A Review of Recent Advances in Unidirectional Ultrasonic Guided Wave Techniques for Nondestructive Testing and Evaluation
<p>Propagation of SH wave mode, illustrated by the gradient arrow, in a plate with a thickness of <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>d</mi> </mrow> </semantics></math>, where the propagation is along <span class="html-italic">x</span> and the material particle displacements are along <span class="html-italic">y</span>.</p> "> Figure 2
<p>SH-mode phase velocity dispersion curves for a flat plate of aluminium with a 5 mm thickness and bulk shear wave velocity of <math display="inline"><semantics> <msub> <mi>c</mi> <mi>T</mi> </msub> </semantics></math> = 3.1 mm/<math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>s over a frequency–thickness product range of 0–14 MHz·mm. SH0 represents the fundamental mode, which is the only non-dispersive mode and has the same phase velocity as the bulk shear wave. The other modes, SH1 to SH8, are dispersive modes. These dispersion curves were generated using Dispersion Calculator software (v3.0) [<a href="#B68-sensors-25-01050" class="html-bibr">68</a>].</p> "> Figure 3
<p>Lamb wave dispersion curves for symmetric and anti-symmetric modes in an aluminium plate of a 5 mm thickness with a bulk shear wave velocity of <math display="inline"><semantics> <msub> <mi>c</mi> <mi>T</mi> </msub> </semantics></math> = 3.1 mm/<math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>s over a frequency–thickness product range of 0–14 MHz·mm. The red lines represent the symmetric modes S0 to S6, and the blue lines represent the anti-symmetric modes A0 to A6. Modes A0 and S0 are the fundamental modes. This dispersion curve was generated using Dispersion Calculator software (v3.0) [<a href="#B68-sensors-25-01050" class="html-bibr">68</a>].</p> "> Figure 4
<p>This diagram illustrates a general example to explain the principle of generating unidirectional ultrasonic guided waves. The blue and grey rectangles represent sources A and B, which simultaneously emit ultrasonic waves in both forward and backward directions. The excitation signals ((<b>top middle</b>) graph) are depicted with different colours corresponding to their sources. The weakened side is shown on the right-hand side, with the individual and total waves resulting from the controlled destructive interference. Conversely, the left-hand side demonstrates the enhanced side, where the controlled constructive interference occurs. Redrawn based on [<a href="#B104-sensors-25-01050" class="html-bibr">104</a>].</p> "> Figure 5
<p>An example of an operating region for a unidirectional ultrasonic transducer that generates an SH1 mode with the base signal at a centre frequency of 577.7 kHz. The blue and orange curves demonstrate the maximum and minimum loci of interference on the positive and negative sides, respectively. The black dashed line shows the dispersion curve of the SH fundamental mode (SH0), and the black arced line is the dispersion curve of the SH1 mode. As the minimum locus aligns with the dispersive curve, ideal destructive interference can be realised. Redrawn based on [<a href="#B103-sensors-25-01050" class="html-bibr">103</a>].</p> "> Figure 6
<p>A metallic plate-like structure where an ultrasonic transducer with a transmitter, <math display="inline"><semantics> <msub> <mi>T</mi> <mi>x</mi> </msub> </semantics></math>, propagates waves and non-negligible side lobes appear. The waves generated by the side lobes in the transducer’s radiation pattern are reflected at the plate’s edge and reach the receiving transducer, <math display="inline"><semantics> <msub> <mi>R</mi> <mi>x</mi> </msub> </semantics></math>, as do those of the required main lobe, complicating signal interpretation. Redrawn based on [<a href="#B129-sensors-25-01050" class="html-bibr">129</a>].</p> "> Figure 7
<p>Side-shifted EMATs seen when increasing the number of PPM rows and expanding the coils from one row (<b>top-left</b>) to four rows in each array (<b>bottom-right</b>). The green and the blue square blocks are the magnets’ north and south poles, respectively. Redrawn based on [<a href="#B135-sensors-25-01050" class="html-bibr">135</a>].</p> "> Figure 8
<p>Configuration of a unidirectional wideband SH guided wave phased-array magnetostrictive patch transducer producing both a static magnetic field, coming from the magnetostrictive patches, and a dynamic magnetic field, generated by the alternating current flowing through the coils. The static magnetic field is perpendicular to the dynamic magnetic field. Redrawn based on [<a href="#B27-sensors-25-01050" class="html-bibr">27</a>].</p> "> Figure 9
<p>Schematic diagram of a time-delayed layer-based piezoelectric transducer. The transducer consists of time-delayed layers (H1 and H2) of different heights and two rectangular thickness-shear (d15)-mode piezoelectric wafers (A and B). D represents half the lateral spacing between the two line force sources. Redrawn based on [<a href="#B108-sensors-25-01050" class="html-bibr">108</a>].</p> "> Figure 10
<p>This diagram describes the operation principle of a side-shifted unidirectional dual PPM EMAT. The magnets’ north and south poles are represented by square blocks (green and blue), while blue and orange wires describe the two racetrack coils. The injected currents are, respectively, represented by <math display="inline"><semantics> <msub> <mi>I</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>I</mi> <mn>2</mn> </msub> </semantics></math>, which are excited by a delay of 90<sup>∘</sup>. The enhanced and the weakened sides are shown on the right- and left-hand sides of the EMAT, respectively. The two coil sets are side-shifted by a distance <span class="html-italic">d</span> and longitudinally shifted by a quarter-wavelength (<math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>/</mo> <mn>4</mn> </mrow> </semantics></math>). Redrawn based on [<a href="#B44-sensors-25-01050" class="html-bibr">44</a>].</p> "> Figure 11
<p>An example photograph of the multiple-row side-shifted PPM EMAT devised in [<a href="#B135-sensors-25-01050" class="html-bibr">135</a>] with the PCB dual-coil revised in [<a href="#B136-sensors-25-01050" class="html-bibr">136</a>], which includes (<b>a</b>) two coils carrying the currents <math display="inline"><semantics> <msub> <mi>I</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>I</mi> <mn>2</mn> </msub> </semantics></math> and (<b>b</b>) the rows of a PPM array.</p> "> Figure 12
<p>Schematic of wave propagation through a defect in one direction and reflected from the defect in the contrasting direction. <math display="inline"><semantics> <msub> <mi>T</mi> <mi>x</mi> </msub> </semantics></math> represents the transmitter, while <math display="inline"><semantics> <msub> <mi>R</mi> <mi>x</mi> </msub> </semantics></math> denotes the receiver. The blue and red arrows illustrate the passing and reflected waves. Redrawn based on [<a href="#B102-sensors-25-01050" class="html-bibr">102</a>].</p> ">
Abstract
:1. Introduction
2. Ultrasonic Guided Wave Modes
2.1. Rayleigh Waves
- is the material density;
- ℘ and are the Lame parameters;
- is the displacement vector in x and z, and there is no displacement in the , when considering z as the direction normal to the surface and x the propagation direction.
