Recent Progress in Intrinsically Stretchable Sensors Based on Organic Field-Effect Transistors
<p>Schematic illustration of intrinsically stretchable OFET-based sensors.</p> "> Figure 2
<p>Schematic diagram of OFET structure and operating mechanism.</p> "> Figure 3
<p>Four typical device structures of stretchable OFETs, including (<b>a</b>) bottom-gate top-contact structure, (<b>b</b>) bottom-gate bottom-contact structure, (<b>c</b>) top-gate top-contact structure, and (<b>d</b>) top-gate bottom-contact structure. (S: source electrode, D: drain electrode, G: gate electrode).</p> "> Figure 4
<p>Schematic illustration of an intrinsically stretchable transistor, including intrinsically stretchable conductor, semiconductor, and dielectric materials. Reproduced with permission from [<a href="#B20-sensors-25-00925" class="html-bibr">20</a>], copyright 2018, Springer Nature.</p> "> Figure 5
<p>Schematic illustration, AFM, and conductive AFM images of intrinsically stretchable electrodes of (<b>a</b>–<b>c</b>) SWCNT and (<b>d</b>–<b>f</b>) PEDOT:PSS/SWCNT. Reproduced with permission from [<a href="#B25-sensors-25-00925" class="html-bibr">25</a>], copyright 2019, RSC publishing.</p> "> Figure 6
<p>(<b>a</b>) Mechanism of lithography of PEDOT:PSS and PEGDMA. Reproduced with permission from [<a href="#B28-sensors-25-00925" class="html-bibr">28</a>], copyright 2021, AAAS Science. (<b>b</b>) Chemical structure of PR-PEGMA. (<b>c</b>) Schematic diagram illustrating PR and PEDOT:PSS for enhanced conductivity. Reproduced with permission, copyright [<a href="#B29-sensors-25-00925" class="html-bibr">29</a>] AAAS Science.</p> "> Figure 7
<p><b>Low-voltage stretchable OFETs.</b> (<b>a</b>) Device structure and tri-layer insulators. (<b>b</b>) Typical transfer curves of the OFETs. (<b>c</b>) Optical image of the low-voltage stretchable OFET array. Reproduced with permission from [<a href="#B63-sensors-25-00925" class="html-bibr">63</a>], copyright 2023, AAAS Science.</p> "> Figure 8
<p>(<b>a</b>) Fabrication illustration of intrinsically stretchable transistor-based gas sensors. (<b>b</b>) Photographs of the fully intrinsically stretchable OFET-based sensors stretched to 100% strain. (<b>c</b>) The excellent conformability of the OFET-based sensors can conform on human skin. (<b>d</b>,<b>e</b>) Typical transfer curves, on and off currents, and mobilities under 0–90% strains. (<b>f</b>) The transfer characteristics of stretchable sensors show mechanical robustness, as the device can function well under 30% strain for 2000 cycles. Reproduced with permission from [<a href="#B67-sensors-25-00925" class="html-bibr">67</a>], copyright 2013, John Wiley and Sons.</p> "> Figure 9
<p>Intrinsically stretchable pressure sensors based on OFETs. (<b>a</b>) A 10 × 10 stretchable active matrix transistor array (scale bar: 1 mm). (<b>b</b>) A diagram of the tactile sensor array based on the OFET array. (<b>c</b>) The array can be adhered to a human palm and accurately detect the position of a synthetic ladybug with six conductive legs. (<b>d</b>) Current mapping of the ladybug on the OFET array. Reproduced with permission from [<a href="#B20-sensors-25-00925" class="html-bibr">20</a>], copyright 2018, Spring Nature.</p> "> Figure 10
<p>Electro-oculo-gram (EOG) sensor based on stretchable OFETs. (<b>a</b>) Diagram of the stretchable OFETs. (<b>b</b>) Schematic circuit diagram of the transistor amplifier. (<b>c</b>) Output voltage (<span class="html-italic">V</span><sub>out</sub>) and gain (<span class="html-italic">A</span>v) curves of the amplifier. (<b>d</b>) EOG signals of the amplifier under alternate upward and downward movement of the eyeball. Reproduced with permission from [<a href="#B46-sensors-25-00925" class="html-bibr">46</a>], copyright 2018, John Wiley and Sons.</p> "> Figure 11
<p>Strain sensors based on OFETs. (<b>a</b>) Schematic illustration of rubrene single-crystal OFET strain sensors. (<b>b</b>) Optical microscopy image and AFM image of rubrene single crystals. (<b>c</b>) <span class="html-italic">I–V</span> curves of the rubrene single-crystal device under compressive and tensile strains. (<b>d</b>) Real-time current response of the strain sensors during index finger motion under compressive and tensile strains. Reproduced with permission from [<a href="#B76-sensors-25-00925" class="html-bibr">76</a>], copyright 2017, IEEE.</p> "> Figure 12
