Implantable Passive Sensors for Biomedical Applications
<p>Comparison of active and passive implantable devices.</p> "> Figure 2
<p>Representative applications of passive implantable sensors. These can be interrogated using ultrasonic (using piezoelectric transducers), inductive (using inductors) or radiative coupling (using antennas). Background human image by @migstc1, from Freepik Company S.L. Malaga, Spain (<a href="http://www.freepik.com" target="_blank">www.freepik.com</a>, accessed on 22 October 2024).</p> "> Figure 3
<p>Examples of passive implantable pressure sensors based on the capacitance change caused by a deflection of a membrane. These types of sensors are referred to as MEMS (Micro Electro-Mechanical System)-type in the text. (<b>a</b>) The biodegradable and flexible arterial-pulse pressure sensor of [<a href="#B58-sensors-25-00133" class="html-bibr">58</a>]. Reproduced with permission from Springer Nature. Published in Nature Biomedical Engineering (<a href="https://www.nature.com/natbiomedeng/" target="_blank">https://www.nature.com/natbiomedeng/</a>, accessed on 23 December 2024). (<b>i</b>) Close-up illustration of the pressure-sensitive area with the two variable capacitors, before the sensor is wrapped around the artery. (<b>ii</b>) The fabricated device and close-ups of the double capacitor sensing region of the device and the pyramid-shaped microstructured sensing layer. (<b>b</b>) The biodegradable wireless LC pressure sensor of [<a href="#B60-sensors-25-00133" class="html-bibr">60</a>]. Notable is the use of wax and conductive composite wax, among other novelties. © 2020 Wiley-VCH GmbH. Reproduced with permission from John Wiley and Sons. (<b>c</b>) The biodegradable PDLA-based wireless LC pressure sensor of [<a href="#B59-sensors-25-00133" class="html-bibr">59</a>], formed by folding the device and adding an intermediate insulating spacer that defines the diaphragm. (<b>i</b>) Before assembly. (<b>ii</b>) after assembly and (<b>iii</b>) magnification of the capacitor and inductor of the sensor. Reprinted from Microelectronic Engineering, Vol 206, J. Park, J.-K. Kim, S. A. Park, D.-W. Lee, Biodegradable polymer material based smart stent: Wireless pressure sensor and 3D printed stent, Pages 1–5, Copyright (2019), with permission from Elsevier. (<b>d</b>) The SAW resonator-based pressure sensor of [<a href="#B61-sensors-25-00133" class="html-bibr">61</a>]. © The Authors 2013. Distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">https://creativecommons.org/licenses/by/4.0/</a>, accessed on 23 December 2024). No changes were made.</p> "> Figure 4
<p>Examples of passive implantable capacitive pressure sensors based on soft, deformable dielectric layers and structured elastomers and diaphragms. (<b>a</b>) The degradable LC pressure sensor of [<a href="#B55-sensors-25-00133" class="html-bibr">55</a>]. It consists of layers of a composite silk fibroin protein film (SFPF) as the sensor substrate and intermediate dielectric and a hydrogel silk fibroin elastomer as the dielectric layer of the capacitor. Mg is used as the conductor. © 2023 The Authors. Distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">https://creativecommons.org/licenses/by/4.0/</a>, accessed on 23 December 2024). No changes were made. (<b>b</b>) The permanent LC pressure sensor of [<a href="#B84-sensors-25-00133" class="html-bibr">84</a>] and the pyramidal-structured capacitor dielectric layer of the device. Reproduced with permission from Springer Nature. Published in Nature Communications (<a href="https://www.nature.com/ncomms/" target="_blank">https://www.nature.com/ncomms/</a>, accessed on 23 December 2024). (<b>c</b>) The bioresorbable pressure sensor of [<a href="#B85-sensors-25-00133" class="html-bibr">85</a>] and its cross-section. Mg is used once again as the conductor. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Reproduced with permission from John Wiley and Sons.</p> "> Figure 5
<p>Characteristic examples of flexible and stretchable passive, implantable strain sensors. (<b>a</b>) (<b>i</b>) Illustration of the architecture of the LC strain sensor for musculoskeletal applications proposed in [<a href="#B64-sensors-25-00133" class="html-bibr">64</a>], (<b>ii</b>) the fabricated device being twisted and (<b>iii</b>) the Au-TiO<sub>2</sub> nanowires used to form the capacitive sensor plates. © 2023 The Authors. Distributed under the terms and conditions of the Creative Commons Attribution-Non Commercial-No Derivs License (CC BY-NC-ND 4.0) (<a href="https://creativecommons.org/licenses/by-nc-nd/4.0/" target="_blank">https://creativecommons.org/licenses/by-nc-nd/4.0/</a>, accessed on 23 December 2024). No changes were made. (<b>b</b>) (<b>i</b>) The LC strain sensor of [<a href="#B92-sensors-25-00133" class="html-bibr">92</a>]. It consists of helical electrodes to implement a parallel plate capacitor with an air gap between plates that was also exploited to aid the suturing of the device in connective tissue. (<b>ii</b>) Measurement spectra of S<sub>11</sub> for applied tensile strains up to 40%. Large resonant frequency shifts were achieved with the proposed device. Reproduced with permission from Springer Nature. Published in Nature Electronics (<a href="https://www.nature.com/natelectron/" target="_blank">https://www.nature.com/natelectron/</a>, accessed on 23 December 2024). (<b>c</b>) A similar LC strain-sensing device by the same group targeting bladder volume monitoring [<a href="#B93-sensors-25-00133" class="html-bibr">93</a>]. Illustrations of the (<b>i</b>) use of the device and (<b>ii</b>) its operational principle, (<b>iii</b>) the external interrogating device, (<b>iv</b>) the implantable device and (<b>v</b>) the pressure-sensing parallel plate capacitor. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Reproduced with permission from John Wiley and Sons. (<b>d</b>) The metamaterial-based flexible permanent strain-sensing device developed for orthopedic applications with a nested split ring resonator topology [<a href="#B94-sensors-25-00133" class="html-bibr">94</a>]. (<b>i</b>) Illustration of the device architecture and geometry. (<b>ii</b>) The fabricated device. Inset: Close-up of the top and bottom fingers of the device. Reprinted from Sensors and Actuators A: Physical, Vol 255, A. Alipour, E. Unal, S. Gokyar, H. V. Demir, Development of a distance-independent wireless passive RF resonator sensor and a new telemetric measurement technique for wireless strain monitoring, Pages 87–93, Copyright (2017), with permission from Elsevier.</p> "> Figure 6
<p>Examples of passive implantable sensors that utilize different material properties for the detection of pH, temperature and glucose through changes in polymer or hydrogel properties. (<b>a</b>) The bioresorbable pH sensor for gastric leakage detection of [<a href="#B53-sensors-25-00133" class="html-bibr">53</a>]. The device consists of a serpentine spiral inductor, which is encased within a pH-responsive hydrogel. The circuit is completed with a wax-encapsulated capacitor. Copyright © 2024 The Authors. Distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license (<a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">https://creativecommons.org/licenses/by/4.0/</a>). No changes were made. (<b>b</b>) An acoustic metamaterial-based temperature sensor [<a href="#B70-sensors-25-00133" class="html-bibr">70</a>]. Temperature variations change the bulk modulus of PDMS and Si, producing a shift in the resonance frequency. (<b>i</b>) The fabrication process of the device. Steps include deep reactive ion etching (DRIE) of a 4-inch, 500 μm-thick Si wafer and coating of polydimethylsiloxane (PDMS) as a polymeric matrix. (<b>ii</b>) The fabricated device. (<b>iii</b>) Scanning electron microscopy (SEM) details of the fabricated silicon micropillars. The micropillars had a nominal height of 350 μm and nominal radius of 35 μm. (<b>iv</b>) The unit cell and its arrangement. © The Authors 2024. Distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license (<a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">https://creativecommons.org/licenses/by/4.0/</a>). No Changes were made. (<b>c</b>) The temperature sensor proposed in [<a href="#B71-sensors-25-00133" class="html-bibr">71</a>], consisting of an LC circuit with a temperature-sensitive PEG capacitor. The images show the in vitro biodegradation process of the device in PBS at 37 °C. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Reproduced with permission from John Wiley and Sons. (<b>d</b>) The passive hydrogel-based glucose sensor demonstrated in [<a href="#B66-sensors-25-00133" class="html-bibr">66</a>]. (<b>i</b>) Illustration of the structure of the device and the broad-side coupled, split-ring resonator interceded by the p(PBA-co-AAm) hydrogel interlayer. (<b>ii</b>) Illustration of the swelling induced to the interlayer in the presence of glucose binding with PBA. Swelling of the interlayer and changes in its thickness, changes the capacitance of the resonator. Upon glucose uptake, the hydrogel swells, increasing the capacitance of the device. Reprinted from Biosensors and Bioelectronics, Vol 151, M. Dautta, M. Alshetaiwi, J. Escobar, P. Tseng, Passive and wireless, implantable glucose sensing with phenylboronic acid hydrogel-interlayer RF resonators, Pages 112004, Copyright (2020), with permission from Elsevier.</p> "> Figure 7
<p>Examples of different approaches for measuring bio-potentials, where backscattering is exploited, as well as varactors or single transistors and ultrasonics for measuring voltage signals. (<b>a</b>) (<b>i</b>) Illustration of the architecture and the use of a flexible permanent passive device capable of measuring voltages through the use of a varactor. It mixes the radio frequency (RF) carrier signal with the neuropotentials to create third order products. The signal is then backscattered to the external interrogator. Filtering and demodulation allow extraction of the neuropotentials. (<b>ii</b>)_Schematic of the implantable device and of the external interrogator [<a href="#B72-sensors-25-00133" class="html-bibr">72</a>]. Reprinted with permission from S. Liu et al., “Fully Passive Flexible Wireless Neural Recorder for the Acquisition of Neuropotentials from a Rat Model,” ACS Sens., vol. 4, no. 12, pp. 3175–3185, Dec. 2019, doi: 10.1021/acssensors.9b01491. Copyright 2019 American Chemical Society. (<b>b</b>) Another example of a passive device capable of recording electrophysiological signals [<a href="#B124-sensors-25-00133" class="html-bibr">124</a>]. (<b>i</b>) Architecture and operational principle of the device. (<b>ii</b>) Schematic of the architecture of the external interrogator and (<b>iii</b>) the implanted device. (<b>iv</b>) Images of the fabricated flexible sensor. Reprinted from Biosensors and Bioelectronics, Vol 139, S. Liu, X. Meng, J. Zhang, J. Chae, A wireless fully-passive acquisition of biopotentials, Pages 111336, Copyright (2019), with permission from Elsevier. (<b>c</b>) The ultrasonic neural dust approach from [<a href="#B128-sensors-25-00133" class="html-bibr">128</a>], where following a pulsed excitation, the backscattered signal is recorded and analyzed to extract the neural signal. (<b>i</b>) Architecture of the system. (<b>ii</b>) Image of the implanted device. (<b>iii</b>) Side image of the device. Reprinted from Neuron, Vol 91, D. Seo, R. M. Neely, K. Shen, U. Singhal, E. Alon, J. M. Rabaey, J. M. Carmena, M. M. Maharbiz, Wireless Recording in the Peripheral Nervous System with Ultrasonic Neural Dust, Pages 529–539, Copyright (2016), with permission from Elsevier. (<b>d</b>) The approach proposed in [<a href="#B129-sensors-25-00133" class="html-bibr">129</a>] to record differential electrophysiological signals. Similarly to the neural dust approach, transistors are used. Copyright © 2023 The Authors. Distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license (<a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">https://creativecommons.org/licenses/by/4.0/</a>, accessed on 23 December 2024). No changes were made.</p> "> Figure 8
<p>(<b>a</b>) Measurement of the impedance from the external primary coil. (<b>b</b>) Measurement using a pulsed transient approach. Adapted from [<a href="#B207-sensors-25-00133" class="html-bibr">207</a>].</p> ">