2.2. Shear Horizontal (SH) Waves
2.3. Lamb Waves
3. Principle of the Generation and Reception of Unidirectional UGWs
3.1. Principle of Unidirectional UGW Generation
3.2. Principle of the Unidirectional Reception of UGWs
4. Optimal Generation of Unidirectional UGWs
4.1. Multi-Mode and Dispersion Phenomena in the Propagation of Unidirectional UGWs
4.2. Mode Selectivity and Operating Region of Unidirectional UGWs
4.3. Signal Excitation for the Optimal Generation of Unidirectional UGWs
4.3.1. Synthetic Propagated (SP) Excitation
4.3.2. Synthetic Propagated and Inverse (SPI) Excitation
4.4. Side-Lobe Suppression for Unidirectional UGWs
4.5. Analytical and Numerical Modelling of Unidirectional UGWs
5. Unidirectional Ultrasonic Transducers
5.1. Unidirectional Magnetostrictive Transducers
5.2. Unidirectional Piezoelectric Transducers
5.3. Unidirectional Electromagnetic Acoustic Transducers (EMATs)
6. Applications of Unidirectional UGWs
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SH | Shear Horizontal |
SV | Shear Vertical |
NDT | Nondestructive Testing |
NDT&E | Nondestructive Testing and Evaluation |
EMAT | Electromagnetic Acoustic Transducer |
MPT | Magnetostrictive Patch Transducer |
FEM | Finite Element Method |
UGW | Ultrasonic Guided Wave |
PPM | Periodic Permanent Magnet |
PCB | Printed Circuit Board |
CSA | Cross-Sectional Area |
TD | Time-Delayed |
TDI | Time-Delayed and Inverse |
SP | Synthetic Propagated |
SPI | Synthetic Propagated and Inverse |
SHM | Structural Health Monitoring |
FBWR | Forward-to-Backward Ratio |
TDLBPT | Time-Delayed Layer-Based Piezoelectric Transducer |
FPGAs | Field-Programmable Gate Arrays |
References
- Capineri, L.; Bulletti, A. Ultrasonic guided-waves sensors and integrated structural health monitoring systems for impact detection and localization: A review. Sensors 2021, 21, 2929. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhou, Z.; Sun, J.; Zhang, E.; Yang, Y.; Zhao, M. A magnetostrictive guided-wave nondestructive testing method with multifrequency excitation pulse signal. IEEE Trans. Instrum. Meas. 2014, 63, 3058–3066. [Google Scholar] [CrossRef]
- Boukabache, H.; Escriba, C.; Fourniols, J.Y. Toward Smart Aerospace Structures: Design of a Piezoelectric Sensor and Its Analog Interface for Flaw Detection. Sensors 2014, 14, 20543–20561. [Google Scholar] [CrossRef] [PubMed]
- Ricci, F.; Monaco, E.; Boffa, N.; Maio, L.; Memmolo, V. Guided waves for structural health monitoring in composites: A review and implementation strategies. Prog. Aerosp. Sci. 2022, 129, 100790. [Google Scholar] [CrossRef]
- Koodalil, D.; Rajagopal, P.; Balasubramaniam, K. Quantifying adhesive thickness and adhesion parameters using higher-order SH guided waves. Ultrasonics 2021, 114, 106429. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, D.; Xu, P. Defect and Tension Detection of Magnetostrictive Longitudinal Guided Wave for Steel Strip. In Proceedings of the 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 11–13 December 2020; Volume 9, pp. 1753–1759. [Google Scholar] [CrossRef]
- Huang, S.; Sun, H.; Peng, L.; Wang, S.; Wang, Q.; Zhao, W. Defect detection and identification of point-focusing shear-horizontal EMAT for plate inspection. IEEE Trans. Instrum. Meas. 2021, 70, 9506409. [Google Scholar] [CrossRef]
- Shi, W.; Li, J.; Deng, S.; Wang, S.; Zhao, B.; Tan, J. Stress Online Monitoring Method Based on Multifrequency SH0 Guided Wave Information Fusion. IEEE Trans. Instrum. Meas. 2023, 72, 9600413. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, W.; Yang, P.; Luo, J.; Fu, C.; Han, J.C.; Zhou, Y.; Wang, L.; Wu, Y.; Huang, Y. A review of surface acoustic wave sensors: Mechanisms, stability and future prospects. Sens. Rev. 2024, 44, 249–266. [Google Scholar] [CrossRef]
- Ahn, B.; Hwang, I.J.; Kim, K.S.; Chae, S.C.; Yu, J.W.; Lee, H.L. Wide-angle scanning phased array antenna using high gain pattern reconfigurable antenna elements. Sci. Rep. 2019, 9, 18391. [Google Scholar] [CrossRef]
- Hansen, T.B. Array of line sources that produces preselected plane waves. Wave Motion 2021, 106, 102791. [Google Scholar] [CrossRef]
- Haupt, R. Generating a plane wave with a linear array of line sources. IEEE Trans. Antennas Propag. 2003, 51, 273–278. [Google Scholar] [CrossRef]
- Gong, X.B.; Han, L.G.; Li, H.J.; Jin, Z.Y. The method of the directional seismic wave-field based on a source array on the surface with topographic relief. Chin. J. Geophys. 2014, 57, 4150–4156. [Google Scholar]
- Wang, Z.R.; Lin, J.; Feng, S.Y. Directivity of phase array vibrators in seismic exploration. Chin. J. Geophys. 2006, 49, 1070–1077. [Google Scholar]
- Tkocz, J.; Greenshields, D.; Dixon, S. High power phased EMAT arrays for nondestructive testing of as-cast steel. NDT E Int. 2019, 102, 47–55. [Google Scholar] [CrossRef]
- Drinkwater, B.W.; Wilcox, P.D. Ultrasonic arrays for non-destructive evaluation: A review. NDT E Int. 2006, 39, 525–541. [Google Scholar] [CrossRef]
- Xiang, L.; Greenshields, D.; Dixon, S.; Edwards, R.S. Phased electromagnetic acoustic transducer array for Rayleigh wave surface defect detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020, 67, 1403–1411. [Google Scholar] [CrossRef]
- Hill, S.; Dixon, S. Frequency dependent directivity of periodic permanent magnet electromagnetic acoustic transducers. NDT E Int. 2014, 62, 137–143. [Google Scholar] [CrossRef]
- Yu, L.; Giurgiutiu, V. In situ 2-D piezoelectric wafer active sensors arrays for guided wave damage detection. Ultrasonics 2008, 48, 117–134. [Google Scholar] [CrossRef]
- Champaigne, K.D.; Sumners, J. Low-power electronics for distributed impact detection and piezoelectric sensor applications. In Proceedings of the 2007 IEEE Aerospace Conference, 2007, Big Sky, MT, USA, 3–10 March 2007; pp. 1–8. [Google Scholar]
- Malinowski, P.; Wandowski, T.; Trendafilova, I.; Ostachowicz, W. A phased array-based method for damage detection and localization in thin plates. Struct. Health Monit. 2009, 8, 5–15. [Google Scholar] [CrossRef]