<p>Stretchable proximity sensors based on OFETs. (<b>a</b>) Schematic fabrication procedures of PAM-dc-fGO conductive films. (<b>b</b>) Schematic illustration of the test methods, including (i) stomping or jumping, (ii) hand movements, and (iii) walking back and forth on a straight line. Reproduced with permission from [<a href="#B90-sensors-25-00925" class="html-bibr">90</a>], copyright 2018, ACS publishing.</p> "> Figure 13
<p>(<b>a</b>) Schematic structure of the stretchable temperature sensor. (<b>b</b>) Monitoring neck skin temperature and muscle movement. (<b>c</b>) IR thermograms of the neck before and after drinking hot water. Reproduced with permission from [<a href="#B93-sensors-25-00925" class="html-bibr">93</a>], copyright 2018, John Wiley and Sons.</p> "> Figure 14
<p>(<b>a</b>) Schematic structure of a stretchable temperature sensor based on an OFET array, with SEBS serving as the encapsulation layer, dielectric layer, and substrate; Ag serving as the source, drain, and gate electrodes; and DPPT-TT/SEBS as the active layer. (<b>b</b>,<b>c</b>) Optical and digital images of the stretchable temperature OFET array conforming to human skin. (<b>d</b>) Mobilities and threshold voltages of the OFET array. (<b>e</b>,<b>f</b>) Three-dimensional NS-current mapping and thermographic images of the OFET array temperature sensor on cold and hot metal balls. Reproduced with permission from [<a href="#B98-sensors-25-00925" class="html-bibr">98</a>], copyright 2024, John Wiley and Sons.</p> ">
Abstract
:1. Introduction
2. Operating Mechanism of Intrinsically Stretchable OFETs
3. Materials for Intrinsically Stretchable OFETs
3.1. Intrinsically Stretchable Conductive Materials
3.1.1. Carbon Materials for Stretchable Electrodes
3.1.2. Conducting Polymers for Stretchable Electrodes
3.1.3. Metallic Nanowires for Stretchable Electrodes
3.2. Intrinsically Stretchable Semiconductor Materials
3.2.1. Poly(3-Hexylthiophene) (P3HT)
3.2.2. Diketopyrrolopyrrole (DPP)-Conjugated Polymers
3.2.3. Nanoconfinement Effect
3.3. Intrinsically Stretchable Insulator Materials
4. Mechanism of OFET-Based Stretchable Sensors
4.1. Interaction with the Semiconductor Layer
4.2. Contact Resistance Changes in Electrode
4.3. Capacitance Changes in the Dielectric
4.4. Potential Changes at the Gate Electrode/Dielectric Interface
5. Stretchable Sensors Based on OFETs
5.1. Stretchable Gas Sensors Based on OFETs
5.2. Stretchable Pressure Sensors Based on OFETs
5.3. Stretchable Strain Sensors Based on OFETs
5.4. Stretchable Proximity Sensors Based on OFETs
5.5. Stretchable Temperature Sensors Based on OFETs
6. Conclusions and Future Outlook
- (1)
- Designing intrinsically stretchable polymer semiconductors. As mentioned above, the lack of intrinsically stretchable semiconductors has seriously hindered the development of intrinsically stretchable OFETs and OFET-based sensors. In addition, the poor electrical properties under large tensile strains present another significant challenge for intrinsically stretchable OFETs.
- (2)
- Improving stability. There are significant challenges related to the stability of stretchable sensors based on OFETs at long times and strain cycles. As usage time extends, the material may undergo structural changes or degradation, leading to a decline in device performance. Specifically, repeated stretching and compression can impair the device’s electrical properties, manifested as reduced mobility and changes in threshold voltage. Additionally, environmental factors such as temperature and humidity significantly impact device performance. High temperatures may accelerate the decomposition or phase transition of organic materials, while excessive humidity can alter the conductivity of the charge transfer channel and even cause device failure. The combined effects of these factors may limit the long-term stability and reliability of stretchable OFET sensors in practical applications.
- (3)
- Decreasing the operational voltage. The currently reported intrinsically stretchable OFETs mainly utilize low-dielectric-constant elastomers, such as poly(dimethylsiloxane) (PDMS), polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS), poly(methyl methacrylate)-poly(n-butyl acrylate)-poly(methyl methacrylate) (PMMA-PnBA-PMMA), and perfluoropolyether diols methacrylate (PFPE-DMA). These materials lead to high operational voltages (42~100 V) to overcome the high contact resistance and parasitic capacitance. Reducing the operational voltage to an absolutely safe level for humans (<12 V) is critical for improving energy efficiency, enhancing convenience, and ensuring wearable safety.
- (4)