Abstract
:1. Introduction
1.1. What Are Implantable Sensors?
- Implantable devices can be placed in close proximity to the source of a physiological event, organ, etc. of interest. In contrast, wearable sensors will be placed further away, possibly too far to monitor and detect an event of interest, or pinpoint the source of a signal.
- Implantable devices can be used unintrusively and unobstructively once implanted. In contrast, wearable devices have a certain form factor, can be visible when worn, and may hinder to some extent various activities and movements, while some can have socio/psychological impact to the users and can form the basis for discrimination or bullying.
- Depending on the device, the application and its implantation, an implantable device can be less sensitive to motion artifacts than a wearable device that is in constant contact and friction with the skin.
- A wearable device can be easily worn on the body if in the form of a gadget or accessory, or it can be attached to the body if in the form of a patch. However, an implantable device requires a small incision for subcutaneous implantation (which can also be performed with the use of an injector applicator), or needs a more complex surgical procedure for deep implantation.
- Both wearable and implantable devices must be safe and biocompatible. However, the safety and biocompatibility requirements are much more challenging to address with implantable devices [15,16]. As will be elaborated further in following sections, there are permanent implants for long-term sensing and there are also temporary implants for short-term sensing, depending on the application. Short-term implants can also be transient devices to avoid the need for a secondary surgical procedure for device removal [17,18,19]. These further diversify the requirements for implantable devices. Safety and biocompatibility are related to both the materials used, but also the voltage/current levels and light intensity, which can also be related to signal frequency, while the operational temperature of the device must also be considered. Biocompatibility is important not only for the device user, but also for the device itself. The foreign body response isolates the implanted device from the rest of the body, creating an unnatural environment for the sensors, thus leading to erroneous sensor results [20,21].
- A mechanism is required to interrogate and communicate with the implantable device. Wearable devices can be easily interrogated using wired (e.g., USB) or wireless (e.g., Bluetooth low-energy, BLE) approaches that are widely used. However, this is not possible with implantable devices, either since it is not possible to connect with a wire or because standard telecommunications protocols are too power-consuming for an implantable device. Several approaches have been implemented both commercially and in the academic literature to address this need, primarily based on inductive or ultrasonic telemetry, while galvanic conduction, radio frequency (RF) and optical approaches have also been proposed [27,28,29,30,31,32,33,34,35,36].
- Depending on the application (long-term vs. short-term, size and power requirements) implantable devices can be either battery-powered or batteryless. Communication and powering can be interconnected, since the carrier signal used for the wireless communication can also be exploited to power the device [27,28,29,30,31,32,33,34,35,36]. Several long-term devices, such as cardiac pacemakers that do not operate continuously, are battery powered. Other devices, such as cochlear implants, are batteryless and require an external device placed in close proximity and aligned with the implant, to power it.
1.2. Active vs. Passive Implantable Sensors and Their Definition
- Several sensor types and sensing techniques require the use of signals and biasing. For example, bioimpedance sensors, where an AC current is injected and the resulting voltage across electrodes is measured over several frequencies, and electrochemical sensors employing voltammetry or amperometry, where either voltage ramps or DC voltages are applied and the resulting current is measured. These sensing approaches cannot be exploited using fully passive approaches.
- The same circuitry can be used to interface to different sensors through multiplexing.
- The use of active electronics allows the implementation of advanced circuit topologies for the recording of very small signals close to the noise floor in the presence of large common-mode signals. This has a direct impact on the overall sensing system’s limit of detection.
- When battery-operated, an active implanted device may not need an external device, being capable of performing all of its operations on its own.
- Active electronics allow on-node processing of sensor data, either in the analog or digital domains, to decide which data to send to avoid transmission of large amounts of data, machine learning deployments, compressive sensing and other signal processing approaches.
- Devices with active components can provide signal digitization and modulation for signal transmission and they can support high data rates, as opposed to fully passive implementations that are analog real-time sensing systems.
- Health-related information is sensitive personal information. Wearable and implantable medical devices can be prone to malicious attacks and unwarranted access to this information [37,38]. Active devices allow the use of encoding and encryption of the transmitted information, e.g., by blockchain. The use of such approaches is even more critical for stimulating devices [39,40].
- Their arrangement and complexity are much simpler. Simple passive circuits with as few as two or three elements can be exploited, where one or more of its elements can act as a transducer.
- Their low component count allows for ultra-high miniaturization. As will be shown later, passive implantable sensors can be made to have areas of less than a few mm2 with practically negligible thicknesses since thin film technology can be exploited. In contrast, active implantable sensors with batteries require an active area of at least 1 cm2 and with considerable thickness due to the presence of the battery. This is true even considering the latest developments in batteries in the literature [41,42,43]. The small size is critical in medical applications, to minimize discomfort, incision size and reduce the impact of mechanical motion on the device. In addition, as will be discussed later in some detail, there are applications such as monitoring the temperature on the screws of an orthopedic implant or the blood pressure on a stent implant where the available area for sensor placement is significantly smaller than 1 cm2. In such cases, fully passive sensors hold a significant advantage over their active batteryless and battery-powered counterparts. As will be discussed, fully passive systems can be composed of only two components, an inductor and a capacitor. Active, batteryless systems will need these two components (if the same operational frequency and sensing element are considered), but also one or more active components for the required instrumentation, digitization, modulation, power management and communication, plus some additional passives. A system-on-chip (SoC) approach can be implemented aiming to have a single active component. Such a component could be designed and manufactured using an advanced deep submicron technology (e.g., 28 nm or even 3 nm finFET) and could add to the overall size just a few mm2. For example, the imaging and neuropotential recording chip manufactured in a 0.35 μm technology node of [44] occupied an area of 0.50 × 5.0 mm2, the amperometric-sensing chip manufactured in a 0.35 μm technology node of [45] occupied an area of 10 mm2, the pressure-sensing chip manufactured in a 180 nm technology node of [46] is 2.25 mm2, the impedance spectroscopy chip of [47] is 4 mm2, or the piezoresistive pressure sensor SoC of [48] manufactured in a 65 nm technology node which occupies an area of 0.196 mm2. Finally, additional area will be occupied due to the need of an interposer or printed circuit board to provide the interconnections between the sensor, active and passive components and the battery.
- Their low component count and simple arrangements allow for a great degree of flexibility in terms of the choice of materials, designs and functionalities.
- Minimizing the component count and simplifying the device architecture also minimizes potential points of failure as well as reliability, lifetime and manufacturing issues related with heterogeneous integration of devices based on different technologies and dimensions (i.e., sensor device, battery, integrated circuit, interposer or printed circuit board and battery).
- Their operational frequency for remote interrogation is not limited by a telecommunications protocol.
- Their short range (mm to cm) and requirement for a specialized external device safeguards sensitive health-related information.
- Their batteryless operation avoids the need for secondary surgical operation for battery replacement. This is especially important in applications where continuous monitoring of a certain marker is required for the duration of a patient’s lifetime. Such an example is the need for continuous glucose monitoring in diabetic patients or the case of orthopedic and cardiovascular implants. The required battery size in active devices will depend on the application (available space), size of the rest of the implant, the power consumption of the active electronics, whether continuous or discrete sensing is required, and the operational lifetime of the device. Even at low power consumption, no implantable battery could sustain the power needed by a continuously working sensor over a period of decades. For example, the average lifespan of a pacemaker battery is about 6–7 years. In another recent example [49] where the impact of the standby mode and internal memory power consumption was emphasized, it was estimated that a custom-optimized SoC for amperometric and temperature sensors would last 2.5 days when using a 5 µAh 1.7 × 2.2 mm2 thin-film battery. With regards to some of the aforementioned integrated circuits for implantable sensing applications, the capacitive pressure sensing chip of [46] consumes a power of 7.8 mW, the impedance spectroscopy chip of [47] consumes ~0.5 mW, while the potentiostat of [45] consumes 9.3 mW. Fully passive systems are by definition zero power systems which do not need a power source to function since they have no active components.
- The batteryless and active electronics-free operation simplifies their realization as transient and flexible or stretchable devices [50].
- The interrogating device can also be made small and simple.
- Their simple arrangement when compared to active devices can make them lower-cost devices, as a specialized custom integrated circuit is not required. Packaging requirements to protect the active electronics or sensors for assessing packaging hermeticity may not be as critical.