- Zhu, W.; Rose, J. Lamb wave generation and reception with time-delay periodic linear arrays: A BEM simulation and experimental study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1999, 46, 654–664. [Google Scholar] [CrossRef]
- Li, J.; Rose, J. Implementing guided wave mode control by use of a phased transducer array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2001, 48, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yang, Y.; Yuan, F.G. Design of a magnetostrictive sensor for structural health monitoring of non-ferromagnetic plates. J. Vibroeng. 2012, 14, 280–291. [Google Scholar]
- Bozorth, R.M. Ferromagnetism. In Ferromagnetism; Wiley: Hoboken, NJ, USA, 1993; pp. 1–968. [Google Scholar] [CrossRef]
- Jiles, D. Theory of the magnetomechanical effect. J. Phys. Appl. Phys. 1995, 28, 1537–1546. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; He, C.; Ma, X.; Zhai, G. Design method of unidirectional wideband SH guided wave phased array magnetostrictive patch transducer. Sensors Actuators Phys. 2022, 344, 113710. [Google Scholar] [CrossRef]
- Thompson, R. The relationship between radiating body forces and equivalent surface stresses: Analysis and application to EMAT design. J. Nondestruct. Eval. 1980, 1, 79–85. [Google Scholar] [CrossRef]
- Thompson, R.B. Physical principles of measurements with EMAT transducers. Phys. Acoust. 1990, 19, 157–200. [Google Scholar] [CrossRef]
- Petcher, P.; Burrows, S.; Dixon, S. Shear horizontal (SH) ultrasound wave propagation around smooth corners. Ultrasonics 2014, 54, 997–1004. [Google Scholar] [CrossRef]
- Rose, J.; Pelts, S.; Quarry, M. A comb transducer model for guided wave NDE. Ultrasonics 1998, 36, 163–169. [Google Scholar] [CrossRef]
- Cawley, P. Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects. NDT E Int. 2024, 142, 103026. [Google Scholar] [CrossRef]
- Breon, L.; Quarry, M.; Rose, J.; Khajeh, E. System and Method for Directing Guided Waves Through Structures. U.S. Patent 9672187B2, 6 June 2017. [Google Scholar]
- Alleyne, D.N.; Cawley, P. Long range propagation of Lamb waves in chemical plant pipework. Mater. Eval. 1997, 55, 504–508. [Google Scholar]
- Petcher, P.; Dixon, S. Mode mixing in shear horizontal ultrasonic guided waves. Nondestruct. Test. Eval. 2017, 32, 113–132. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, Z.; Yin, L.; Wu, J.; Deng, P.; Yin, W. Directivity analysis of meander-line-coil EMATs with a wholly analytical method. Ultrasonics 2017, 73, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Kubrusly, A.C.; Kang, L.; Dixon, S. Measurement of plate thickness based on the optimal unidirectional generation of ultrasonic waves using dual electromagnetic acoustic Transducer. IEEE Trans. Instrum. Meas. 2023, 72, 6008609. [Google Scholar] [CrossRef]
- Cawley, P. The use of guided waves for rapid screening of pipework. In Proceedings of the 16th WCNDT 2004—World Conference on NDT, Montreal, QC, Canada, 30 August–3 September 2004. [Google Scholar]
- Alleyne, D.N.; Cawley, P.; Lank, A.M.; Mudge, P.J. The Lamb wave inspection of chemical plant pipework. In Review of Progress in Quantitative Nondestructive Evaluation: Volume 16A; Thompson, D.O., Chimenti, D.E., Eds.; Springer: Boston, MA, USA, 1997; pp. 1269–1276. [Google Scholar] [CrossRef]
- Kubrusly, A.C.; Kang, L.; Dixon, S. One-dimension frequency—Wavenumber-domain based model for ultrasonic waves generated by dual-array transducers. Ultrasonics 2022, 124, 106772. [Google Scholar] [CrossRef] [PubMed]
- Kubrusly, A.; Kang, L.; Dixon, S. Numerical investigation of unidirectional generation and reception of circumferential shear horizontal guided waves for defect detection in pipe. In Proceedings of the 2023 IEEE International Ultrasonics Symposium (IUS) 2023, Montreal, QC, Canada, 3–8 September 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Kubrusly, A.C.; Kang, L.; Dixon, S. Selective simultaneous generation of distinct unidirectional wave modes in different directions using dual-array transducer. Mech. Syst. Signal Process. 2023, 187, 109942. [Google Scholar] [CrossRef]
- Song, X.; Qiu, G. Optimization of a focusable and rotatable shear-wave periodic permanent magnet electromagnetic acoustic transducers for plates inspection. Sensors 2017, 17, 2722. [Google Scholar] [CrossRef]
- Kubrusly, A.C.; Kang, L.; Dixon, S. Unidirectional shear horizontal wave generation with side-shifted periodic permanent magnets electromagnetic acoustic transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020, 67, 2757–2760. [Google Scholar] [CrossRef]
- Rieger, K.; Erni, D.; Rueter, D. Unidirectional emission and detection of Lamb waves based on a powerful and compact coils-only EMAT. NDT E Int. 2021, 122, 102492. [Google Scholar] [CrossRef]
- Fu, C.; Yang, Q.; Ke, Y.; Tao, R.; Luo, J.; Fan, X.; Zhang, B.; Li, H. Development of Lamb wave-based unidirectional transducers toward highly efficient microfluidic applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2022, 69, 1549–1555. [Google Scholar] [CrossRef]
- Kang, L.; Wang, S.; Jiang, T.; Zhai, G. Optimal design of Lamb wave electromagnetic acoustic transducers for improving their excitation performance. Jpn. J. Appl. Phys. 2011, 50, 07HD01. [Google Scholar] [CrossRef]
- Li, Y.Q.; Li, C.; Su, R.L.; Zhai, G.F.; Wang, K.C. Unidirectional line-focusing shear vertical wave EMATs used for rail base center flaw detection. In Proceedings of the 2016 IEEE Far East NDT New Technology & Application Forum (FENDT), Nanchang, China, 22–24 June 2016; pp. 99–102. [Google Scholar] [CrossRef]
- Jia, X.; Qi, O. Optimal design of point-focusing shear vertical wave electromagnetic ultrasonic transducers based on orthogonal test method. IEEE Sensors J. 2018, 18, 8064–8073. [Google Scholar] [CrossRef]
- Chen, X.; liang Su, R.; Zhang, H.; Wang, S.; Zhai, G. Influence of coil parameters on transduction performance of unidirectional EMATs for Rayleigh wave. In Proceedings of the 2013 Far East Forum on Nondestructive Evaluation/Testing: New Technology and Application, Jinan, China, 17–20 June 2013; pp. 150–154. [Google Scholar]