- Multifunctional and multimodal sensors: The next-generation stretchable sensors require multiple sensing capabilities, such as gas sensors, pressure sensors, strain sensors, proximity sensors, and temperature sensors, integrated into a single device. These integrated sensors not only reduce the number of separate sensors and supporting devices in a system, simplifying the electronic circuits and obtaining multiple signals simultaneously, but they also significantly improve sensor performance and application value by combining multiple functions and signal processing capabilities. In the fields of wearable devices, medical health, intelligent robotics, and environmental monitoring, their advantages provide strong support for the realization of more efficient and intelligent detection solutions, representing one of the key directions for the future development of sensing technology.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Chen, Z.; Chan, C.L.J.; Wan, Z.; Ye, W.; Tang, W.; Ma, Z.; Ren, B.; Zhang, D.; Song, Z.; et al. Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nat. Electron. 2024, 7, 157–167. [Google Scholar] [CrossRef]
- Dai, Y.; Wai, S.; Li, P.; Shan, N.; Cao, Z.; Li, Y.; Wang, Y.; Liu, Y.; Liu, W.; Tang, K. Soft hydrogel semiconductors with augmented biointeractive functions. Science 2024, 386, 431–439. [Google Scholar] [CrossRef]
- Cheng, P.; Dai, S.; Liu, Y.; Li, Y.; Hayashi, H.; Papani, R.; Su, Q.; Li, N.; Dai, Y.; Liu, W. An intrinsically stretchable power-source system for bioelectronics. Device 2024, 2, 1. [Google Scholar] [CrossRef]
- Qin, M.; Bian, Y.; Wang, C.; Sun, J.; Shi, W.; Liu, K.; Zheng, Y.; Zhang, F.; Liu, G.; Shao, M. Intrinsically Stretchable Organic Photodiodes for Faint Near-Infrared Light Detection and Extendable Cryptographic Imaging. Adv. Funct. Mater. 2024, 34, 2403770. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, Y.; Sorbelli, D.; Cheng, C.; Michalek, L.; Cheng, H.-W.; Jindal, V.; Zhang, S.; LeCroy, G.; Gomez, E.D. Tuning polymer-backbone coplanarity and conformational order to achieve high-performance printed all-polymer solar cells. Nat. Commun. 2024, 15, 2170. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Wang, Y.; Zhang, R.; Wang, H.; Sun, C.; Wang, T. Recent Progress in Gas Sensors Based on P3HT Polymer Field-Effect Transistors. Sensors 2023, 23, 8309. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, X.; Xie, L.; Qi, D.; Chandran, B.K.; Chen, X.; Huang, W. Stretchable organic semiconductor devices. Adv. Mater. 2016, 28, 9243–9265. [Google Scholar] [CrossRef] [PubMed]
- Berman, A.; Hsiao, K.; Root, S.E.; Choi, H.; Ilyn, D.; Xu, C.; Stein, E.; Cutkosky, M.; DeSimone, J.M.; Bao, Z. Additively manufactured micro-lattice dielectrics for multiaxial capacitive sensors. Sci. Adv. 2024, 10, eadq8866. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ji, S.; Sun, J.; Huang, J.; Li, Y.; Zou, G.; Salim, T.; Wang, C.; Li, W.; Jin, H. A universal interface for plug-and-play assembly of stretchable devices. Nature 2023, 614, 456–462. [Google Scholar] [CrossRef]
- Luo, Y.; Abidian, M.R.; Ahn, J. Technology roadmap for flexible sensors. ACS Nano 2023, 17, 5211–5295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, X.; Sun, J.; Tong, Y.; Zhang, C.; Yu, H.; Guo, S.; Zhao, X.; Tang, Q.; Liu, Y. Synergistic polarization engineering of dielectric towards low-voltage high-mobility solution-processed ultraflexible organic transistors. NPJ Flex. Electron. 2024, 8, 29. [Google Scholar] [CrossRef]
- Zhang, M.; Du, M.; Tong, Y.; Wang, X.; Sun, J.; Guo, S.; Zhao, X.; Tang, Q.; Liu, Y. Antisolvent polysulfone dielectric for ultrastable solution-processed high-performance conformal organic transistor array. J. Mater. Chem. C 2024, 12, 7732–7740. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Li, M.; He, G.; Guo, X. Interface engineering in organic field-effect transistors: Principles, applications, and perspectives. Chem. Rev. 2020, 120, 2879–2949. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Jang, M.; Lee, M.Y.; Kweon, O.Y.; Oh, J.H. Flexible field-effect transistor-type sensors based on conjugated molecules. Chem 2017, 3, 724–763. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, J.; Zhao, G.; Tong, Y.; Wang, X.; Yu, H.; Xue, P.; Zhao, X.; Tang, Q.; Liu, Y. Dielectric Design of High Dielectric Constant Poly (Urea-Urethane) Elastomer for Low-Voltage High-Mobility Intrinsically Stretchable All-Solution-Processed Organic Transistors. Small 2024, 20, 2311527. [Google Scholar] [CrossRef]
- Khang, D.-Y.; Jiang, H.; Huang, Y.; Rogers, J.A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.-H.; Kim, D.-H.; Xiao, J.; Kim, B.H.; Park, S.-I.; Panilaitis, B.; Ghaffari, R.; Yao, J.; Li, M.; Liu, Z. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 2010, 9, 929–937. [Google Scholar] [CrossRef]