2. Passive Implantable Sensors
2.1. Pressure Sensors
2.2. Strain Sensors
2.3. pH Sensors
2.4. Temperature Sensors
2.5. Glucose Sensors
2.6. Less Common Sensors
2.6.1. Tissue Conductivity and Bioimpedance
2.6.2. Proteolytic Activity
2.6.3. Neural and Other Electrophysiological Signal Recording
2.6.4. Implant Micromotion Sensing and Localization
3. Flexibility, Stretchability, Transiency and Biocompatibility
3.1. Transiency
3.2. Flexibility and Stretchability
3.3. Biocompatibility
3.4. Packaging
4. Readout of RLC Resonators
5. Conclusions, Perspectives and Outlook
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Sazonov, E. Wearable Sensors: Fundamentals, Implementation and Applications, 2nd ed.; Academic Press: Cambridge, MA, USA, 2020; ISBN 978-0-12-819247-4. [Google Scholar]
- Yang, G.-Z. (Ed.) Implantable Sensors and Systems: From Theory to Practice; Springer: Berlin, Germany, 2018; ISBN 978-3-030-09909-1. [Google Scholar]
- Ghaffari, R.; Rogers, J.A.; Ray, T.R. Recent Progress, Challenges, and Opportunities for Wearable Biochemical Sensors for Sweat Analysis. Sens. Actuators B Chem. 2021, 332, 129447. [Google Scholar] [CrossRef]
- Liu, Y.; Pharr, M.; Salvatore, G.A. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano 2017, 11, 9614–9635. [Google Scholar] [CrossRef] [PubMed]
- Beck, H.; Boden, W.E.; Patibandla, S.; Kireyev, D.; Gupta, V.; Campagna, F.; Cain, M.E.; Marine, J.E. 50th Anniversary of the First Successful Permanent Pacemaker Implantation in the United States: Historical Review and Future Directions. Am. J. Cardiol. 2010, 106, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Macherey, O.; Carlyon, R.P. Cochlear Implants. Curr. Biol. 2014, 24, R878–R884. [Google Scholar] [CrossRef]
- Krauss, J.K.; Lipsman, N.; Aziz, T.; Boutet, A.; Brown, P.; Chang, J.W.; Davidson, B.; Grill, W.M.; Hariz, M.I.; Horn, A.; et al. Technology of Deep Brain Stimulation: Current Status and Future Directions. Nat. Rev. Neurol. 2021, 17, 75–87. [Google Scholar] [CrossRef]
- Char, S.; Jin, M.Y.; Francio, V.T.; Hussain, N.; Wang, E.J.; Morsi, M.; Orhurhu, V.; Prokop, L.J.; Fink, A.; D’Souza, R.S. Implantable Peripheral Nerve Stimulation for Peripheral Neuropathic Pain: A Systematic Review of Prospective Studies. Biomedicines 2022, 10, 2606. [Google Scholar] [CrossRef]
- Deshmukh, A.; Brown, L.; Barbe, M.F.; Braverman, A.S.; Tiwari, E.; Hobson, L.; Shunmugam, S.; Armitage, O.; Hewage, E.; Ruggieri, M.R.; et al. Fully Implantable Neural Recording and Stimulation Interfaces: Peripheral Nerve Interface Applications. J. Neurosci. Methods 2020, 333, 108562. [Google Scholar] [CrossRef] [PubMed]
- Austelle, C.W.; O’Leary, G.H.; Thompson, S.; Gruber, E.; Kahn, A.; Manett, A.J.; Short, B.; Badran, B.W. A Comprehensive Review of Vagus Nerve Stimulation for Depression. Neuromodul. Technol. Neural Interface 2022, 25, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Carron, R.; Roncon, P.; Lagarde, S.; Dibué, M.; Zanello, M.; Bartolomei, F. Latest Views on the Mechanisms of Action of Surgically Implanted Cervical Vagal Nerve Stimulation in Epilepsy. Neuromodul. Technol. Neural Interface 2023, 26, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Edward, R.; Priefer, R. A Comparison of Continuous Glucose Monitors (CGMs) in Diabetes Management: A Systematic Literature Review. Prim. Care Diabetes 2023, 17, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Jafri, R.Z.; Balliro, C.A.; El-Khatib, F.; Maheno, M.M.; Hillard, M.A.; O’Donovan, A.; Selagamsetty, R.; Zheng, H.; Damiano, E.R.; Russell, S.J. A Three-Way Accuracy Comparison of the Dexcom G5, Abbott Freestyle Libre Pro, and Senseonics Eversense Continuous Glucose Monitoring Devices in a Home-Use Study of Subjects with Type 1 Diabetes. Diabetes Technol. Ther. 2020, 22, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Bollella, P.; Sharma, S.; Cass, A.E.G.; Antiochia, R. Microneedle-Based Biosensor for Minimally-Invasive Lactate Detection. Biosens. Bioelectron. 2019, 123, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Frost, M.; Meyerhoff, M.E. In Vivo Chemical Sensors: Tackling Biocompatibility. Anal. Chem. 2006, 78, 7370–7377. [Google Scholar] [CrossRef]
- Soto, R.J.; Hall, J.R.; Brown, M.D.; Taylor, J.B.; Schoenfisch, M.H. In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Anal. Chem. 2017, 89, 276–299. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Bathaei, M.J.; Istif, E.; Beker, L. A Review of Bioresorbable Implantable Medical Devices: Materials, Fabrication, and Implementation. Adv. Healthc. Mater. 2020, 9, 2000790. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-K.; Murphy, R.K.J.; Hwang, S.-W.; Lee, S.M.; Harburg, D.V.; Krueger, N.A.; Shin, J.; Gamble, P.; Cheng, H.; Yu, S.; et al. Bioresorbable Silicon Electronic Sensors for the Brain. Nature 2016, 530, 71–76. [Google Scholar] [CrossRef]
- Hwang, S.-W.; Tao, H.; Kim, D.-H.; Cheng, H.; Song, J.-K.; Rill, E.; Brenckle, M.A.; Panilaitis, B.; Won, S.M.; Kim, Y.-S.; et al. A Physically Transient Form of Silicon Electronics. Science 2012, 337, 1640–1644. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Papadimitrakopoulos, F.; Burgess, D.J. Polymeric “Smart” Coatings to Prevent Foreign Body Response to Implantable Biosensors. J. Control. Release 2013, 169, 341–347. [Google Scholar] [CrossRef]
- Hetrick, E.M.; Prichard, H.L.; Klitzman, B.; Schoenfisch, M.H. Reduced Foreign Body Response at Nitric Oxide-Releasing Subcutaneous Implants. Biomaterials 2007, 28, 4571–4580. [Google Scholar] [CrossRef]
- Schuettler, M.; Stieglitz, T. 4—Microassembly and Micropackaging of Implantable Systems. In Implantable Sensor Systems for Medical Applications; Inmann, A., Hodgins, D., Eds.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2013; pp. 108–149. ISBN 978-1-84569-987-1. [Google Scholar]
- Li, C.; Cauwe, M.; Mader, L.; Schaubroeck, D.; Op de Beeck, M. Accelerated Hermeticity Testing of Biocompatible Moisture Barriers Used for the Encapsulation of Implantable Medical Devices. Coatings 2020, 10, 19. [Google Scholar] [CrossRef]
- Rudmann, L.; Langenmair, M.; Hahn, B.; Ordonez, J.S.; Stieglitz, T. Novel Desiccant-Based Very Low Humidity Indicator for Condition Monitoring in Miniaturized Hermetic Packages of Active Implants. Sens. Actuators B Chem. 2020, 322, 128555. [Google Scholar] [CrossRef]
- You, Z.; Wei, L.; Zhang, M.; Yang, F.; Wang, X. Hermetic and Bioresorbable Packaging Materials for MEMS Implantable Pressure Sensors: A Review. IEEE Sens. J. 2022, 22, 23633–23648. [Google Scholar] [CrossRef]
- Jiang, G.; Zhou, D.D. Technology Advances and Challenges in Hermetic Packaging for Implantable Medical Devices. In Implantable Neural Prostheses 2: Techniques and Engineering Approaches; Zhou, D., Greenbaum, E., Eds.; Springer: New York, NY, USA, 2010; pp. 27–61. ISBN 978-0-387-98120-8. [Google Scholar]
- Turner, B.L.; Senevirathne, S.; Kilgour, K.; McArt, D.; Biggs, M.; Menegatti, S.; Daniele, M.A. Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications. Adv. Healthc. Mater. 2021, 10, 2100986. [Google Scholar] [CrossRef]
- Carrara, S. Body Dust: Well Beyond Wearable and Implantable Sensors. IEEE Sens. J. 2021, 21, 12398–12406. [Google Scholar] [CrossRef]
- Lee, B.; Ghovanloo, M. An Overview of Data Telemetry in Inductively Powered Implantable Biomedical Devices. IEEE Commun. Mag. 2019, 57, 74–80. [Google Scholar] [CrossRef]
- Tudela-Pi, M.; Becerra-Fajardo, L.; García-Moreno, A.; Minguillon, J.; Ivorra, A. Power Transfer by Volume Conduction: In Vitro Validated Analytical Models Predict DC Powers Above 1 mW in Injectable Implants. IEEE Access 2020, 8, 37808–37820. [Google Scholar] [CrossRef]
- Minguillon, J.; Tudela-Pi, M.; Becerra-Fajardo, L.; Perera-Bel, E.; del-Ama, A.J.; Gil-Agudo, Á.; Megía-García, Á.; García-Moreno, A.; Ivorra, A. Powering Electronic Implants by High Frequency Volume Conduction: In Human Validation. IEEE Trans. Biomed. Eng. 2023, 70, 659–670. [Google Scholar] [CrossRef]