- Rose, J.L. Ultrasonic Guided Waves in Solid Media; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Cheeke, J. Fundamentals and Applications of Ultrasonic Waves; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Zhang, H.; Yin, X.; Ma, L.; Ma, G.; Shi, K.; Zhang, Z.; Yuan, X.; Li, W. Excitation characteristics of circumferential SH guided waves in steel pipes generated by EMATs with few-cycle PPM. Ultrasonics 2024, 138, 107271. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Ta, D.; Moilanen, P.; Wang, W. Mode separation of Lamb waves based on dispersion compensation method. J. Acoust. Soc. Am. 2012, 131, 2714–2722. [Google Scholar] [CrossRef]
- Zhai, G.; Jiang, T.; Kang, L. Analysis of multiple wavelengths of Lamb waves generated by meander-line coil EMATs. Ultrasonics 2014, 54, 632–636. [Google Scholar] [CrossRef]
- Ning, J.; Lei, Y.; Hu, H.; Gai, C. A Comprehensive review of surface acoustic wave-enabled acoustic droplet ejection technology and its applications. Micromachines 2023, 14, 1543. [Google Scholar] [CrossRef]
- Senesi, M.; Ruzzene, M. A frequency selective acoustic transducer for directional Lamb wave sensing. J. Acoust. Soc. Am. 2011, 130, 1899–1907. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, K.; Wang, X. A simple and fast method to calculate dispersion curves of Rayleigh waves due to models with a low-velocity half-space. Comput. Geosci. 2024, 185, 105543. [Google Scholar] [CrossRef]
- Guo, X.; Lin, J.; Hu, Z.; Xiang, Y. Design of a Rayleigh wave EMAT by using racetrack coil and periodic permanent magnets. In Proceedings of the 2023 2nd International Symposium on Sensor Technology and Control (ISSTC), Hangzhou, China, 11–13 August 2023; pp. 299–303. [Google Scholar] [CrossRef]
- Jiang, C.; Li, Z.; Wang, S. Enhancement of the spatial resolution using a novel Rayleigh wave EMAT based on temporal—Spatial pulse compression. IEEE Sensors J. 2023, 23, 30170–30178. [Google Scholar] [CrossRef]
- Sarris, G.; Haslinger, S.G.; Huthwaite, P.; Nagy, P.B.; Lowe, M.J.S. Attenuation of Rayleigh waves due to three-dimensional surface roughness: A comprehensive numerical evaluation. J. Acoust. Soc. Am. 2023, 154, 808–818. [Google Scholar] [CrossRef]
- de Lucena, R.F.; Taioli, F. Rayleigh wave modeling: A study of dispersion curve sensitivity and methodology for calculating an initial model to be included in an inversion algorithm. J. Appl. Geophys. 2014, 108, 140–151. [Google Scholar] [CrossRef]
- Viktorov, I. Rayleigh and Lamb Waves: Physical Theory and Applications; Springer: New York, NY, USA, 1967. [Google Scholar]
- Clough, M.; Fleming, M.; Dixon, S. Circumferential guided wave EMAT system for pipeline screening using shear horizontal ultrasound. NDT E Int. 2017, 86, 20–27. [Google Scholar] [CrossRef]
- Kubrusly, A.C.; von der Weid, J.P.; Dixon, S. Experimental and numerical investigation of the interaction of the first four SH guided wave modes with symmetric and non-symmetric discontinuities in plates. NDT E Int. 2019, 108, 102175. [Google Scholar] [CrossRef]
- Aslam, M.; Park, J.; Lee, J. A comprehensive study on guided wave dispersion in complex structures. Int. J. Mech. Sci. 2024, 269, 109089. [Google Scholar] [CrossRef]
- Qiu, H.; Chen, M.; Li, F. Selective excitation of high-order shear horizontal wave (SH1) by using a piezoelectric interdigital transducer. Mech. Syst. Signal Process. 2022, 165, 108390. [Google Scholar] [CrossRef]
- Huber, A. Dispersion Calculator, version 3.0; Zenodo: Geneva, Switzerland, 2024. [Google Scholar]
- Ogi, H.; Hirao, M. EMATs for Science and Industry: Noncontacting Ultrasonic Measurements; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Quintanilla, F.H.; Fan, Z.; Lowe, M.J.S.; Craster, R.V. Guided waves’ dispersion curves in anisotropic viscoelastic single- and multi-layered media. Proc. R. Soc. Lond. Ser. 2015, 471, 20150268. [Google Scholar] [CrossRef]
- Georgiades, E.; Lowe, M.J.S.; Craster, R.V. Computing leaky Lamb waves for waveguides between elastic half-spaces using spectral collocation. J. Acoust. Soc. Am. 2024, 155, 629–639. [Google Scholar] [CrossRef]
- Galán-Pinilla, C.A.; E-Quiroga, J.; Peña-Ballesteros, D.Y.; Acosta-Minoli, C.A.; González-Estrada, O.A. Comparative study of dispersion curves for Lamb waves using analytical solutions and semi-analytical methods. Appl. Sci. 2023, 13, 1706. [Google Scholar] [CrossRef]
- Wilcox, P.; Dalton, R.; Lowe, M.; Cawley, P. Mode and transducer selection for long range lamb wave inspection. Key Eng. Mater. 1999, 167, 152–161. [Google Scholar] [CrossRef]
- Wangensteen, M.; Johansen, T.F.; Fatemi, A.; Viggen, E.M. Pipe wall thickness estimation by frequency—Wavenumber analysis of circumferential guided waves. Mech. Syst. Signal Process. 2024, 215, 111369. [Google Scholar] [CrossRef]
- Hu, S.; Zhai, G.; Li, Z.; Qu, Z.; Lu, C. The coupling of SH guided wave and Lamb wave in the three-dimensional waveguides with finite cross-section. Mech. Syst. Signal Process. 2025, 222, 111799. [Google Scholar] [CrossRef]
- Niu, X.; Tee, K.F.; Marques, H. The unidirectional excitation of guided waves with an increased power using multiple transducer arrays in pipelines for structural health monitoring. In Proceedings of the 12th International Workshop on Structural Health Monitoring (IWSHM 2019), Stanford, CA, USA, 10–12 September 2019. [Google Scholar]
- Niu, X.; Tee, K.F.; Marques, H.R. Enhancement of unidirectional excitation of guided torsional T(0,1) mode by linear superposition of multiple rings of transducers. Appl. Acoust. 2020, 168, 107411. [Google Scholar] [CrossRef]
- Niu, X.; Duan, W.; Chen, H.P.; Marques, H. Excitation and propagation of torsional T(0,1) mode for guided wave testing of pipeline integrity. Measurement 2019, 131, 341–348. [Google Scholar] [CrossRef]
- Niu, X.; Marques, H.; Chen, H.P. Sensitivity analysis of guided wave characters for transducer array optimisation on pipeline inspections. In Proceedings of the 2017 World Congress on Advances in Structural Engineering and Mechanics (ASEM17), Seoul, Republic of Korea, 28 August–1 September 2017. [Google Scholar]