- Oh, J.Y.; Rondeau-Gagné, S.; Chiu, Y.-C.; Chortos, A.; Lissel, F.; Wang, G.-J.N.; Schroeder, B.C.; Kurosawa, T.; Lopez, J.; Katsumata, T. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 2016, 539, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Bubnova, O. Stretching the limits. Nat. Nanotechnol. 2017, 12, 101. [Google Scholar] [CrossRef]
- Wang, S.; Xu, J.; Wang, W.; Wang, G.-J.N.; Rastak, R.; Molina-Lopez, F.; Chung, J.W.; Niu, S.; Feig, V.R.; Lopez, J. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88. [Google Scholar] [CrossRef]
- Yang, J.C.; Mun, J.; Kwon, S.Y.; Park, S.; Bao, Z.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wu, H.-C.; Zhu, C.; Ehrlich, A.; Shaw, L.; Nikolka, M.; Wang, S.; Molina-Lopez, F.; Gu, X.; Luo, S. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 2019, 18, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Li, J.; Luan, P.; Dong, H.; Zhao, D.; Zhang, Q.; Zhang, X.; Tu, M.; Zeng, Q.; Zhou, W. Highly transparent and conductive stretchable conductors based on hierarchical reticulate single-walled carbon nanotube architecture. Adv. Funct. Mater. 2012, 22, 5238–5244. [Google Scholar] [CrossRef]
- Xu, J.; Wang, S.; Wang, G.-J.N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V.R.; To, J.W. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017, 355, 59–64. [Google Scholar] [CrossRef]
- Cui, N.; Tang, Q.; Ren, H.; Zhao, X.; Tong, Y.; Liu, Y. A photolithographic stretchable transparent electrode for an all-solution-processed fully transparent conformal organic transistor array. J. Mater. Chem. C 2019, 7, 5385–5393. [Google Scholar] [CrossRef]
- Tahk, D.; Lee, H.H.; Khang, D.-Y. Elastic moduli of organic electronic materials by the buckling method. Macromolecules 2009, 42, 7079–7083. [Google Scholar] [CrossRef]
- Lipomi, D.J.; Lee, J.A.; Vosgueritchian, M.; Tee, B.C.-K.; Bolander, J.A.; Bao, Z. Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates. Chem. Mater. 2012, 24, 373–382. [Google Scholar] [CrossRef]
- Zheng, Y.-Q.; Liu, Y.; Zhong, D.; Nikzad, S.; Liu, S.; Yu, Z.; Liu, D.; Wu, H.-C.; Zhu, C.; Li, J. Monolithic optical microlithography of high-density elastic circuits. Science 2021, 373, 88–94. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Z.; Wang, Y.-X.; Li, D.; Coen, C.-T.; Hwaun, E.; Chen, G.; Wu, H.-C.; Zhong, D.; Niu, S. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 2022, 375, 1411–1417. [Google Scholar] [CrossRef]
- Kang, H.; Kim, Y.; Cheon, S.; Yi, G.-R.; Cho, J.H. Halide welding for silver nanowire network electrode. ACS Appl. Mater. Interfaces 2017, 9, 30779–30785. [Google Scholar] [CrossRef]
- Lu, C.; Lee, W.-Y.; Shih, C.-C.; Wen, M.-Y.; Chen, W.-C. Stretchable polymer dielectrics for low-voltage-driven field-effect transistors. ACS Appl. Mater. Interfaces 2017, 9, 25522–25532. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Gong, S.; Lin, F.; Wang, Y.; Ling, Y.; An, T.; Cheng, W. Patterning vertically grown gold nanowire electrodes for intrinsically stretchable organic transistors. Adv. Electron. Mater. 2019, 5, 1800509. [Google Scholar] [CrossRef]
- Rodriquez, D.; Savagatrup, S.; Valle, E.; Proctor, C.M.; McDowell, C.; Bazan, G.C.; Nguyen, T.-Q.; Lipomi, D.J. Mechanical properties of solution-processed small-molecule semiconductor films. ACS Appl. Mater. Interfaces 2016, 8, 11649–11657. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kim, J.-H.; Lee, W.; Yu, H.; Kim, H.J.; Song, I.; Shin, M.; Oh, J.H.; Jeong, U.; Kim, T.-S. Tuning mechanical and optoelectrical properties of poly (3-hexylthiophene) through systematic regioregularity control. Macromolecules 2015, 48, 4339–4346. [Google Scholar] [CrossRef]
- Schwartz, G.; Tee, B.C.-K.; Mei, J.; Appleton, A.L.; Kim, D.H.; Wang, H.; Bao, Z. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, B.; Chan, E.P.; Chan, C.; Conrad, B.R.; Richter, L.J.; Kline, R.J.; Heeney, M.; McCulloch, I.; Soles, C.L.; DeLongchamp, D.M. Correlations between mechanical and electrical properties of polythiophenes. ACS Nano 2010, 4, 7538–7544. [Google Scholar] [CrossRef]