- Shi, C.; He, Y.; Gourdouparis, M.; Dolmans, G.; Liu, Y.-H. A Spatially Diverse 2TX-3RX Galvanic-Coupled Transdural Telemetry for Tether-Less Distributed Brain–Computer Interfaces. IEEE Trans. Biomed. Circuits Syst. 2024, 18, 1014–1023. [Google Scholar] [CrossRef]
- Miozzi, C.; Saggio, G.; Gruppioni, E.; Marrocco, G. Near-Field Circular Array for the Transcutaneous Telemetry of UHF RFID-Based Implantable Medical Devices. IEEE J. Electromagn. RF Microw. Med. Biol. 2022, 6, 219–227. [Google Scholar] [CrossRef]
- Benbuk, A.; Moniz-Garcia, D.; Gulick, D.; Quinones-Hinojosa, A.; Christen, J.B. A Wireless Battery-Free Implant with Optical Telemetry for In Vivo Cortical Stimulation. IEEE Sens. Lett. 2024, 8, 1–4. [Google Scholar] [CrossRef]
- Valanarasi, A.; Dhanasekaran, R. Optimum Band ε Shaped Miniature Implantable Antennas for Telemetry Applications. IEEE Trans. Antennas Propag. 2021, 69, 55–63. [Google Scholar] [CrossRef]
- Xu, Z.; Truong, N.D.; Nikpour, A.; Kavehei, O. A Miniaturized and Low-Energy Subcutaneous Optical Telemetry Module for Neurotechnology. J. Neural Eng. 2023, 20, 036017. [Google Scholar] [CrossRef]
- Kurt Peker, Y.; Bello, G.; Perez, A.J. On the Security of Bluetooth Low Energy in Two Consumer Wearable Heart Rate Monitors/Sensing Devices. Sensors 2022, 22, 988. [Google Scholar] [CrossRef] [PubMed]
- Barua, A.; Al Alamin, M.A.; Hossain, M.d.S.; Hossain, E. Security and Privacy Threats for Bluetooth Low Energy in IoT and Wearable Devices: A Comprehensive Survey. IEEE Open J. Commun. Soc. 2022, 3, 251–281. [Google Scholar] [CrossRef]
- Younis, M.; Lalouani, W.; Lasla, N.; Emokpae, L.; Abdallah, M. Blockchain-Enabled and Data-Driven Smart Healthcare Solution for Secure and Privacy-Preserving Data Access. IEEE Syst. J. 2022, 16, 3746–3757. [Google Scholar] [CrossRef]
- Xiao, L.; Han, D.; Meng, X.; Liang, W.; Li, K.-C. A Secure Framework for Data Sharing in Private Blockchain-Based WBANs. IEEE Access 2020, 8, 153956–153968. [Google Scholar] [CrossRef]
- Zhai, L.; Duan, J.; Lin, T.; Shao, H. Recent Advances in Implantable Batteries: Development and Challenge. J. Alloys Compd. 2024, 979, 173551. [Google Scholar] [CrossRef]
- Garland, N.T.; Kaveti, R.; Bandodkar, A.J. Biofluid-Activated Biofuel Cells, Batteries, and Supercapacitors: A Comprehensive Review. Adv. Mater. 2023, 35, 2303197. [Google Scholar] [CrossRef] [PubMed]
- Arrese-Igor, M.; Vong, M.; Orue, A.; Kassanos, P.; George, C.; Aguesse, F.; Mysyk, R.; Radacsi, N.; López-Aranguren, P. Solid-State Li-Ion Batteries with Carbon Microfiber Electrodes via 3D Electrospinning. Appl. Phys. Lett. 2023, 122, 173903. [Google Scholar] [CrossRef]
- Sugie, K.; Sasagawa, K.; Okada, R.; Ohta, Y.; Takehara, H.; Haruta, M.; Tashiro, H.; Ohta, J. Implantable Multimodal Sensing Device for Simultaneous Imaging and Electrophysiological Recording of Mouse Brain Activity. Sens. Mater. 2023, 35, 3173–3188. [Google Scholar] [CrossRef]
- Ghoreishizadeh, S.S.; Taurino, I.; De Micheli, G.; Carrara, S.; Georgiou, P. A Differential Electrochemical Readout ASIC With Heterogeneous Integration of Bio-Nano Sensors for Amperometric Sensing. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 1148–1159. [Google Scholar] [CrossRef]
- Zhang, C.; Gallichan, R.; Budgett, D.M.; McCormick, D. A Capacitive Pressure Sensor Interface IC with Wireless Power and Data Transfer. Micromachines 2020, 11, 897. [Google Scholar] [CrossRef] [PubMed]
- Ollmar, S.; Fernandez Schrunder, A.; Birgersson, U.; Kristoffersson, T.; Rusu, A.; Thorsson, E.; Hedenqvist, P.; Manell, E.; Rydén, A.; Jensen-Waern, M.; et al. A Battery-Less Implantable Glucose Sensor Based on Electrical Impedance Spectroscopy. Sci. Rep. 2023, 13, 18122. [Google Scholar] [CrossRef]
- Lan, Z.; Shi, J.; Li, Y.; Hao, J.; Guo, Y.; Wang, Z.; Jiang, H.; Jia, W. A Resistive Sensor Interface IC with Inductively Coupled Wireless Energy Harvesting and Data Telemetry for Implantable Pressure Sensing. In Proceedings of the 2023 IEEE 66th International Midwest Symposium on Circuits and Systems (MWSCAS), Tempe, AZ, USA, 6–9 August 2023; pp. 753–757. [Google Scholar]
- Lee, K.; Sim, J.-Y. An Implantable Bio-Signal Sensor SoC with Low-Standby-Power 8K-Bit SRAM for Continuous Long-Term Monitoring. Electronics 2023, 12, 2317. [Google Scholar] [CrossRef]
- Kassanos, P.; Anastasova, S.; Chen, C.M.; Yang, G.-Z. Sensor Embodiment and Flexible Electronics. In Implantable Sensors and Systems: From Theory to Practice; Yang, G.-Z., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 197–279. ISBN 978-3-319-69748-2. [Google Scholar]
- Ararat, K.; Altan, O.; Serbest, S.; Baser, O.; Dumanli, S. A Biodegradable Implant Antenna Detecting Post-Surgical Infection. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–4. [Google Scholar]
- Rigelsford, J.M.; Al-Azzawi, B.F.; Davenport, C.J.; Novodvorsky, P. A Passive Biodegradable Implant for Subcutaneous Soft-Tissue Trauma Monitoring. IEEE J. Biomed. Health Inform. 2015, 19, 901–909. [Google Scholar] [CrossRef]
- Li, S.; Lu, D.; Li, S.; Liu, J.; Xu, Y.; Yan, Y.; Rodriguez, J.Z.; Bai, H.; Avila, R.; Kang, S.; et al. Bioresorbable, Wireless, Passive Sensors for Continuous pH Measurements and Early Detection of Gastric Leakage. Sci. Adv. 2024, 10, eadj0268. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Woodhouse, I.; Selvamani, V.; Ma, J.L.; Tang, R.; Goergen, C.J.; Soleimani, T.; Rahimi, R. A Wireless Implantable Passive Intra-Abdominal Pressure Sensing Scheme via Ultrasonic Imaging of a Microfluidic Device. IEEE Trans. Biomed. Eng. 2021, 68, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, A.; Wang, Y.; Qu, K.; Wen, H.; Zhao, J.; Shi, Y.; Wang, H.; Ye, M.; Guo, W. Implantable and Degradable Wireless Passive Protein-Based Tactile Sensor for Intracranial Dynamic Pressure Detection. Electronics 2023, 12, 2466. [Google Scholar] [CrossRef]
- Luo, M.; Martinez, A.W.; Song, C.; Herrault, F.; Allen, M.G. A Microfabricated Wireless RF Pressure Sensor Made Completely of Biodegradable Materials. J. Microelectromech. Syst. 2014, 23, 4–13. [Google Scholar] [CrossRef]
- Boutry, C.M.; Chandrahalim, H.; Streit, P.; Schinhammer, M.; Hänzi, A.C.; Hierold, C. Characterization of Miniaturized RLC Resonators Made of Biodegradable Materials for Wireless Implant Applications. Sens. Actuators Phys. 2013, 189, 344–355. [Google Scholar] [CrossRef]
- Boutry, C.M.; Beker, L.; Kaizawa, Y.; Vassos, C.; Tran, H.; Hinckley, A.C.; Pfattner, R.; Niu, S.; Li, J.; Claverie, J.; et al. Biodegradable and Flexible Arterial-Pulse Sensor for the Wireless Monitoring of Blood Flow. Nat. Biomed. Eng. 2019, 3, 47–57. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.-K.; Park, S.A.; Lee, D.-W. Biodegradable Polymer Material Based Smart Stent: Wireless Pressure Sensor and 3D Printed Stent. Microelectron. Eng. 2019, 206, 1–5. [Google Scholar] [CrossRef]
- Lu, D.; Yan, Y.; Deng, Y.; Yang, Q.; Zhao, J.; Seo, M.-H.; Bai, W.; MacEwan, M.R.; Huang, Y.; Ray, W.Z.; et al. Bioresorbable Wireless Sensors as Temporary Implants for In Vivo Measurements of Pressure. Adv. Funct. Mater. 2020, 30, 2003754. [Google Scholar] [CrossRef]
- Murphy, O.H.; Bahmanyar, M.R.; Borghi, A.; McLeod, C.N.; Navaratnarajah, M.; Yacoub, M.H.; Toumazou, C. Continuous in Vivo Blood Pressure Measurements Using a Fully Implantable Wireless SAW Sensor. Biomed. Microdevices 2013, 15, 737–749. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, G.; Xue, L.; Dong, G.; Su, W.; Cui, M.J.; Wang, Z.G.; Liu, M.; Zhou, Z.; Zhang, X. Ultrasoft and Biocompatible Magnetic-Hydrogel-Based Strain Sensors for Wireless Passive Biomechanical Monitoring. ACS Nano 2022, 16, 21555–21564. [Google Scholar] [CrossRef] [PubMed]
- Gattiker, F.; Umbrecht, F.; Neuenschwander, J.; Sennhauser, U.; Hierold, C. Novel Ultrasound Read-out for a Wireless Implantable Passive Strain Sensor (WIPSS). Sens. Actuators Phys. 2008, 145–146, 291–298. [Google Scholar] [CrossRef]
- Zhang, Q.; Bossuyt, F.M.; Adam, N.C.; Zambrano, B.L.; Stauffer, F.; Rennhard, P.; Gubler, R.; Küng, R.; Abramovic, S.; Useini, V.; et al. A Stretchable Strain Sensor System for Wireless Measurement of Musculoskeletal Soft Tissue Strains. Adv. Mater. Technol. 2023, 8, 2202041. [Google Scholar] [CrossRef]