- He, C.; Li, C.; Yan, Y.; Wei, R.; Wang, S. Optimal design of transducers based on the Halbach arrays permanent magnet structure. Nondestruct. Test. Eval. 2024, 39, 1070–1087. [Google Scholar] [CrossRef]
- Lowe, P.; Sanderson, R.; Pedram, S.; Boulgouris, N.; Mudge, P. Inspection of pipelines using the first longitudinal guided wave mode. Phys. Procedia 2015, 70, 338–342. [Google Scholar] [CrossRef]
- Na, W.B.; Yoon, H.S. Wave-attenuation estimation in fluid-filled steel pipes: The first longitudinal guided wave mode. Russ. J. Nondestruct. Test. 2007, 43, 549–554. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, R.; Dai, K.; Wang, L.; De Roeck, G.; Lombaert, G. A methodology for cable damage identification based on wave decomposition. J. Sound Vib. 2019, 442, 527–551. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, Y.; Liu, F.; Yang, Z. Metasurface-guided flexural waves and their manipulations. Int. J. Mech. Sci. 2023, 257, 108538. [Google Scholar] [CrossRef]
- Chaplain, G.; De Ponti, J. The elastic spiral phase pipe. J. Sound Vib. 2022, 523, 116718. [Google Scholar] [CrossRef]
- Ruan, Y.; Liang, X. Reflective elastic metasurface for flexural wave based on surface impedance model. Int. J. Mech. Sci. 2021, 212, 106859. [Google Scholar] [CrossRef]
- Li, X.S.; Wang, Y.F.; Wang, Y.S. Sparse binary metasurfaces for steering the flexural waves. Extrem. Mech. Lett. 2022, 52, 101675. [Google Scholar] [CrossRef]
- El Baroudi, A.; Le Pommellec, J.; Couanet, V. Love waves propagation in layered viscoelastic waveguides characterized by a Zener model. Sensors Actuators A Phys. 2024, 369, 115209. [Google Scholar] [CrossRef]
- McHale, G.; Newton, M.; Martin, F. Theoretical mass sensitivity of Love wave and layer guided acoustic plate mode sensors. J. Appl. Phys. 2002, 91, 9701–9710. [Google Scholar] [CrossRef]
- Sadab, M.; Kundu, S. An analytical model for Love wave in a coated piezoelectric bar via nonlocal theory due to an impulsive source. Eur. J. Mech.—A/Solids 2024, 107, 105372. [Google Scholar] [CrossRef]
- Oukhai, E.; Agounad, S.; Faiz, B. Behaviour of circumferential and helical guided waves in two-layered composite cylindrical shell. Appl. Math. Model. 2024, 126, 266–286. [Google Scholar] [CrossRef]
- Oukhai, E.; Agounad, S. Dispersion in bilaminated cylindrical shells: Incidence angle and thickness impacts. Int. J. Mech. Sci. 2024, 277, 109405. [Google Scholar] [CrossRef]
- Honarvar, F.; Enjilela, E.; Sinclair, A.N. Correlation between helical surface waves and guided modes of an infinite immersed elastic cylinder. Ultrasonics 2011, 51, 238–244. [Google Scholar] [CrossRef]
- Zang, X.; Xu, Z.D.; Lu, H.; Zhu, C.; Zhang, Z. Ultrasonic guided wave techniques and applications in pipeline defect detection: A review. Int. J. Press. Vessel. Pip. 2023, 206, 105033. [Google Scholar] [CrossRef]
- Sanderson, R. Long range ultrasonic guided wave focusing in pipe with application to defect sizing. In Proceedings of the International Congress on Ultrasonics, Vienna, Austria, 9–13 April 2007. [Google Scholar]
- Rose, J.L.; Avioli, M.J.; Mudge, P.; Sanderson, R. Guided wave inspection potential of defects in rail. NDT E Int. 2004, 37, 153–161. [Google Scholar] [CrossRef]
- Svensson, H. Cable-Stayed Bridges: 40 Years of Experience Worldwide; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Capriotti, M.; di Scalea, F.L. Robust non-destructive inspection of composite aerospace structures by extraction of ultrasonic guided-wave transfer function in single-input dual-output scanning systems. J. Intell. Mater. Syst. Struct. 2020, 31, 651–664. [Google Scholar] [CrossRef]
- Bernard, A.; Lowe, M.J.S.; Deschamps, M. Guided waves energy velocity in absorbing and non-absorbing plates. J. Acoust. Soc. Am. 2001, 110, 186–196. [Google Scholar] [CrossRef]
- Kargozarfard, M.H.; Sedighi, H.M.; Yaghootian, A.; Valipour, A. An improved method for unidirectional mechanical wave propagation in a metamaterial beam. Appl. Phys. 2023, 129, 296. [Google Scholar] [CrossRef]
- Cai, J.; Du, Y.; Kan, Q.; Zhang, Q.; Miao, H.; Kang, G. Constrained thickness-shear vibration-based piezoelectric transducers for generating unidirectional-propagation SH0 wave. Ultrasonics 2023, 134, 107106. [Google Scholar] [CrossRef]
- Kubrusy, A.C.; Kang, L.; von der Weid, J.P.; Dixon, S. Numerical investigation of application of unidirectional generation to improve signal interpretation of circumferential guided waves in pipes for defect detection. In Proceedings of the European Workshop on Structural Health Monitoring (EWSHM 2022), Palermo, Italy, 4–7 July 2022; pp. 61–70. [Google Scholar]
- Kubrusly, A.C.; Kang, L.; Dixon, S. Optimal unidirectional generation of a dispersive wave mode with dual-array transducer. Mech. Syst. Signal Process. 2022, 177, 109138. [Google Scholar] [CrossRef]
- Kubrusly, A.C.; Kang, L.; Martins, I.S.; Dixon, S. Unidirectional shear horizontal wave generation by periodic permanent magnets electromagnetic acoustic transducer with dual linear-coil array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021, 68, 3135–3142. [Google Scholar] [CrossRef]
- Martinho, L.M.; Andrade, J.P.T.S.; Kang, L.; Dixon, S.; Kubrusly, A.C. Advances on the side-shifted dual periodic permanent magnet electromagnetic acoustic transducers design for unidirectional generation of shear horizontal ultrasonic guided wave. In Proceedings of the 2024 IEEE UFFC Latin America Ultrasonics Symposium (LAUS), Montevideo, Uruguay, 8–10 May 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Martinho, L.M.; Kubrusly, A.C.; Kang, L.; Von Der Weid, J.P.; Dixon, S. Numerical investigation of unidirectional generation of circumferential SH waves applied to defect detection in pipe. In Proceedings of the 2022 IEEE International Ultrasonics Symposium (IUS), Venice, Italy, 10–13 October 2022. [Google Scholar] [CrossRef]