- Koch, F.P.V.; Rivnay, J.; Foster, S.; Müller, C.; Downing, J.M.; Buchaca-Domingo, E.; Westacott, P.; Yu, L.; Yuan, M.; Baklar, M. The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly (3-hexylthiophene), a model study. Prog. Polym. Sci. 2013, 38, 1978–1989. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Shih, C.-C.; Chiang, Y.-C.; Chen, C.-K.; Chen, W.-C. Intrinsically stretchable isoindigo–bithiophene conjugated copolymers using poly (acrylate amide) side chains for organic field-effect transistors. Polym. Chem. 2019, 10, 5172–5183. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chen, F.-H.; Chiang, Y.-C.; Chueh, C.-C.; Chen, W.-C. Asymmetric side-chain engineering of isoindigo-based polymers for improved stretchability and applications in field-effect transistors. ACS Appl. Mater. Interfaces 2019, 11, 34158–34170. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-C.; Benight, S.J.; Chortos, A.; Lee, W.-Y.; Mei, J.; To, J.W.; Lu, C.; He, M.; Tok, J.B.-H.; Chen, W.-C. A rapid and facile soft contact lamination method: Evaluation of polymer semiconductors for stretchable transistors. Chem. Mater. 2014, 26, 4544–4551. [Google Scholar] [CrossRef]
- Roth, B.; Savagatrup, S.; de los Santos, N.V.; Hagemann, O.; Carlé, J.E.; Helgesen, M.; Livi, F.; Bundgaard, E.; Søndergaard, R.R.; Krebs, F.C.; et al. Mechanical properties of a library of low-band-gap polymers. Chem. Mater. 2016, 28, 2363–2373. [Google Scholar] [CrossRef]
- Li, C.-H.; Wang, C.; Keplinger, C.; Zuo, J.-L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.I.; Xue, X.; Wang, M.; Kline, R.J.; Hoffman, B.C.; Dougherty, D.; Zhou, C.; Bazan, G.; O’Connor, B.T. Significantly increasing the ductility of high performance polymer semiconductors through polymer blending. ACS Appl. Mater. Interfaces 2016, 8, 14037–14045. [Google Scholar] [CrossRef]
- Choi, D.; Kim, H.; Persson, N.; Chu, P.-H.; Chang, M.; Kang, J.-H.; Graham, S.; Reichmanis, E. Elastomer-polymer semiconductor blends for high-performance stretchable charge transport networks. Chem. Mater. 2016, 28, 1196–1204. [Google Scholar] [CrossRef]
- Shin, M.; Oh, J.Y.; Byun, K.-E.; Lee, Y.-J.; Kim, B.; Baik, H.-K.; Park, J.-J.; Jeong, U. Polythiophene nanofibril bundles surface-embedded in elastomer: A route to a highly stretchable active channel layer. Adv. Mater. 2015, 27, 1255–1261. [Google Scholar] [CrossRef]
- Liu, K.; Wang, C.; Liu, B.; Bian, Y.; Kuang, J.; Hou, Y.; Pan, Z.; Liu, G.; Huang, X.; Zhu, Z. Low-Voltage Intrinsically Stretchable Organic Transistor Amplifiers for Ultrasensitive Electrophysiological Signal Detection. Adv. Mater. 2023, 35, 2207006. [Google Scholar] [CrossRef]
- Zhang, G.; McBride, M.; Persson, N.; Lee, S.; Dunn, T.J.; Toney, M.F.; Yuan, Z.; Kwon, Y.-H.; Chu, P.-H.; Risteen, B. Versatile interpenetrating polymer network approach to robust stretchable electronic devices. Chem. Mater. 2017, 29, 7645–7652. [Google Scholar] [CrossRef]
- Mun, J.; Kang, J.; Zheng, Y.; Luo, S.; Wu, H.C.; Matsuhisa, N.; Xu, J.; Wang, G.J.N.; Yun, Y.; Xue, G. Conjugated carbon cyclic nanorings as additives for intrinsically stretchable semiconducting polymers. Adv. Mater. 2019, 31, 1903912. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, G.J.N.; Kang, J.; Nikolka, M.; Wu, H.C.; Tran, H.; Zhang, S.; Yan, H.; Chen, H.; Yuen, P.Y. An intrinsically stretchable high-performance polymer semiconductor with low crystallinity. Adv. Funct. Mater 2019, 29, 1905340. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, J.; Tong, Y.; Zhang, J.; Zhao, X.; Cui, N.; Li, Y.; Ye, X.; Tang, Q.; Liu, Y. Synchronously improved stretchability and mobility by tuning the molecular weight for intrinsically stretchable transistors. J. Mater. Chem. C 2020, 8, 15646–15654. [Google Scholar] [CrossRef]
- Mun, J.; Kang, J.; Zheng, Y.; Luo, S.; Wu, Y.; Gong, H.; Lai, J.C.; Wu, H.C.; Xue, G.; Tok, J.B.H. F4-TCNQ as an additive to impart stretchable semiconductors with high mobility and stability. Adv. Electron. Mater. 2020, 6, 2000251. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, J.; Tong, Y.; Zhang, M.; Zhao, X.; Tang, Q.; Liu, Y. Selection of insulating elastomers for high-performance intrinsically stretchable transistors. ACS Appl. Electron. Mater. 2021, 3, 1458–1467. [Google Scholar] [CrossRef]
- Mun, J.; Ochiai, Y.; Wang, W.; Zheng, Y.; Zheng, Y.-Q.; Wu, H.-C.; Matsuhisa, N.; Higashihara, T.; Tok, J.B.-H.; Yun, Y. A design strategy for high mobility stretchable polymer semiconductors. Nat. Commun. 2021, 12, 3572. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Lei, Y.; Ji, X.; Wu, Y.; Lin, Y.; Wang, Y.; Zhang, S.; Zheng, Y.; Chen, Y.; Lai, J.C. Tuning the Mechanical and Electric Properties of Conjugated Polymer Semiconductors: Side-Chain Design Based on Asymmetric Benzodithiophene Building Blocks. Adv. Funct. Mater. 2022, 32, 2203527. [Google Scholar] [CrossRef]