- Melik, R.; Unal, E.; Perkgoz, N.K.; Santoni, B.; Kamstock, D.; Puttlitz, C.; Demir, H.V. Nested Metamaterials for Wireless Strain Sensing. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 450–458. [Google Scholar] [CrossRef]
- Dautta, M.; Alshetaiwi, M.; Escobar, J.; Tseng, P. Passive and Wireless, Implantable Glucose Sensing with Phenylboronic Acid Hydrogel-Interlayer RF Resonators. Biosens. Bioelectron. 2020, 151, 112004. [Google Scholar] [CrossRef] [PubMed]
- Malik, J.; Kim, S.; Seo, J.M.; Cho, Y.M.; Bien, F. Minimally Invasive Implant Type Electromagnetic Biosensor for Continuous Glucose Monitoring System: In Vivo Evaluation. IEEE Trans. Biomed. Eng. 2023, 70, 1000–1011. [Google Scholar] [CrossRef]
- Malik, S.; Castellví, Q.; Becerra-Fajardo, L.; Tudela-Pi, M.; García-Moreno, A.; Baghini, M.S.; Ivorra, A. Injectable Sensors Based on Passive Rectification of Volume-Conducted Currents. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Kalimuthu, P.; Gonzalez-Martinez, J.F.; Ruzgas, T.; Sotres, J. Highly Stable Passive Wireless Sensor for Protease Activity Based on Fatty Acid-Coupled Gelatin Composite Films. Anal. Chem. 2020, 92, 13110–13117. [Google Scholar] [CrossRef]
- Maini, L.; Genovés, V.; Furrer, R.; Cesarovic, N.; Hierold, C.; Roman, C. An in Vitro Demonstration of a Passive, Acoustic Metamaterial as a Temperature Sensor with mK Resolution for Implantable Applications. Microsyst. Nanoeng. 2024, 10, 8. [Google Scholar] [CrossRef]
- Lu, D.; Yan, Y.; Avila, R.; Kandela, I.; Stepien, I.; Seo, M.-H.; Bai, W.; Yang, Q.; Li, C.; Haney, C.R.; et al. Bioresorbable, Wireless, Passive Sensors as Temporary Implants for Monitoring Regional Body Temperature. Adv. Healthc. Mater. 2020, 9, 2000942. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Moncion, C.; Zhang, J.; Balachandar, L.; Kwaku, D.; Riera, J.J.; Volakis, J.L.; Chae, J. Fully Passive Flexible Wireless Neural Recorder for the Acquisition of Neuropotentials from a Rat Model. ACS Sens. 2019, 4, 3175–3185. [Google Scholar] [CrossRef]
- Akar, O.; Akin, T.; Najafi, K. A Wireless Batch Sealed Absolute Capacitive Pressure Sensor. Sens. Actuators Phys. 2001, 95, 29–38. [Google Scholar] [CrossRef]
- Smit, J.M.; Whitaker, I.S.; Liss, A.G.; Audolfsson, T.; Kildal, M.; Acosta, R. Post Operative Monitoring of Microvascular Breast Reconstructions Using the Implantable Cook–Swartz Doppler System: A Study of 145 Probes & Technical Discussion. J. Plast. Reconstr. Aesthet. Surg. 2009, 62, 1286–1292. [Google Scholar] [CrossRef]
- Chen, P.-J.; Rodger, D.C.; Saati, S.; Humayun, M.S.; Tai, Y.-C. Microfabricated Implantable Parylene-Based Wireless Passive Intraocular Pressure Sensors. J. Microelectromech. Syst. 2008, 17, 1342–1351. [Google Scholar] [CrossRef]
- Chen, P.-J.; Saati, S.; Varma, R.; Humayun, M.S.; Tai, Y.-C. Wireless Intraocular Pressure Sensing Using Microfabricated Minimally Invasive Flexible-Coiled LC Sensor Implant. J. Microelectromech. Syst. 2010, 19, 721–734. [Google Scholar] [CrossRef]
- Lin, J.C.-H.; Zhao, Y.; Chen, P.-J.; Humayun, M.; Tai, Y.-C. Feeling the Pressure: A Parylene-Based Intraocular Pressure Sensor. IEEE Nanotechnol. Mag. 2012, 6, 8–16. [Google Scholar] [CrossRef]
- Abraham, W.T.; Adamson, P.B.; Bourge, R.C.; Aaron, M.F.; Costanzo, M.R.; Stevenson, L.W.; Strickland, W.; Neelagaru, S.; Raval, N.; Krueger, S.; et al. Wireless Pulmonary Artery Haemodynamic Monitoring in Chronic Heart Failure: A Randomised Controlled Trial. Lancet 2011, 377, 658–666. [Google Scholar] [CrossRef]
- About the CardioMEMS HF System|Abbott. Available online: https://www.cardiovascular.abbott/us/en/hcp/products/heart-failure/pulmonary-pressure-monitors/cardiomems/about.html (accessed on 21 September 2024).
- Ayyadurai, P.; Alkhawam, H.; Saad, M.; Al-Sadawi, M.A.; Shah, N.N.; Kosmas, C.E.; Vittorio, T.J. An Update on the CardioMEMS Pulmonary Artery Pressure Sensor. Ther. Adv. Cardiovasc. Dis. 2019, 13, 1753944719826826. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; McLeod, C.; Bahmanyar, M.R. Wireless Interrogation of Implantable SAW Sensors. IEEE Trans. Biomed. Eng. 2020, 67, 1409–1417. [Google Scholar] [CrossRef]
- Precision Cardiovascular Ltd. Available online: https://www.precision-cv.com (accessed on 10 October 2024).
- Reco Medical Ltd. Available online: https://www.recomedical.co.uk/ (accessed on 21 September 2024).
- Chen, L.Y.; Tee, B.C.-K.; Chortos, A.L.; Schwartz, G.; Tse, V.; Lipomi, D.J.; Wong, H.-S.P.; McConnell, M.V.; Bao, Z. Continuous Wireless Pressure Monitoring and Mapping with Ultra-Small Passive Sensors for Health Monitoring and Critical Care. Nat. Commun. 2014, 5, 5028. [Google Scholar] [CrossRef]
- Palmroth, A.; Salpavaara, T.; Lekkala, J.; Kellomäki, M. Fabrication and Characterization of a Wireless Bioresorbable Pressure Sensor. Adv. Mater. Technol. 2019, 4, 1900428. [Google Scholar] [CrossRef]
- Lee, J.O.; Park, H.; Du, J.; Balakrishna, A.; Chen, O.; Sretavan, D.; Choo, H. A Microscale Optical Implant for Continuous in Vivo Monitoring of Intraocular Pressure. Microsyst. Nanoeng. 2017, 3, 17057. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Lee, J.O.; Du, J.; Sretavan, D.; Choo, H. Real-Time In Vivo Intraocular Pressure Monitoring Using an Optomechanical Implant and an Artificial Neural Network. IEEE Sens. J. 2017, 17, 7394–7404. [Google Scholar] [CrossRef] [PubMed]
- Phan, A.; Truong, P.; Trumpp, J.; Talke, F.E. Design of an Optical Pressure Measurement System for Intraocular Pressure Monitoring. IEEE Sens. J. 2018, 18, 61–68. [Google Scholar] [CrossRef]
- Kassanos, P.; Rosa, B.G.; Keshavarz, M.; Yang, G.-Z. Chapter 2—From Wearables to Implantables—Clinical Drive and Technical Challenges. In Wearable Sensors, 2nd ed.; Sazonov, E., Ed.; Academic Press: Oxford, UK, 2021; pp. 29–84. ISBN 978-0-12-819246-7. [Google Scholar]
- Kassanos, P.; Anastasova, S.; Yang, G.-Z. Electrical and Physical Sensors for Biomedical Implants. In Implantable Sensors and Systems: From Theory to Practice; Yang, G.-Z., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 99–195. ISBN 978-3-319-69748-2. [Google Scholar]
- Burton, A.R.; Sun, P.; Lynch, J.P. Bio-Compatible Wireless Inductive Thin-Film Strain Sensor for Monitoring the Growth and Strain Response of Bone in Osseointegrated Prostheses. Struct. Health Monit. 2021, 20, 749–767. [Google Scholar] [CrossRef]
- Lee, J.; Ihle, S.J.; Pellegrino, G.S.; Kim, H.; Yea, J.; Jeon, C.-Y.; Son, H.-C.; Jin, C.; Eberli, D.; Schmid, F.; et al. Stretchable and Suturable Fibre Sensors for Wireless Monitoring of Connective Tissue Strain. Nat. Electron. 2021, 4, 291–301. [Google Scholar] [CrossRef]
- Stauffer, F.; Zhang, Q.; Tybrandt, K.; Llerena Zambrano, B.; Hengsteler, J.; Stoll, A.; Trüeb, C.; Hagander, M.; Sujata, J.-M.; Hoffmann, F.; et al. Soft Electronic Strain Sensor with Chipless Wireless Readout: Toward Real-Time Monitoring of Bladder Volume. Adv. Mater. Technol. 2018, 3, 1800031. [Google Scholar] [CrossRef]
- Alipour, A.; Unal, E.; Gokyar, S.; Demir, H.V. Development of a Distance-Independent Wireless Passive RF Resonator Sensor and a New Telemetric Measurement Technique for Wireless Strain Monitoring. Sens. Actuators Phys. 2017, 255, 87–93. [Google Scholar] [CrossRef]
- Melik, R.; Unal, E.; Kosku Perkgoz, N.; Puttlitz, C.; Demir, H.V. Flexible Metamaterials for Wireless Strain Sensing. Appl. Phys. Lett. 2009, 95, 181105. [Google Scholar] [CrossRef]
- Melik, R.; Unal, E.; Perkgoz, N.K.; Puttlitz, C.; Demir, H.V. Metamaterial-Based Wireless Strain Sensors. Appl. Phys. Lett. 2009, 95, 011106. [Google Scholar] [CrossRef]
- Melik, R.; Unal, E.; Perkgoz, N.K.; Puttlitz, C.; Demir, H.V. Metamaterial Based Telemetric Strain Sensing in Different Materials. Opt. Express 2010, 18, 5000–5007. [Google Scholar] [CrossRef] [PubMed]
- Melik, R.; Perkgoz, N.K.; Unal, E.; Puttlitz, C.; Demir, H.V. Bio-Implantable Passive on-Chip RF-MEMS Strain Sensing Resonators for Orthopaedic Applications. J. Micromech. Microeng. 2008, 18, 115017. [Google Scholar] [CrossRef]