- Martinho, L.M.; Martins, I.S.; Andrade, J.P.; Kang, L.; Dixon, S.; Kubrusly, A.C. Alignment precision enhancement of side-shifted dual periodic permanent magnets array with an enclosed-case electromagnetic acoustic transducer. In Proceedings of the 2023 7th International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT), Rio de Janeiro, Brazil, 28 August–1 September 2023; pp. 1–6. [Google Scholar]
- Du, Y.; Cai, J.; Kan, Q.; Zhang, Q.; Wang, P.; Miao, H.; Kang, G. Time-delayed layer-based piezoelectric transducer for unidirectional excitation and reception of SH guided wave. Mech. Syst. Signal Process. 2023, 193, 110268. [Google Scholar] [CrossRef]
- Du, Y.; Miao, H. A radar transducer for unidirectionally emitting and steering SH guided wave. Ultrasonics 2024, 143, 107414. [Google Scholar] [CrossRef]
- Yamasaki, T.; Tamai, S.; Hirao, M. Arrayed-coil EMAT for longitudinal wave in steel wires. In Proceedings of the 1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102), Sendai, Japan, 5–8 October 1998; Volume 1, pp. 789–792. [Google Scholar] [CrossRef]
- Michaels, J.E.; Lee, S.J.; Hall, J.S.; Michaels, T.E. Multi-mode and multi-frequency guided wave imaging via chirp excitations. In Proceedings of the Health Monitoring of Structural and Biological Systems 2011, San Diego, CA, USA, 6–10 March 2011; Volume 7984, pp. 161–171. [Google Scholar]
- Khaneja, N. Chirp excitation. J. Magn. Reson. 2017, 282, 32–36. [Google Scholar] [CrossRef]
- Das, S.; Jacob, J.; Khaneja, N. Mechanism of chirp excitation. J. Magn. Reson. Open 2022, 10–11, 100026. [Google Scholar] [CrossRef]
- Adams, C.; Harput, S.; Cowell, D.; Carpenter, T.M.; Charutz, D.M.; Freear, S. An adaptive array excitation scheme for the unidirectional enhancement of guided waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2017, 64, 441–451. [Google Scholar] [CrossRef]
- Martinho, L.M.; Andrade, J.P.T.S.; Kang, L.; Dixon, S.; Kubrusly, A.C. Ultrasonic guided wave unidirectionality enhancement by unidirectional generation and unidirectional reception with electromagnetic acoustic transducers. In Proceedings of the 2024 IEEE UFFC Latin America Ultrasonics Symposium (LAUS), Montevideo, Uruguay, 8–10 May 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Zhu, W. A finite element analysis of the time-delay periodic ring arrays for guided wave generation and reception in hollow cylinders. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2001, 48, 1462–1470. [Google Scholar] [CrossRef]
- Alleyne, D.; Lowe, M.; Cawley, P. The reflection of guided waves from circumferential notches in pipes. J. Appl. Mech. Trans. Asme 1998, 65, 635–641. [Google Scholar] [CrossRef]
- Mei, H.; James, R.; Haider, M.F.; Giurgiutiu, V. Multimode Guided Wave Detection for Various Composite Damage Types. Appl. Sci. 2020, 10, 484. [Google Scholar] [CrossRef]
- He, J.; Leckey, C.A.; Leser, P.E.; Leser, W.P. Multi-mode reverse time migration damage imaging using ultrasonic guided waves. Ultrasonics 2019, 94, 319–331. [Google Scholar] [CrossRef]
- Mei, H.; Haider, M.F.; James, R.; Giurgiutiu, V. Pure S0 and SH0 detections of various damage types in aerospace composites. Compos. Part Eng. 2020, 189, 107906. [Google Scholar] [CrossRef]
- Alleyne, D.N.; Cawley, P. Optimization of lamb wave inspection techniques. NDT E Int. 1992, 25, 11–22. [Google Scholar] [CrossRef]
- Hay, T.R.; Rose, J.L. Guided wave testing optimization. Mater. Eval. 2002, 60, 1239–1244. [Google Scholar]
- Michaels, J.E.; Lee, S.J.; Croxford, A.J.; Wilcox, P.D. Chirp excitation of ultrasonic guided waves. Ultrasonics 2013, 53, 265–270. [Google Scholar] [CrossRef]
- Dixon, S.; Petcher, P.A.; Fan, Y.; Maisey, D.; Nickolds, P. Ultrasonic metal sheet thickness measurement without prior wave speed calibration. J. Phys. D Appl. Phys. 2013, 46, 445502. [Google Scholar] [CrossRef]
- Khalili, P.; Cegla, F. Excitation of single-mode shear-horizontal guided waves and evaluation of their sensitivity to very shallow crack-like defects. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021, 68, 818–828. [Google Scholar] [CrossRef]
- Roueff, A.; Mars, J.; Chanussot, J.; Pedersen, H. Dispersion estimation from linear array data in the time-frequency plane. IEEE Trans. Signal Process. 2005, 53, 3738–3748. [Google Scholar] [CrossRef]
- Hesse, D.; Cawley, P. A single probe spatial averaging technique for guided waves and its application to surface wave rail inspection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2007, 54, 2344–2356. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xie, Y.; Liu, F.; Li, J.; Jiang, W.; Huang, P.; Sun, H.; Liang, H.; He, S.; Hao, W.; et al. A hybrid denoising method for electromagnetic acoustic detection. IEEE Sensors J. 2024, 24, 25523–25530. [Google Scholar] [CrossRef]
- Martinho, L.M.; Kubrusly, A.C. A new diamond-shaped periodic permanent magnet electromagnetic acoustic transducer for side-lobe suppression of shear horizontal ultrasonic waves. Sensors Actuators A Phys. 2024, 371, 115290. [Google Scholar] [CrossRef]
- Xie, Y.; Li, J.; Huang, P.; Zhang, L.; Tian, W.; Lu, M.; Zhao, X.; Huo, Z.; Liu, Z.; Wang, S.; et al. A novel design of window function modulated meander-line-coils EMATs for unidirectional Rayleigh waves generation and sidelobes suppression. NDT E Int. 2021, 123, 102501. [Google Scholar] [CrossRef]
- Ebneter, J. A new design of group-type unidirectional transducers. In Proceedings of the IEEE 1984 Ultrasonics Symposium, Dallas, TX, USA, 14–16 November 1984; pp. 22–25. [Google Scholar] [CrossRef]
- Da, Z.; Xu, T.; Moridi, M.; Savoia, A.S. Dynamic beamforming strategy for sidelobe level suppression in piezoelectric micromachined ultrasonic transducer (PMUT) sparse arrays. In Proceedings of the 2023 IEEE International Ultrasonics Symposium (IUS), Montreal, QC, USA, 3–8 September 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Advani, S.; Van Velsor, J.; Rose, J.L. Beam divergence calculation of an electromagnetic acoustic transducer for the non-destructive evaluation of plate-like structures. In Proceedings of the SAS 2011—IEEE Sensors Applications Symposium, Proceedings, San Antonio, TX, USA, 22–24 February 2011; pp. 277–282. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 241–273. [Google Scholar] [CrossRef]
