessed on 10 February 2024).
- Analog Devices. RFI Rectification Concepts. Available online: https://www.analog.com/media/en/training-seminars/tutorials/MT-096.pdf (accessed on 25 January 2024).
- Ti Technologies Co., Ltd. Grid-Tied Solar Micro Inverter with MPPT Schematic (Rev. A). Available online: https://www.ti.com/lit/pdf/tidr767 (accessed on 28 February 2024).
- RIGOL Technologies Co., Ltd. DP711 Programmable Liner DC Power Supply. 2016. Available online: https://beyondmeasure.rigoltech.com/acton/attachment/1579/f-06b5/1/-/-/-/-/DP700%20Data%20Sheet.pdf (accessed on 25 January 2024).
- Keysight Technologies. EXG X-Series Signal Generators N5171B. Available online: https://www.keysight.com/us/en/assets/7018-03381/data-sheets/5991-0039.pdf (accessed on 25 January 2024).
- Mini-Circuits Technologies Co., Ltd. High Power Amplifier HPA-50W-63+. Available online: https://www.minicircuits.com/pdfs/HPA-50W-63+.pdf (accessed on 25 January 2024).
- Shenzhen Shengda Communication Equipment Co., Ltd. The 5G Directional Antenna. Available online: https://www.alibaba.com/product-detail/High-Gain-Waterproof-Outdoor-800-2500MHZ_62344368753.html (accessed on 25 January 2024).
- Ginlong Technologies Co., Ltd. Solis S6 Single Phase Inverter. Available online: https://www.ginlong.com/uploads/file/Solis_Manual_S6-GR1P(2,5-6)K_FN_EUR_V1,2(20221116).pdf (accessed on 25 January 2024).
- Kstar Technologies Co., Ltd. String Grid-Tied PV Inverter BIuE-G 3000D/4000D/5000D/5000D-AU/6000D. Available online: https://www.kstar.com/product/detail/106.html (accessed on 25 January 2024).
- Huawei Technologies Co., Ltd. Huawei SUN2000-2/3/3.68/4/4.6/5/6ktl-l1. 2024. Available online: https://solar.huawei.com/hu-HU/download?p=%2F-%2Fmedia%2FSolar%2Fattachment%2Fpdf%2Feu%2Fdatasheet%2FSUN2000-2-6KTL-L1.pdf (accessed on 25 January 2024).
- GoodWe Technologies Co., Ltd. GOODWE GW50K-MT. Available online: https://en.goodwe.com/Ftp/EN/Downloads/User%20Manual/GW_MT_User%20Manual-EN.pdf (accessed on 25 January 2024).
- AG, S.S.T. Sunny Boy 3.0/3.6/4.0/5.0/6.0. Available online: https://files.sma.de/assets/278585.pdf (accessed on 6 January 2025).
- AG, S.S.T. Sunny Tripower Smart Energy 5.0/6.0/8.0/10.0. 2023. Available online: https://files.sma.de/downloads/STPxx-3SE-40-DS-en-20.pdf (accessed on 6 January 2025).
- TEWERD Technologies Co., Ltd. TEWERD TPV1000. Available online: https://www.tewerd.com/PVsimulator.html (accessed on 25 January 2024).
- RIGOL Technologies Co., Ltd. RP1000D Series High Voltage Differential Probe. 2021. Available online: https://beyondmeasure.rigoltech.com/acton/attachment/1579/f-01c6/1/-/-/-/-/file.pdf (accessed on 25 January 2024).
- Chroma ATE, Inc. REGENERATIVE GRID SIMULATOR MODEL 61809/61812/61815. 2025. Available online: https://www.chromaate.com/downloads/catalogue/Power/61815-EN.pdf (accessed on 12 January 2025).
- Dong, S.; Kremers, E.; Brucoli, M.; Brown, S.; Rothman, R. Residential PV-BES systems: Economic and grid impact analysis. Energy Procedia 2018, 151, 199–208. [Google Scholar] [CrossRef]
- Chen, Z.; Ding, M.; Su, J. Modeling and control for large capacity battery energy storage system. In Proceedings of the 2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Weihai, China, 6–9 July 2011; pp. 1429–1436. [Google Scholar]
- Intelligence and Security Committee of Parliament. 1547.4-2011-IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar]
- Liu, M.; Cao, X.; Cao, C.; Wang, P.; Wang, C.; Pei, J.; Lei, H.; Jiang, X.; Li, R.; Li, J. A review of power conversion systems and design schemes of high-capacity battery energy storage systems. IEEE Access 2022, 10, 52030–52042. [Google Scholar] [CrossRef]
- Kirby, B.J.; Dyer, J.; Martinez, C.; Shoureshi, R.A.; Guttromson, R.; Dagle, J. Frequency Control Concerns in the North American Electric Power System; United States Department of Energy: Washington, DC, USA, 2003. [Google Scholar]
- Ghafouri, M.; Kabir, E.; Moussa, B.; Assi, C. Coordinated charging and discharging of electric vehicles: A new class of switching attacks. ACM Trans.-Cyber-Phys. Syst. (TCPS) 2022, 6, 1–26. [Google Scholar] [CrossRef]
- MathWork. Performance of Three PSS for Interarea Oscillations. 2024. Available online: https://ww2.mathworks.cn/help/sps/ug/performance-of-three-pss-for-interarea-oscillations.html?searchHighlight=Kundur&s_tid=srchtitle_support_results_2_Kundur (accessed on 17 April 2024).