- Sun, J.; Liu, X.; Tong, Y.; Zhao, G.; Ni, Y.; Zhao, X.; Wang, B.; Wang, X.; Zhang, M.; Guo, S. Air/liquid interfacial self-assembled intrinsically stretchable IDT-BT film combining a deliberate transfer adherence strategy for stretchable electronics. ACS Appl. Mater. Interfaces 2023, 15, 46108–46118. [Google Scholar] [CrossRef]
- Lee, Y.; Oh, J.Y.; Kim, T.R.; Gu, X.; Kim, Y.; Wang, G.J.N.; Wu, H.C.; Pfattner, R.; To, J.W.; Katsumata, T. Deformable organic nanowire field-effect transistors. Adv. Mater. 2018, 30, 1704401. [Google Scholar] [CrossRef] [PubMed]
- Mun, J.; Wang, G.J.N.; Oh, J.Y.; Katsumata, T.; Lee, F.L.; Kang, J.; Wu, H.C.; Lissel, F.; Rondeau-Gagné, S.; Tok, J.B.H. Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv. Funct. Mater. 2018, 28, 1804222. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, Z.; Zhang, S.; Kong, X.; Michaels, W.; Wang, W.; Chen, G.; Liu, D.; Lai, J.-C.; Prine, N. A molecular design approach towards elastic and multifunctional polymer electronics. Nat. Commun. 2021, 12, 5701. [Google Scholar] [CrossRef]
- Kim, M.H.; Jeong, M.W.; Kim, J.S.; Nam, T.U.; Vo, N.T.P.; Jin, L.; Lee, T.I.; Oh, J.Y. Mechanically robust stretchable semiconductor metallization for skin-inspired organic transistors. Sci. Adv. 2022, 8, eade2988. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, N.; Liu, W.; Prominski, A.; Kang, S.; Dai, Y.; Liu, Y.; Hu, H.; Wai, S.; Dai, S. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat. Commun. 2023, 14, 4488. [Google Scholar] [CrossRef]
- Guo, S.; Tong, Y.; Wang, X.; Zhang, M.; Yu, H.; Ren, H.; Tang, Q.; Lu, G.; Liu, Y. Brittle PCDTPT Based Elastic Hybrid Networks for Transparent Stretchable Skin-Like Electronics. Adv. Electron. Mater. 2023, 9, 2200438. [Google Scholar] [CrossRef]
- Wu, F.; Liu, Y.; Zhang, J.; Li, X.; Yang, H.; Hu, W. Highly stretchable and high-mobility simiconducting nanofibrous blend films for fully stretchable organic transistors. Sci. China Mater. 2023, 66, 1891–1898. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, Y.; Zhong, D.; Zhang, Z.; Choudhury, S.; Lai, J.-C.; Gong, H.; Niu, S.; Yan, X.; Zheng, Y. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 2023, 380, 735–742. [Google Scholar] [CrossRef]
- Zhong, D.; Wu, C.; Jiang, Y.; Yuan, Y.; Kim, M.-g.; Nishio, Y.; Shih, C.-C.; Wang, W.; Lai, J.-C.; Ji, X. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 2024, 627, 313–320. [Google Scholar] [CrossRef]
- Khatib, M.; Huynh, T.P.; Deng, Y.; Horev, Y.D.; Saliba, W.; Wu, W.; Haick, H. A freestanding stretchable and multifunctional transistor with intrinsic self-healing properties of all device components. Small 2019, 15, 1803939. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Jiao, H.; Huang, Q.; Zhang, J.; Zhang, M. Ultra-high drivability, high-mobility, low-voltage and high-integration intrinsically stretchable transistors. Nanoscale 2020, 12, 23546–23555. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Sun, J.; Zhang, M.; Guo, S.; Wang, X.; Li, J.; Tong, Y.; Zhao, X.; Tang, Q.; Liu, Y. Highly Strai-Stable Intrinsically Stretchable Olfactory Sensors for Imperceptible Health Monitoring. Adv. Sci. 2023, 10, 2302974. [Google Scholar] [CrossRef] [PubMed]
- Cheon, H.J.; Shin, S.Y.; Van Tran, V.; Park, B.; Yoon, H.; Chang, M. Preparation of conjugated polymer/reduced graphene oxide nanocomposites for high-performance volatile organic compound sensors. Chem. Eng. J. 2021, 425, 131424. [Google Scholar] [CrossRef]
- Patel, S.N.; Su, G.M.; Luo, C.; Wang, M.; Perez, L.A.; Fischer, D.A.; Prendergast, D.; Bazan, G.C.; Heeger, A.J.; Chabinyc, M.L. NEXAFS spectroscopy reveals the molecular orientation in blade-coated pyridal [2,1, 3] thiadiazole-containing conjugated polymer thin films. Macromolecules 2015, 48, 6606–6616. [Google Scholar] [CrossRef]
- Zhang, X.; Bronstein, H.; Kronemeijer, A.J.; Smith, J.; Kim, Y.; Kline, R.J.; Richter, L.J.; Anthopoulos, T.D.; Sirringhaus, H.; Song, K. Molecular origin of high field-effect mobility in an indacenodithiophene–benzothiadiazole copolymer. Nat. Commun. 2013, 4, 2238. [Google Scholar] [CrossRef] [PubMed]
- Cruden, D.L.; Galask, R. Reduction of trimethylamine oxide to trimethylamine by Mobiluncus strains isolated from patients with bacterial vaginosis. Microb. Ecol. Health Dis. 1988, 1, 95–100. [Google Scholar]
- Sekitani, T.; Kato, Y.; Iba, S.; Shinaoka, H.; Someya, T.; Sakurai, T.; Takagi, S. Bending experiment on pentacene field-effect transistors on plastic films. Appl. Phys. Lett. 2005, 86, 7. [Google Scholar] [CrossRef]
- Nam, S.H.; Jeon, P.J.; Min, S.W.; Lee, Y.T.; Park, E.Y.; Im, S. Highly Sensitive Non-Classical Strain Gauge Using Organic Heptazole Thin-Film Transistor Circuit on a Flexible Substrate. Adv. Funct. Mater. 2014, 24, 4413–4419. [Google Scholar] [CrossRef]