- Martinho, L.M.; Kubrusly, A.C.; Kang, L.; Dixon, S. Enhancement of the unidirectional radiation pattern of shear horizontal ultrasonic waves generated by side-shifted periodic permanent magnets electromagnetic acoustic transducers with multiple rows of magnets. IEEE Sensors J. 2022, 22, 7637–7644. [Google Scholar] [CrossRef]
- Martinho, L.M.; Kubrusly, A.C.; Martins, I.S.; Kang, L.; Dixon, S. Side-shifted dual PPM EMATs with multiple rows of magnets and reduced lateral gap by flexible printed circuit board racetrack coils. In Proceedings of the 2022 IEEE International Ultrasonics Symposium (IUS), Venice, Italy, 10–13 October 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Martinho, L.; Kubrusly, A.C.; Kang, L.; Dixon, S. Computation of the radiation pattern of unidirectional SH wave generated by dual-PPM EMATs. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 11–16 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Werkle, H. Finite Elements in Structural Analysis: Theoretical Concepts and Modeling Procedures in Statics and Dynamics of Structures; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Wang, S.; liang Su, R.; Chen, X.; Kang, L.; Zhai, G. Numerical and experimental analysis of unidirectional meander-line coil electromagnetic acoustic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2013, 60, 2657–2664. [Google Scholar] [CrossRef]
- Sun, H.; Huang, S.; Wang, Q.; Wang, S.; Zhao, W. Improvement of unidirectional focusing periodic permanent magnet shear-horizontal wave electromagnetic acoustic transducer by oblique bias magnetic field. Sens. Actuators Phys. 2019, 290, 36–47. [Google Scholar] [CrossRef]
- Sun, X.; Ge, S.; Shao, X.; Zhou, S.; Wang, W.; Lin, D.; Liu, W. Analysis and design of single-phase unidirectional transducers with high directivity. Appl. Sci. 2021, 11, 7500. [Google Scholar] [CrossRef]
- Wohlfarth, E.P.; Buschow, K.H.J. Ferromagnetic Material; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1980; Volume 4. [Google Scholar]
- Zitoun, A.; Dixon, S.; Edwards, G.; Hutchins, D. Experimental study of the guided wave directivity patterns of thin removable magnetostrictive patches. Sensors 2020, 20, 7189. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Kwon, Y.E. Review of magnetostrictive patch transducers and applications in ultrasonic nondestructive testing of waveguides. Ultrasonics 2015, 62, 3–19. [Google Scholar] [CrossRef]
- Jiles, D. Introduction to Magnetism and Magnetic Materials; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Lee, J.S.; Kim, Y.Y.; Cho, S.H. Beam-focused shear-horizontal wave generation in a plate by a circular magnetostrictive patch transducer employing a planar solenoid array. Smart Mater. Struct. 2008, 18, 015009. [Google Scholar] [CrossRef]
- Kwun, H.; Holt, A. Feasibility of under-lagging corrosion detection in steel pipe using the magnetostrictive sensor technique. NDT E Int. 1995, 28, 211–214. [Google Scholar] [CrossRef]
- Kwun, H.; Bartels, K. Magnetostrictive sensor technology and its applications. Ultrasonics 1998, 36, 171–178. [Google Scholar] [CrossRef]
- Vinogradov, S.; Cobb, A.; Fisher, J. New magnetostrictive transducer designs for emerging application areas of NDE. Materials 2018, 11, 755. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, H.; Miao, H. Excitation of unidirectional SH wave within a frequency range of 50 KHz by piezoelectric transducers without frequency-dependent time delay. Ultrasonics 2022, 118, 106579. [Google Scholar] [CrossRef]
- Miao, H.; Du, Y. Metasubstrate-based SH guided wave piezoelectric transducer for unidirectional beam deflection without time delay. Smart Mater. Struct. 2024, 33, 015038. [Google Scholar] [CrossRef]
- Khalili, P.; Cawley, P. Relative Ability of Wedge-Coupled Piezoelectric and Meander Coil EMAT Probes to Generate Single-Mode Lamb Waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018, 65, 648–656. [Google Scholar] [CrossRef]
- Pala, S.; Lin, L. Fully transparent piezoelectric ultrasonic transducer with 3D printed substrate. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 234–237. [Google Scholar] [CrossRef]
- Benes, E.; Gröschl, M.; Burger, W.; Schmid, M. Sensors based on piezoelectric resonators. Sens. Actuators Phys. 1995, 48, 1–21. [Google Scholar] [CrossRef]
- Lu, R.; Link, S.; Gong, S. A unidirectional transducer design for scaling GHz AlN-based RF microsystems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020, 67, 1250–1257. [Google Scholar] [CrossRef]
- Chen, M.; Huan, Q.; Li, F. A unidirectional SH wave transducer based on phase-controlled antiparallel thickness-shear (d15) piezoelectric strips. Theor. Appl. Mech. Lett. 2020, 10, 299–306. [Google Scholar] [CrossRef]
- Alleyne, D.N.; Cawley, P. The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers. J. Nondestruct. Eval. 1996, 15, 11–20. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, X.; Liu, T.; Jia, J.; Tu, S.T. Characteristics of high-temperature equipment monitoring using dry-coupled ultrasonic waveguide transducers. Ultrasonics 2020, 108, 106236. [Google Scholar] [CrossRef] [PubMed]
- Cegla, F.B.; Cawley, P.; Allin, J.; Davies, J. High-temperature (>l500°C) wall thickness monitoring using dry-coupled ultrasonic waveguide transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2011, 58, 156–167. [Google Scholar] [CrossRef]
- Wang, C.; Gao, H.; Zhou, X.; Ma, W.; Tan, H.; Samart, C.; Salamon, D.; Yan, C.; Zhang, H. Design, fabrication, and characterization of 1–3 piezoelectric composite air-coupled ultrasonic transducers with micro-membrane filter matching layer. Sens. Actuators Phys. 2024, 379, 115955. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, W.; Gao, H.; Wang, C.; Samarth, C.; Kongparakul, S.; Tran, N.M.A.; Wang, J.; Liu, X.; Tan, H.; et al. Air-coupled ultrasonic transducer based on lead-free piezoceramics prepared by digital light processing 3D printing. Ultrasonics 2024, 143, 107429. [Google Scholar] [CrossRef]
- Hirao, M.; Ogi, H. Electromagnetic Acoustic Transducers; Springer: Berlin/Heidelberg, Germany, 2017; Volume 20017. [Google Scholar]