- European Committee for Standardization. EN 61000 Series: Electromagnetic Compatibility (EMC). 2019. Available online: https://www.cenelec.eu/ (accessed on 20 February 2025).
- Chinese National Standardization Administration. GB/T 17626.x Series: Electromagnetic Compatibility (EMC) Testing. 2019. Available online: http://www.sac.gov.cn/ (accessed on 20 February 2025).
- Mardiguian, M. Combined effects of several, simultaneous, EMI couplings. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Symposium Record (Cat. No. 00CH37016), Washington, DC, USA, 21–25 August 2000; Volume 1, pp. 181–184. [Google Scholar] [CrossRef]
- IEEE Standards Association. IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- EN 50530:2010; Overall Efficiency of Grid Connected Photovoltaic Inverters. European Committee for Electrotechnical Standardization: Brussels, Belgium, 2010.
- IEC TS 63156:2021; Technical Specification for Power Conversion Equipment in Photovoltaic Systems. Describes Procedures for Evaluating Energy Conversion Performance. International Electrotechnical Commission: Geneva, Switzerland, 2021.
Sensor Type | Sensor Model | Output Type | Measure- Ment Span | Test Parameters | Output | |||||
---|---|---|---|---|---|---|---|---|---|---|
Freq. (MHz) (Pos./Neg.) | Pow. (W) | Original Value | Pos. Dev. | Pos. Dev. Rate | Neg. Dev. | Neg. Dev. Rate | ||||
Current | WCS1800 (Wire) | Analog | 0∼30 A | 685/1030 | 10 | 5 A | 15.7 A | +214.00% | −1.1 A | −1.00% |
Current | WCS1800 (Wireless) | Analog | 0∼35 A | 1000/876 | 10 | 5 A | 31.5 A | +530.00% | −1.6 A | −1.00% |
Current | ACS712 (20 A) | Analog | 0∼20 A | 779/1223 | 10 | 5 A | 13.2 A | +164.00% | −1.2 A | −1.00% |
Current | ACS712 (5 A) | Analog | 0∼5 A | 627/1212 | 10 | 2.5 A | 5.1 A | +104.00% | −1.75 A | −1.00% |
Speed | 3144 | Digital | 0/1 | 677 | 10 | 0/1 | bit-flap | +100.00% | bit-flap | −1.00% |
North pole | 3144 | Digital | 0/1 | 724 | 10 | 0/1 | bit-flap | +100.00% | bit-flap | −1.00% |
Water flow | YF-S401 | Digital | 0/1 | 1322 | 10 | 0/1 | bit-flap | +100.00% | bit-flap | −1.00% |
Inverter | DoS | Damage | Damping | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
On DC Side | On AC Side | Pow. (W) | Freq. (MHz) | Result | Freq. (MHz) | Pow.(W) Before Damping | Pow.(W) After Damping | Pow. Dev. Rate | |||||
Pow. (W) | Freq. (MHz) | Success Rate | Pow. (W) | Freq.(MHz) Pos./Neg. | Success Rate | ||||||||
Ti C2000 | 5 | 735 | 100% | 5 | 1036/1490 | 100% | 10 | 1000 | 100% | 760 | 80 | 25 | 68.75% |
Ginlong | 10 | 916 | 100% | 10 | 625/1210 | 80% | - | - | - | 1192 | 1980 | 1390 | 29.8% |
Kstar | 10 | 749 | 100% | 10 | 990/810 | 90% | - | - | - | 998 | 1995 | 1560 | 21.8% |
Huawei | 10 | 1150 | 100% | 10 | 980/1020 | 80% | - | - | - | 1330 | 1960 | 1420 | 27.6% |
SMA | 10 | 675 | 100% | 10 | 1125 | 100% | - | - | - | 753 | 2950 | 2660 | 9.8% |
GW (LCD, 50 kW) | 20 | 920 | 100% | - | - | - | - | - | - | 960 | 35.6k | 2k | 94.3% |
GW (LED, 60 kW) | 20 | 945 | 100% | - | - | - | - | - | - | - | - | - | - |
Predicted Positive | Predicted Negative | |
---|---|---|
Actual Positive | 141 (TP) | 6 (FN) |
Actual Negative | 9 (FP) | 344 (TN) |
Metric | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|
Value | 94% | 96% | 97% | 97% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Pan, K.; Yan, C.; Ji, X.; Xu, W. Systematic Security Analysis of Sensors and Controls in PV Inverters: Threat Validation and Countermeasures. Sensors 2025, 25, 1493. https://doi.org/10.3390/s25051493
Yang F, Pan K, Yan C, Ji X, Xu W. Systematic Security Analysis of Sensors and Controls in PV Inverters: Threat Validation and Countermeasures. Sensors. 2025; 25(5):1493. https://doi.org/10.3390/s25051493
Chicago/Turabian StyleYang, Fengchen, Kaikai Pan, Chen Yan, Xiaoyu Ji, and Wenyuan Xu. 2025. "Systematic Security Analysis of Sensors and Controls in PV Inverters: Threat Validation and Countermeasures" Sensors 25, no. 5: 1493. https://doi.org/10.3390/s25051493
APA StyleYang, F., Pan, K., Yan, C., Ji, X., & Xu, W. (2025). Systematic Security Analysis of Sensors and Controls in PV Inverters: Threat Validation and Countermeasures. Sensors, 25(5), 1493. https://doi.org/10.3390/s25051493