- Melik, R.; Unal, E.; Kosku Perkgoz, N.; Puttlitz, C.; Demir, H.V. Circular High-Q Resonating Isotropic Strain Sensors with Large Shift of Resonance Frequency under Stress. Sensors 2009, 9, 9444–9451. [Google Scholar] [CrossRef] [PubMed]
- Wolynski, J.G.; Sutherland, C.J.; Demir, H.V.; Unal, E.; Alipour, A.; Puttlitz, C.M.; McGilvray, K.C. Utilizing Multiple BioMEMS Sensors to Monitor Orthopaedic Strain and Predict Bone Fracture Healing. J. Orthop. Res. 2019, 37, 1873–1880. [Google Scholar] [CrossRef]
- McGilvray, K.C.; Unal, E.; Troyer, K.L.; Santoni, B.G.; Palmer, R.H.; Easley, J.T.; Demir, H.V.; Puttlitz, C.M. Implantable Microelectromechanical Sensors for Diagnostic Monitoring and Post-Surgical Prediction of Bone Fracture Healing. J. Orthop. Res. 2015, 33, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Ozbey, B.; Unal, E.; Ertugrul, H.; Kurc, O.; Puttlitz, C.M.; Erturk, V.B.; Altintas, A.; Demir, H.V. Wireless Displacement Sensing Enabled by Metamaterial Probes for Remote Structural Health Monitoring. Sensors 2014, 14, 1691–1704. [Google Scholar] [CrossRef] [PubMed]
- Oess, N.P.; Weisse, B.; Nelson, B.J. Magnetoelastic Strain Sensor for Optimized Assessment of Bone Fracture Fixation. IEEE Sens. J. 2009, 9, 961–968. [Google Scholar] [CrossRef]
- Ren, L.; Yu, K.; Tan, Y. Wireless and Passive Magnetoelastic-Based Sensor for Force Monitoring of Artificial Bone. IEEE Sens. J. 2019, 19, 2096–2104. [Google Scholar] [CrossRef]
- Ren, L.; Yu, K.; Tan, Y. Applications and Advances of Magnetoelastic Sensors in Biomedical Engineering: A Review. Materials 2019, 12, 1135. [Google Scholar] [CrossRef] [PubMed]
- Hristoforou, E. Magnetostrictive Delay Lines: Engineering Theory and Sensing Applications. Meas. Sci. Technol. 2003, 14, R15. [Google Scholar] [CrossRef]
- Mouzakis, D.E.; Dimogianopoulos, D.; Giannikas, D. Contact-Free Magnetoelastic Smart Microsensors with Stochastic Noise Filtering for Diagnosing Orthopedic Implant Failures. IEEE Trans. Ind. Electron. 2009, 56, 1092–1100. [Google Scholar] [CrossRef]
- Holmes, H.R.; DeRouin, A.; Wright, S.; Riedemann, T.M.; Lograsso, T.A.; Rajachar, R.M.; Ong, K.G. Biodegradation and Biocompatibility of Mechanically Active Magnetoelastic Materials. Smart Mater. Struct. 2014, 23, 095036. [Google Scholar] [CrossRef]
- Kassanos, P.; Berthelot, M.; Kim, J.A.; Rosa, B.M.G.; Seichepine, F.; Anastasova, S.; Sodergren, M.H.; Leff, D.R.; Lo, B.; Darzi, A.; et al. Smart Sensing for Surgery: From Tethered Devices to Wearables and Implantables. IEEE Syst. Man Cybern. Mag. 2020, 6, 39–48. [Google Scholar] [CrossRef]
- Gil, B.; Ip, H.; Kassanos, P.; Lo, B.; Yang, G.-Z.; Anastasova, S. Smart Implanted Access Port Catheter for Therapy Intervention with pH and Lactate Biosensors. Mater. Today Bio 2022, 15, 100298. [Google Scholar] [CrossRef] [PubMed]
- Kassanos, P.; Seichepine, F.; Wales, D.; Yang, G. Towards a Flexible/Stretchable Multiparametric Sensing Device for Surgical and Wearable Applications. In Proceedings of the 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, 17–19 October 2019; pp. 1–4. [Google Scholar]
- Lei, M.; Baldi, A.; Nuxoll, E.; Siegel, R.A.; Ziaie, B. Hydrogel-Based Microsensors for Wireless Chemical Monitoring. Biomed. Microdevices 2009, 11, 529–538. [Google Scholar] [CrossRef]
- Cai, Q.Y.; Grimes, C.A. A Remote Query Magnetoelastic pH Sensor. Sens. Actuators B Chem. 2000, 71, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.Y.; Grimes, C.A. A Salt-Independent pH Sensor. Sens. Actuators B Chem. 2001, 79, 144–149. [Google Scholar] [CrossRef]
- Ruan, C.; Zeng, K.; Grimes, C.A. A Mass-Sensitive pH Sensor Based on a Stimuli-Responsive Polymer. Anal. Chim. Acta 2003, 497, 123–131. [Google Scholar] [CrossRef]
- Anastasova, S.; Kassanos, P.; Yang, G.-Z. Electrochemical Sensor Designs for Biomedical Implants. In Implantable Sensors and Systems: From Theory to Practice; Yang, G.-Z., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 19–98. ISBN 978-3-319-69748-2. [Google Scholar]
- Horton, B.E.; Schweitzer, S.; DeRouin, A.J.; Ong, K.G. A Varactor-Based, Inductively Coupled Wireless pH Sensor. IEEE Sens. J. 2011, 11, 1061–1066. [Google Scholar] [CrossRef]
- Bhadra, S.; Tan, D.S.Y.; Thomson, D.J.; Freund, M.S.; Bridges, G.E. A Wireless Passive Sensor for Temperature Compensated Remote pH Monitoring. IEEE Sens. J. 2013, 13, 2428–2436. [Google Scholar] [CrossRef]
- Karipott, S.S.; Veetil, P.M.; Nelson, B.D.; Guldberg, R.E.; Ong, K.G. An Embedded Wireless Temperature Sensor for Orthopedic Implants. IEEE Sens. J. 2018, 18, 1265–1272. [Google Scholar] [CrossRef]
- Hall, T.A.G.; Cegla, F.; van Arkel, R.J. Simple Smart Implants: Simultaneous Monitoring of Loosening and Temperature in Orthopaedics with an Embedded Ultrasound Transducer. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 102–110. [Google Scholar] [CrossRef]
- Schaechtle, T.; Aftab, T.; Reindl, L.M.; Rupitsch, S.J. Wireless Passive Sensor Technology through Electrically Conductive Media over an Acoustic Channel. Sensors 2023, 23, 2043. [Google Scholar] [CrossRef]
- Diabetes Facts & Figures. Available online: https://idf.org/about-diabetes/diabetes-facts-figures/ (accessed on 11 October 2024).
- Kassanos, P. Bioimpedance Sensors: A Tutorial. IEEE Sens. J. 2021, 21, 22190–22219. [Google Scholar] [CrossRef]
- Liu, S.; Meng, X.; Zhang, J.; Chae, J. A Wireless Fully-Passive Acquisition of Biopotentials. Biosens. Bioelectron. 2019, 139, 111336. [Google Scholar] [CrossRef]
- Moncion, C.; Balachandar, L.; Bojja-Venkatakrishnan, S.; Riera, J.J.; Volakis, J.L. Fully-Passive Wireless Implant for Neuropotential Acquisition: An In Vivo Validation. IEEE J. Electromagn. RF Microw. Med. Biol. 2019, 3, 199–205. [Google Scholar] [CrossRef]
- Lee, C.W.L.; Kiourti, A.; Chae, J.; Volakis, J.L. A High-Sensitivity Fully Passive Neurosensing System for Wireless Brain Signal Monitoring. IEEE Trans. Microw. Theory Tech. 2015, 63, 2060–2068. [Google Scholar] [CrossRef]
- Schwerdt, H.N.; Xu, W.; Shekhar, S.; Abbaspour-Tamijani, A.; Towe, B.C.; Miranda, F.A.; Chae, J. A Fully Passive Wireless Microsystem for Recording of Neuropotentials Using RF Backscattering Methods. J. Microelectromech. Syst. 2011, 20, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.; Neely, R.M.; Shen, K.; Singhal, U.; Alon, E.; Rabaey, J.M.; Carmena, J.M.; Maharbiz, M.M. Wireless Recording in the Peripheral Nervous System with Ultrasonic Neural Dust. Neuron 2016, 91, 529–539. [Google Scholar] [CrossRef]
- Abu-Saude, M.; Morshed, B.I. Inductive Coupling of Bipolar Signals with a Conjugate Coil Pair for an Analog Passive ECG Sensor Using a PPy-Coated pvCNT Dry Electrodes. Sensors 2023, 23, 5283. [Google Scholar] [CrossRef]
- Neely, R.M.; Piech, D.K.; Santacruz, S.R.; Maharbiz, M.M.; Carmena, J.M. Recent Advances in Neural Dust: Towards a Neural Interface Platform. Curr. Opin. Neurobiol. 2018, 50, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Benedict, B.C.; Ghanbari, M.M.; Muller, R. Phased Array Beamforming Methods for Powering Biomedical Ultrasonic Implants. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 2756–2765. [Google Scholar] [CrossRef] [PubMed]
- Consul-Pacareu, S.; Morshed, B.I. Design and Analysis of a Novel Wireless Resistive Analog Passive Sensor Technique. IET Wirel. Sens. Syst. 2018, 8, 45–51. [Google Scholar] [CrossRef]
- Khokle, R.P.; Franco, F.; de Freitas, S.C.; Esselle, K.P.; Heimlich, M.C.; Bokor, D.J. Eddy Current–Tunneling Magneto-Resistive Sensor for Micromotion Detection of a Tibial Orthopaedic Implant. IEEE Sens. J. 2019, 19, 1285–1292. [Google Scholar] [CrossRef]
- Labus, K.M.; Notaroš, B.M.; Ilić, M.M.; Sutherland, C.J.; Holcomb, A.; Puttlitz, C.M. A Coaxial Dipole Antenna for Passively Sensing Object Displacement and Deflection for Orthopaedic Applications. IEEE Access 2018, 6, 68184–68194. [Google Scholar] [CrossRef]
- SCOUT® Radar Localization. Available online: https://www.merit.com/product/scout-radar-localization/ (accessed on 12 October 2024).