- Tu, J.; Zhong, Z.; Song, X.; Zhang, X.; Deng, Z.; Liu, M. An external through type RA-EMAT for steel pipe inspection. Sens. Actuators A Phys. 2021, 331, 113053. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Zhang, X.; Song, X.; Tu, J.; Cai, C.; Yuan, J.; Wu, Q. Internal and External Pipe Defect Characterization via High-Frequency Lamb Waves Generated by Unidirectional EMAT. Sensors 2023, 23, 8843. [Google Scholar] [CrossRef]
- Shi, Y.; Tian, S.; Jiang, J.; Lei, T.; Wang, S.; Lin, X.; Xu, K. Thickness measurements with EMAT based on fuzzy logic. Sensors 2024, 24, 4066. [Google Scholar] [CrossRef]
- Chen, T.; Lou, T.; Lv, C.; Song, X.; Tu, J.; Wu, Q.; Zhang, X. Unidirectional focusing Rayleigh waves EMAT for plate surface defect Inspection. Nondestruct. Test. Eval. 2024, 1–24. Available online: https://api.semanticscholar.org/CorpusID:269962864 (accessed on 5 February 2025). [CrossRef]
- Wu, J.; Spillman, W.B., Jr. Unidirectional acoustic waveguide system for defect detection in structures. Smart Mater. Struct. 1995, 4, 62. [Google Scholar] [CrossRef]
- Luo, W.; Rose, J.L. Guided wave thickness measurement with EMATs. Insight-Non-Destr. Test. Cond. Monit. 2003, 45, 735–739. [Google Scholar] [CrossRef]
- Bombarda, D.; Vitetta, G.M.; Ferrante, G. Rail Diagnostics Based on Ultrasonic Guided Waves: An Overview. Appl. Sci. 2021, 11, 1071. [Google Scholar] [CrossRef]
- Kubrusly, A.C.; Dixon, S. Application of the reciprocity principle to evaluation of mode-converted scattered shear horizontal (SH) wavefields in tapered thinning plates. Ultrasonics 2021, 117, 106544. [Google Scholar] [CrossRef]
- Yang, J.; Qu, Z. Design of ultrasonic guided waves signal generator based on FPGA. IOP Conf. Ser. Mater. Sci. Eng. 2019, 569, 032022. [Google Scholar] [CrossRef]
- Yi, Z.; Wang, K.; Kang, L.; Zhai, G.; Wang, S. Rail flaw detection system based on electromagnetic acoustic technique. In Proceedings of the 2010 5th IEEE Conference on Industrial Electronics and Applications, Taichung, Taiwan, 15–17 June 2010; pp. 211–215. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H. A FPGA based ultrasonic rail flaw detection system. In Proceedings of the 2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Bilbao, Spain, 18–20 December 2017; pp. 150–155. [Google Scholar] [CrossRef]
- Kim, H.W.; Kwon, Y.E.; Lee, J.K.; Kim, Y.Y. Higher torsional mode suppression in a pipe for enhancing the first torsional mode by using magnetostrictive patch transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2013, 60, 562–572. [Google Scholar] [CrossRef]
- Sun, H.; Peng, L.; Lin, J.; Wang, S.; Zhao, W.; Huang, S. Microcrack defect quantification using a focusing high-order SH guided wave EMAT: The physics-informed deep neural network guwNet. IEEE Trans. Ind. Inform. 2022, 18, 3235–3247. [Google Scholar] [CrossRef]
- Sun, H.; Peng, L.; Wang, S.; Huang, S.; Qu, K. Development of frequency-mixed point-focusing shear horizontal guided-wave EMAT for defect inspection using deep neural network. IEEE Trans. Instrum. Meas. 2021, 70, 2503014. [Google Scholar] [CrossRef]
- Yun, H.; Feng, K.; Rayhana, R.; Pant, S.; Genest, M.; Liu, Z. A multidimensional data fusion neural network for damage localization using ultrasonic guided wave. IEEE Trans. Instrum. Meas. 2023, 72, 2522912. [Google Scholar] [CrossRef]
- Sun, H.; Tu, J.; Feng, Q.; Huang, S.; Peng, L.; He, Q.; Li, J.; Li, S. A high-precision defect quantification method using a unilateral oblique focusing guided wave EMAT and a theory-informed explainable progressive residual deep convolutional network. IEEE Trans. Instrum. Meas. 2024, 73, 2524209. [Google Scholar] [CrossRef]
- Sun, H.; Huang, S.; Wang, S.; Zhao, W.; Peng, L. Quantification of defects with point-focusing shear horizontal guided wave EMAT using deep residual network. In Proceedings of the 2021 IEEE 19th International Conference on Industrial Informatics (INDIN), Palma de Mallorca, Spain, 21–23 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, J.; Shen, Y.; Karkera, B.; Croxford, A.J.; Wilcox, P.D. Defect detection in guided wave signals using nonlinear autoregressive exogenous method. Struct. Health Monit. 2022, 21, 1012–1030. [Google Scholar] [CrossRef]
- Mariani, S.; Rendu, Q.; Urbani, M.; Sbarufatti, C. Causal dilated convolutional neural networks for automatic inspection of ultrasonic signals in non-destructive evaluation and structural health monitoring. Mech. Syst. Signal Process. 2021, 157, 107748. [Google Scholar] [CrossRef]
Article Ref. | TD (dB) | TDI (dB) | SP (dB) | SPI (dB) | TDLBPT (dB) | ||||
---|---|---|---|---|---|---|---|---|---|
SH0 | SH1 | SH0 | SH1 | SH0 | SH1 | SH0 | SH1 | SH0 | |
[103] | 22.4 | 12.3 | 37.7 | 15.7 | 22.4 | 08.4 | 37.7 | 29.5 | - |
[108] | - | - | - | - | - | - | - | - | 22 |
[104] | 20 | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuassal, A.; Kang, L.; Martinho, L.; Kubrusly, A.; Dixon, S.; Smart, E.; Ma, H.; Sanders, D. A Review of Recent Advances in Unidirectional Ultrasonic Guided Wave Techniques for Nondestructive Testing and Evaluation. Sensors 2025, 25, 1050. https://doi.org/10.3390/s25041050
Abuassal A, Kang L, Martinho L, Kubrusly A, Dixon S, Smart E, Ma H, Sanders D. A Review of Recent Advances in Unidirectional Ultrasonic Guided Wave Techniques for Nondestructive Testing and Evaluation. Sensors. 2025; 25(4):1050. https://doi.org/10.3390/s25041050
Chicago/Turabian StyleAbuassal, Ali, Lei Kang, Lucas Martinho, Alan Kubrusly, Steve Dixon, Edward Smart, Hongjie Ma, and David Sanders. 2025. "A Review of Recent Advances in Unidirectional Ultrasonic Guided Wave Techniques for Nondestructive Testing and Evaluation" Sensors 25, no. 4: 1050. https://doi.org/10.3390/s25041050
APA StyleAbuassal, A., Kang, L., Martinho, L., Kubrusly, A., Dixon, S., Smart, E., Ma, H., & Sanders, D. (2025). A Review of Recent Advances in Unidirectional Ultrasonic Guided Wave Techniques for Nondestructive Testing and Evaluation. Sensors, 25(4), 1050. https://doi.org/10.3390/s25041050