- Cho, Y.; Jeon, P.J.; Kim, J.S.; Im, S. Organic strain sensor comprised of heptazole-based thin film transistor and Schottky diode. Org. Electron. 2017, 40, 24–29. [Google Scholar] [CrossRef]
- Jeon, P.J.; Lee, K.; Park, E.Y.; Im, S.; Bae, H. Ultrasensitive low power-consuming strain sensor based on complementary inverter composed of organic p-and n-channels. Org. Electron. 2016, 32, 208–212. [Google Scholar] [CrossRef]
- Wang, H.; Deng, L.; Tang, Q.; Tong, Y.; Liu, Y. Flexible organic single-crystal field-effect transistor for ultra-sensitivity strain sensing. IEEE Electron. Device Lett. 2017, 38, 1598–1601. [Google Scholar] [CrossRef]
- Kim, D.; Hwang, B.; Park, J.; Jeon, H.; Bae, B.; Lee, H.; Lee, N.-E. Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors. Org. Electron. 2012, 13, 2401–2405. [Google Scholar] [CrossRef]
- Qazilbash, M.M.; Li, Z.; Podzorov, V.; Brehm, M.; Keilmann, F.; Chae, B.; Kim, H.-T.; Basov, D. Electrostatic modification of infrared response in gated structures based on VO2. Appl. Phys. Lett. 2008, 92, 24. [Google Scholar] [CrossRef]
- Chen, F.-C.; Chen, T.-D.; Zeng, B.-R.; Chung, Y.-W. Influence of mechanical strain on the electrical properties of flexible organic thin-film transistors. Semicond. Sci. Technol. 2011, 26, 034005. [Google Scholar] [CrossRef]
- Sekitani, T.; Iba, S.; Kato, Y.; Noguchi, Y.; Sakurai, T.; Someya, T. Submillimeter radius bendable organic field-effect transistors. J. Non-Cryst. Solids 2006, 352, 1769–1773. [Google Scholar] [CrossRef]
- Yi, M.; Guo, Y.; Guo, J.; Yang, T.; Chai, Y.; Fan, Q.; Xie, L.; Huang, W. The mechanical bending effect and mechanism of high performance and low-voltage flexible organic thin-film transistors with a cross-linked PVP dielectric layer. J. Mater. Chem. C 2014, 2, 2998–3004. [Google Scholar] [CrossRef]
- Kubo, T.; Häusermann, R.; Tsurumi, J.; Soeda, J.; Okada, Y.; Yamashita, Y.; Akamatsu, N.; Shishido, A.; Mitsui, C.; Okamoto, T. Suppressing molecular vibrations in organic semiconductors by inducing strain. Nat. Commun. 2016, 7, 11156. [Google Scholar] [CrossRef]
- Tang, Q.; Tong, Y.; Zheng, Y.; He, Y.; Zhang, Y.; Dong, H.; Hu, W.; Hassenkam, T.; Bjørnholm, T. Organic nanowire crystals combine excellent device performance and mechanical flexibility. Small 2011, 7, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Shi, B.; Li, M.; Fan, Q.; Qi, X.; Liu, X.; Zhao, S.; Jiang, L.; Zhang, X.; Fu, K. All-textile sensors for boxing punch force and velocity detection. Nano Energy 2022, 97, 107114. [Google Scholar] [CrossRef]
- Boutry, C.M.; Beker, L.; Kaizawa, Y.; Vassos, C.; Tran, H.; Hinckley, A.C.; Pfattner, R.; Niu, S.; Li, J.; Claverie, J. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 2019, 3, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, S.; Huang, X.; Guo, W.; Li, Y.; Wu, H. A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy 2019, 62, 164–170. [Google Scholar] [CrossRef]
- Cañón Bermúdez, G.S.; Karnaushenko, D.D.; Karnaushenko, D.; Lebanov, A.; Bischoff, L.; Kaltenbrunner, M.; Fassbender, J.; Schmidt, O.G.; Makarov, D. Magnetosensitive e-skins with directional perception for augmented reality. Sci. Adv. 2018, 4, eaao2623. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Wu, Z.; Wang, H.; Zhou, Z.; Wei, Y.; Tao, K.; Xie, X.; Wu, J. An ultrastretchable, high-performance, and crosstalk-free proximity and pressure bimodal sensor based on ionic hydrogel fibers for human-machine interfaces. Mater. Horiz. 2022, 9, 1935–1946. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tang, Q.; Zhao, X.; Tong, Y.; Liu, Y. Ultrasensitive flexible proximity sensor based on organic crystal for location detection. ACS Appl. Mater. Interfaces 2018, 10, 2785–2792. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Yu, G.; Dai, X.; Wang, X.; Yao, B.; Kong, J. Highly stretchable, self-healable, ultrasensitive strain and proximity sensors based on skin-inspired conductive film for human motion monitoring. ACS Appl. Mater. Interfaces 2020, 12, 51987–51998. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.Y.; Son, D.; Katsumata, T.; Lee, Y.; Kim, Y.; Lopez, J.; Wu, H.-C.; Kang, J.; Park, J.; Gu, X. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci. Adv. 2019, 5, eaav3097. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Ma, Q.; Lu, J.; Jiang, X.; Huang, L.; Chi, L.; Sun, L.; Wang, B. Nanofiber-Textured Organic Semiconductor Films for Field-Effect Ammonia Sensors. IEEE Open J. Nanotechnol. 2022, 3, 116–123. [Google Scholar] [CrossRef]