- Wazir, U.; Kasem, I.; Michell, M.J.; Suaris, T.; Evans, D.; Malhotra, A.; Mokbel, K. Reflector-Guided Localisation of Non-Palpable Breast Lesions: A Prospective Evaluation of the SAVI SCOUT® System. Cancers 2021, 13, 2409. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.-K.; Fang, H.; Bower, C.A.; Song, E.; Yu, X.; Rogers, J.A. Materials and Processing Approaches for Foundry-Compatible Transient Electronics. Proc. Natl. Acad. Sci. USA 2017, 114, E5522–E5529. [Google Scholar] [CrossRef]
- Won, S.M.; Koo, J.; Crawford, K.E.; Mickle, A.D.; Xue, Y.; Min, S.; McIlvried, L.A.; Yan, Y.; Kim, S.B.; Lee, S.M.; et al. Natural Wax for Transient Electronics. Adv. Funct. Mater. 2018, 28, 1801819. [Google Scholar] [CrossRef]
- Shim, J.-S.; Rogers, J.A.; Kang, S.-K. Physically Transient Electronic Materials and Devices. Mater. Sci. Eng. R Rep. 2021, 145, 100624. [Google Scholar] [CrossRef]
- Choi, Y.; Koo, J.; Rogers, J.A. Inorganic Materials for Transient Electronics in Biomedical Applications. MRS Bull. 2020, 45, 103–112. [Google Scholar] [CrossRef]
- Yin, L.; Cheng, H.; Mao, S.; Haasch, R.; Liu, Y.; Xie, X.; Hwang, S.-W.; Jain, H.; Kang, S.-K.; Su, Y.; et al. Dissolvable Metals for Transient Electronics. Adv. Funct. Mater. 2014, 24, 645–658. [Google Scholar] [CrossRef]
- Hwang, S.-W.; Song, J.-K.; Huang, X.; Cheng, H.; Kang, S.-K.; Kim, B.H.; Kim, J.-H.; Yu, S.; Huang, Y.; Rogers, J.A. High-Performance Biodegradable/Transient Electronics on Biodegradable Polymers. Adv. Mater. 2014, 26, 3905–3911. [Google Scholar] [CrossRef]
- Lee, G.; Choi, Y.S.; Yoon, H.-J.; Rogers, J.A. Advances in Physicochemically Stimuli-Responsive Materials for On-Demand Transient Electronic Systems. Matter 2020, 3, 1031–1052. [Google Scholar] [CrossRef]
- Ashammakhi, N.; Hernandez, A.L.; Unluturk, B.D.; Quintero, S.A.; de Barros, N.R.; Hoque Apu, E.; Bin Shams, A.; Ostrovidov, S.; Li, J.; Contag, C.; et al. Biodegradable Implantable Sensors: Materials Design, Fabrication, and Applications. Adv. Funct. Mater. 2021, 31, 2104149. [Google Scholar] [CrossRef]
- Morsada, Z.; Hossain, M.M.; Islam, M.T.; Mobin, M.d.A.; Saha, S. Recent Progress in Biodegradable and Bioresorbable Materials: From Passive Implants to Active Electronics. Appl. Mater. Today 2021, 25, 101257. [Google Scholar] [CrossRef]
- Zhang, Y.; Lee, G.; Li, S.; Hu, Z.; Zhao, K.; Rogers, J.A. Advances in Bioresorbable Materials and Electronics. Chem. Rev. 2023, 123, 11722–11773. [Google Scholar] [CrossRef]
- Tao, H.; Hwang, S.-W.; Marelli, B.; An, B.; Moreau, J.E.; Yang, M.; Brenckle, M.A.; Kim, S.; Kaplan, D.L.; Rogers, J.A.; et al. Silk-Based Resorbable Electronic Devices for Remotely Controlled Therapy and in Vivo Infection Abatement. Proc. Natl. Acad. Sci. USA 2014, 111, 17385–17389. [Google Scholar] [CrossRef]
- Hosseini, E.S.; Dervin, S.; Ganguly, P.; Dahiya, R. Biodegradable Materials for Sustainable Health Monitoring Devices. ACS Appl. Bio Mater. 2021, 4, 163–194. [Google Scholar] [CrossRef]
- Koo, J.; MacEwan, M.R.; Kang, S.-K.; Won, S.M.; Stephen, M.; Gamble, P.; Xie, Z.; Yan, Y.; Chen, Y.-Y.; Shin, J.; et al. Wireless Bioresorbable Electronic System Enables Sustained Nonpharmacological Neuroregenerative Therapy. Nat. Med. 2018, 24, 1830–1836. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Hsueh, Y.-Y.; Koo, J.; Yang, Q.; Avila, R.; Hu, B.; Xie, Z.; Lee, G.; Ning, Z.; Liu, C.; et al. Stretchable, Dynamic Covalent Polymers for Soft, Long-Lived Bioresorbable Electronic Stimulators Designed to Facilitate Neuromuscular Regeneration. Nat. Commun. 2020, 11, 5990. [Google Scholar] [CrossRef]
- Han, W.B.; Ko, G.-J.; Lee, K.-G.; Kim, D.; Lee, J.H.; Yang, S.M.; Kim, D.-J.; Shin, J.-W.; Jang, T.-M.; Han, S.; et al. Ultra-Stretchable and Biodegradable Elastomers for Soft, Transient Electronics. Nat. Commun. 2023, 14, 2263. [Google Scholar] [CrossRef] [PubMed]
- Dickey, M.D. Stretchable and Soft Electronics Using Liquid Metals. Adv. Mater. 2017, 29, 1606425. [Google Scholar] [CrossRef] [PubMed]
- Dickey, M.D. Liquid Metals for Soft and Stretchable Electronics. In Stretchable Bioelectronics for Medical Devices and Systems; Rogers, J.A., Ghaffari, R., Kim, D.-H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–30. ISBN 978-3-319-28694-5. [Google Scholar]
- Ma, J.; Krisnadi, F.; Vong, M.H.; Kong, M.; Awartani, O.M.; Dickey, M.D. Shaping a Soft Future: Patterning Liquid Metals. Adv. Mater. 2023, 35, 2205196. [Google Scholar] [CrossRef]
- Yamagishi, K.; Zhou, W.; Ching, T.; Huang, S.Y.; Hashimoto, M. Ultra-Deformable and Tissue-Adhesive Liquid Metal Antennas with High Wireless Powering Efficiency. Adv. Mater. 2021, 33, 2008062. [Google Scholar] [CrossRef]
- Sun, X.; Guo, R.; Yuan, B.; Wang, H.; Duan, M.; Yang, Y.; Zhu, X.; Wang, X.; Chen, S.; Cheng, J.; et al. Stiffness Tunable Implanted Electrode Enabled by Magnetic Liquid Metal for Wireless Hyperthermia. Appl. Mater. Today 2022, 27, 101495. [Google Scholar] [CrossRef]
- Qusba, A.; RamRakhyani, A.K.; So, J.-H.; Hayes, G.J.; Dickey, M.D.; Lazzi, G. On the Design of Microfluidic Implant Coil for Flexible Telemetry System. IEEE Sens. J. 2014, 14, 1074–1080. [Google Scholar] [CrossRef]
- Hayes, G.J.; So, J.-H.; Qusba, A.; Dickey, M.D.; Lazzi, G. Flexible Liquid Metal Alloy (EGaIn) Microstrip Patch Antenna. IEEE Trans. Antennas Propag. 2012, 60, 2151–2156. [Google Scholar] [CrossRef]
- Bharambe, V.T.; Ma, J.; Dickey, M.D.; Adams, J.J. Planar, Multifunctional 3D Printed Antennas Using Liquid Metal Parasitics. IEEE Access 2019, 7, 134245–134255. [Google Scholar] [CrossRef]
- Zhuang, Q.; Yao, K.; Wu, M.; Lei, Z.; Chen, F.; Li, J.; Mei, Q.; Zhou, Y.; Huang, Q.; Zhao, X.; et al. Wafer-Patterned, Permeable, and Stretchable Liquid Metal Microelectrodes for Implantable Bioelectronics with Chronic Biocompatibility. Sci. Adv. 2023, 9, eadg8602. [Google Scholar] [CrossRef] [PubMed]
- Sagdic, K.; Fernández-Lavado, E.; Mariello, M.; Akouissi, O.; Lacour, S.P. Hydrogels and Conductive Hydrogels for Implantable Bioelectronics. MRS Bull. 2023, 48, 495–505. [Google Scholar] [CrossRef]
- Gamboa, J.; Paulo-Mirasol, S.; Estrany, F.; Torras, J. Recent Progress in Biomedical Sensors Based on Conducting Polymer Hydrogels. ACS Appl. Bio Mater. 2023, 6, 1720–1741. [Google Scholar] [CrossRef]
- Liang, Q.; Xia, X.; Sun, X.; Yu, D.; Huang, X.; Han, G.; Mugo, S.M.; Chen, W.; Zhang, Q. Highly Stretchable Hydrogels as Wearable and Implantable Sensors for Recording Physiological and Brain Neural Signals. Adv. Sci. 2022, 9, 2201059. [Google Scholar] [CrossRef]
- Xie, Z.; Avila, R.; Huang, Y.; Rogers, J.A. Flexible and Stretchable Antennas for Biointegrated Electronics. Adv. Mater. 2020, 32, 1902767. [Google Scholar] [CrossRef]
- Vázquez-Guardado, A.; Yang, Y.; Rogers, J.A. Challenges and Opportunities in Flexible, Stretchable and Morphable Bio-Interfaced Technologies. Natl. Sci. Rev. 2022, 9, nwac016. [Google Scholar] [CrossRef]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and Mechanics for Stretchable Electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef]
- Kassanos, P.; Gowers, S.; Boutelle, M. Glucose and Lactate Amperometric Sensors on a Flexible Printed Circuit for Low-Cost Sensing Applications. In Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 29 October–1 November 2023; pp. 1–4. [Google Scholar]
- Kassanos, P.; Seichepine, F.; Keshavarz, M.; Yang, G. Towards a Flexible Wrist-Worn Thermotherapy and Thermoregulation Device. In Proceedings of the 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), Athens, Greece, 28–30 October 2019; pp. 644–648. [Google Scholar]
- Kassanos, P.; Seichepine, F.; Yang, G.-Z. Characterization and Modeling of a Flexible Tetrapolar Bioimpedance Sensor and Measurements of Intestinal Tissues. In Proceedings of the 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), Athens, Greece, 28–30 October 2019; pp. 686–690. [Google Scholar]