- Trung, T.Q.; Ramasundaram, S.; Hwang, B.U.; Lee, N.E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 2016, 28, 502–509. [Google Scholar] [CrossRef]
- Zhu, C.; Chortos, A.; Wang, Y.; Pfattner, R.; Lei, T.; Hinckley, A.C.; Pochorovski, I.; Yan, X.; To, J.W.-F.; Oh, J.Y. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 2018, 1, 183–190. [Google Scholar] [CrossRef]
- Zhu, C.; Wu, H.-C.; Nyikayaramba, G.; Bao, Z.; Murmann, B. Intrinsically stretchable temperature sensor based on organic thin-film transistors. IEEE Electron. Device Lett. 2019, 40, 1630–1633. [Google Scholar] [CrossRef]
- Guan, Y.-S.; Thukral, A.; Zhang, S.; Sim, K.; Wang, X.; Zhang, Y.; Ershad, F.; Rao, Z.; Pan, F.; Wang, P. Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics. Sci. Adv. 2020, 6, eabb3656. [Google Scholar] [CrossRef]
- Rao, Z.; Thukral, A.; Yang, P.; Lu, Y.; Shim, H.; Wu, W.; Karim, A.; Yu, C. All-Polymer Based Stretchable Rubbery Electronics and Sensors. Adv. Funct. Mater. 2022, 32, 2111232. [Google Scholar] [CrossRef]
- Kim, J.S.; Jeong, M.W.; Nam, T.U.; Vo, N.T.P.; Jung, K.H.; Lee, T.I.; Oh, J.Y. Intrinsically Stretchable Subthreshold Organic Transistors for Highly Sensitive Low-Power Skin-Like Active-Matrix Temperature Sensors. Adv. Funct. Mater. 2024, 34, 2305252. [Google Scholar] [CrossRef]
Dielectric | Dielectric Constant | VGS (V) | Semiconductor | Electrode | Μ (cm2 V−1 s−1) | Stain (%) | Ref. |
---|---|---|---|---|---|---|---|
PDMS | 2.7 | −60 | DPP-polymer | PEDOT/CNT | 0.6 | 100 | [18] |
PDMS | 2.7 | −80 | P3HT/PDMS | PEDPT:PSS/LiTFSI | 0.17 | 100 | [47] |
PDMS | 2.7 | −60 | CP/DPP-TT | CNT | 0.85 | 100 | [48] |
PDMS | 2.7 | −60 | PIDTBT | CNT | 1.8 | 100 | [49] |
PDMS | 2.7 | −60 | PIDTBT | PEDOT:PSS/CNT | 1.84 | 100 | [50] |
PDMS | 2.7 | −60 | F4-TCNQ/DPPT-TT | CNT | 1.03 | 100 | [51] |
PDMS | 2.7 | −60 | PIDTBT | PEDOT:PSS/CNT | 1.81 | 100 | [52] |
PDMS | 2.7 | −60 | DPP-8TVT | CNT | 0.35 | 100 | [53] |
PDMS | 2.7 | −60 | PDPP-C4PH | CNT | 0.5 | 50 | [54] |
PDMS | 2.7 | −50 | PIDTBT | PEDOT:PSS/CNT | 2.98 | 100 | [55] |
SEBS | 2.1 | −80 | DPPT-TT/SEBS | CNT | 0.59 | 100 | [19] |
SEBS | 2.1 | −60 | FT4-DPP/PEO | CNT/EGain | 0.78 | 100 | [56] |
SEBS | 2.1 | −60 | 29-DPP-SVS/SEBS | CNT | 1.11 | 100 | [20] |
SEBS | 2.1 | −100 | C12-DPP | CNT | 0.463 | 100 | [57] |
SEBS | 2.1 | −80 | DPPDTSE/ SEBS | CNT | 1.5 | 100 | [22] |
SEBS | 2.1 | −80 | BA-DPPT-TT | CNT | 0.5 | 100 | [58] |
SEBS | 2.1 | −60 | DPPT-TT/SEBS | Ag | 0.28 | 100 | [59] |
SBES | 2.1 | −40 | DPPT-TT/SEBS | CNT | 0.7 | 100 | [60] |
SEBS | 2.1 | −50 | PCDTBT/SEBS | PEDOT:PSS/CNT | 0.021 | 100 | [61] |
SEBS | 2.1 | −50 | PDVT-10/SEBS | CNT | 2.74 | 150 | [62] |
SEBS/ CQD | 4.1 | −5 | PDPP-TT/SEBS | CNT | 0.6 | 100 | [46] |
PVDF-HFP/PVP | 9.7 | −3 | Pse-DPP | AgNW | 0.1 | 100 | [31] |
NBR/ SEBS/ OTS | 28 | −3 | P-29-DPPDTSE/ SEBS | CNT | 2.0 | 100 | [63] |
NBR/ SEBS | 28 | −5 | CNT | CNT | 20 | 100 | [64] |
PUU | 12.3 | −8 | CNT | CNT | 10 | 50 | [65] |
PUU | 53.31 | −10 | CNT | CNT | 76.8 | 50 | [66] |
PUU | 13.5 | −10 | PIDTBT | PEDOT:PSS /CNT | 1.39 | 100 | [15] |
Dielectric | Semiconductor | Electrode | Stretchability | Temperature (°C) | Temperature Sensitivity (% °C−1) | Ref. |
---|---|---|---|---|---|---|
PDMS | R-GO/PU | PEDOT:PSS/PUD | 50% | 30~80 | 1.34 | [93] |
SEBS | SWCNT | SWCNT | 60% | 15~55 | / | [94] |
SEBS | PDPPFT4/SEBS PII2T/SEBS | CNTs | 30% | 25~55 | −2.89 −4.23 | [95] |
PVDF-HFP/[EMIM]+[Otf]− | P3HT/SEBS | AuNPs-AgNWs/ PDMS | 50% | 24~45 | −7.73~−6.75 | [96] |
APTES-PDMS | P3HT-NFs/PDMS | PEDOT:PSS | 30% | 27~45 | −0.647 | [97] |
SEBS | DPPT-TT | Ag | 100% | 0~50 | 9.4 | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhou, M.; Sun, J.; Tong, Y.; Zhao, X.; Tang, Q.; Liu, Y. Recent Progress in Intrinsically Stretchable Sensors Based on Organic Field-Effect Transistors. Sensors 2025, 25, 925. https://doi.org/10.3390/s25030925
Zhang M, Zhou M, Sun J, Tong Y, Zhao X, Tang Q, Liu Y. Recent Progress in Intrinsically Stretchable Sensors Based on Organic Field-Effect Transistors. Sensors. 2025; 25(3):925. https://doi.org/10.3390/s25030925
Chicago/Turabian StyleZhang, Mingxin, Mengfan Zhou, Jing Sun, Yanhong Tong, Xiaoli Zhao, Qingxin Tang, and Yichun Liu. 2025. "Recent Progress in Intrinsically Stretchable Sensors Based on Organic Field-Effect Transistors" Sensors 25, no. 3: 925. https://doi.org/10.3390/s25030925
APA StyleZhang, M., Zhou, M., Sun, J., Tong, Y., Zhao, X., Tang, Q., & Liu, Y. (2025). Recent Progress in Intrinsically Stretchable Sensors Based on Organic Field-Effect Transistors. Sensors, 25(3), 925. https://doi.org/10.3390/s25030925