- Kassanos, P.; Anastasova, S.; Yang, G.-Z. A Low-Cost Amperometric Glucose Sensor Based on PCB Technology. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28-31 October 2018; pp. 1–4. [Google Scholar]
- Luo, Y.; Abidian, M.R.; Ahn, J.-H.; Akinwande, D.; Andrews, A.M.; Antonietti, M.; Bao, Z.; Berggren, M.; Berkey, C.A.; Bettinger, C.J.; et al. Technology Roadmap for Flexible Sensors. ACS Nano 2023, 17, 5211–5295. [Google Scholar] [CrossRef] [PubMed]
- Han, K.-L.; Lee, W.-B.; Kim, Y.-D.; Kim, J.-H.; Choi, B.-D.; Park, J.-S. Mechanical Durability of Flexible/Stretchable a-IGZO TFTs on PI Island for Wearable Electronic Application. ACS Appl. Electron. Mater. 2021, 3, 5037–5047. [Google Scholar] [CrossRef]
- Borchert, J.W.; Peng, B.; Letzkus, F.; Burghartz, J.N.; Chan, P.K.L.; Zojer, K.; Ludwigs, S.; Klauk, H. Small Contact Resistance and High-Frequency Operation of Flexible Low-Voltage Inverted Coplanar Organic Transistors. Nat. Commun. 2019, 10, 1119. [Google Scholar] [CrossRef]
- Çeliker, H.; Dehaene, W.; Myny, K. Multi-Project Wafers for Flexible Thin-Film Electronics by Independent Foundries. Nature 2024, 629, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Downing, J.R.; Hersam, M.C.; Chen, J. Additive Manufacturing and Applications of Nanomaterial-Based Sensors. Mater. Today 2021, 48, 135–154. [Google Scholar] [CrossRef]
- Zikulnig, J.; Chang, S.; Bito, J.; Rauter, L.; Roshanghias, A.; Carrara, S.; Kosel, J. Printed Electronics Technologies for Additive Manufacturing of Hybrid Electronic Sensor Systems. Adv. Sens. Res. 2023, 2, 2200073. [Google Scholar] [CrossRef]
- Xu, S.; Wu, W. Ink-Based Additive Nanomanufacturing of Functional Materials for Human-Integrated Smart Wearables. Adv. Intell. Syst. 2020, 2, 2000117. [Google Scholar] [CrossRef]
- Ma, L.-Y.; Soin, N. Recent Progress in Printed Physical Sensing Electronics for Wearable Health-Monitoring Devices: A Review. IEEE Sens. J. 2022, 22, 3844–3859. [Google Scholar] [CrossRef]
- Criado-Gonzalez, M.; Dominguez-Alfaro, A.; Lopez-Larrea, N.; Alegret, N.; Mecerreyes, D. Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities. ACS Appl. Polym. Mater. 2021, 3, 2865–2883. [Google Scholar] [CrossRef]
- Kalkal, A.; Kumar, S.; Kumar, P.; Pradhan, R.; Willander, M.; Packirisamy, G.; Kumar, S.; Malhotra, B.D. Recent Advances in 3D Printing Technologies for Wearable (Bio)Sensors. Addit. Manuf. 2021, 46, 102088. [Google Scholar] [CrossRef]
- Kong, M.; Vong, M.H.; Kwak, M.; Lim, I.; Lee, Y.; Lee, S.; You, I.; Awartani, O.; Kwon, J.; Shin, T.J.; et al. Ambient Printing of Native Oxides for Ultrathin Transparent Flexible Circuit Boards. Science 2024, 385, 731–737. [Google Scholar] [CrossRef]
- Sakorikar, T.; Mihaliak, N.; Krisnadi, F.; Ma, J.; Kim, T.; Kong, M.; Awartani, O.; Dickey, M.D. A Guide to Printed Stretchable Conductors. Chem. Rev. 2024, 124, 860–888. [Google Scholar] [CrossRef]
- Qaiser, N.; Damdam, A.N.; Khan, S.M.; Bunaiyan, S.; Hussain, M.M. Design Criteria for Horseshoe and Spiral-Based Interconnects for Highly Stretchable Electronic Devices. Adv. Funct. Mater. 2021, 31, 2007445. [Google Scholar] [CrossRef]
- Jahanshahi, A.; Gonzalez, M.; van den Brand, J.; Bossuyt, F.; Vervust, T.; Verplancke, R.; Vanfleteren, J.; Baets, J.D. Stretchable Circuits with Horseshoe Shaped Conductors Embedded in Elastic Polymers. Jpn. J. Appl. Phys. 2013, 52, 05DA18. [Google Scholar] [CrossRef]
- Xu, K.; Lu, Y.; Honda, S.; Arie, T.; Akita, S.; Takei, K. Highly Stable Kirigami-Structured Stretchable Strain Sensors for Perdurable Wearable Electronics. J. Mater. Chem. C 2019, 7, 9609–9617. [Google Scholar] [CrossRef]
- Fan, J.A.; Yeo, W.-H.; Su, Y.; Hattori, Y.; Lee, W.; Jung, S.-Y.; Zhang, Y.; Liu, Z.; Cheng, H.; Falgout, L.; et al. Fractal Design Concepts for Stretchable Electronics. Nat. Commun. 2014, 5, 3266. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Huang, Y.; Rogers, J.A. Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics. IEEE Trans. Compon. Packag. Manuf. Technol. 2015, 5, 1201–1218. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Xiao, J.; Song, J.; Huang, Y.; Rogers, J.A. Stretchable, Curvilinear Electronics Based on Inorganic Materials. Adv. Mater. 2010, 22, 2108–2124. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Park, J.; Jeong, U. Design of Conductive Composite Elastomers for Stretchable Electronics. Nano Today 2014, 9, 244–260. [Google Scholar] [CrossRef]
- Park, S.; Mondal, K.; Treadway, R.M.; Kumar, V.; Ma, S.; Holbery, J.D.; Dickey, M.D. Silicones for Stretchable and Durable Soft Devices: Beyond Sylgard-184. ACS Appl. Mater. Interfaces 2018, 10, 11261–11268. [Google Scholar] [CrossRef]
- Larmagnac, A.; Eggenberger, S.; Janossy, H.; Vörös, J. Stretchable Electronics Based on Ag-PDMS Composites. Sci. Rep. 2014, 4, 7254. [Google Scholar] [CrossRef]
- Niu, X.Z.; Peng, S.L.; Liu, L.Y.; Wen, W.J.; Sheng, P. Characterizing and Patterning of PDMS-Based Conducting Composites. Adv. Mater. 2007, 19, 2682–2686. [Google Scholar] [CrossRef]
- Martinez, V.; Stauffer, F.; Adagunodo, M.O.; Forro, C.; Vörös, J.; Larmagnac, A. Stretchable Silver Nanowire–Elastomer Composite Microelectrodes with Tailored Electrical Properties. ACS Appl. Mater. Interfaces 2015, 7, 13467–13475. [Google Scholar] [CrossRef]
- Ata, S.; Kobashi, K.; Yumura, M.; Hata, K. Mechanically Durable and Highly Conductive Elastomeric Composites from Long Single-Walled Carbon Nanotubes Mimicking the Chain Structure of Polymers. Nano Lett. 2012, 12, 2710–2716. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, V.; Kassanos, P.; Burdet, E.; Yeatman, E. Stencil Printing of Low-Cost Carbon-Based Stretchable Strain Sensors. In Proceedings of the 2022 IEEE Sensors, Dallas, TX, USA, 30 October–2 November 2022; IEEE: Piscataway, NJ, USA; pp. 1–4. [Google Scholar]
- Hu, M.; Kassanos, P.; Keshavarz, M.; Yeatman, E.; Lo, B. Electrical and Mechanical Characterization of Carbon-Based Elastomeric Composites for Printed Sensors and Electronics. In Proceedings of the 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Manchester, UK, 20–23 June 2021; pp. 1–4. [Google Scholar]
- Kassanos, P.; Yang, G.-Z.; Yeatman, E. An Interdigital Strain Sensor Through Laser Carbonization of PI and PDMS Transfer. In Proceedings of the 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Manchester, UK, 20–23 June 2021; pp. 1–4. [Google Scholar]
- Stieglitz, T. Manufacturing, Assembling and Packaging of Miniaturized Neural Implants. Microsyst. Technol. 2010, 16, 723–734. [Google Scholar] [CrossRef]
- Stieglitz, T. Implantable Device Fabrication and Packaging. In Handbook of Neuroengineering; Thakor, N.V., Ed.; Springer: Singapore, 2020; pp. 1–49. ISBN 978-981-15-2848-4. [Google Scholar]
- Kono, T.; Terasawa, Y.; Tashiro, H.; Jun, O. Development of a Humidity Microsensor for Evaluation of Hermeticity for Retinal Prosthesis. Sens. Mater. 2023, 35, 3189–3200. [Google Scholar] [CrossRef]
- Shen, K.; Maharbiz, M.M. Ceramic Packaging in Neural Implants. J. Neural Eng. 2021, 18, 025002. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Ren, J.; Chen, C.; Xu, W.; Zhang, S. Safety and Effectiveness Evaluation of Flexible Electronic Materials for next Generation Wearable and Implantable Medical Devices. Nano Today 2020, 35, 100939. [Google Scholar] [CrossRef]
- Niu, S.; Matsuhisa, N.; Beker, L.; Li, J.; Wang, S.; Wang, J.; Jiang, Y.; Yan, X.; Yun, Y.; Burnett, W.; et al. A Wireless Body Area Sensor Network Based on Stretchable Passive Tags. Nat. Electron. 2019, 2, 361–368. [Google Scholar] [CrossRef]
- Liu, C.; Dong, Y. Resonant Coupling of a Passive Inductance-Capacitance-Resistor Loop in Coil-Based Sensing Systems. IEEE Sens. J. 2012, 12, 3417–3423. [Google Scholar] [CrossRef]
- Yeon, P.; Kim, M.; Brand, O.; Ghoovanloo, M. Optimal Design of Passive Resonating Wireless Sensors for Wearable and Implantable Devices. IEEE Sens. J. 2019, 19, 7460–7470. [Google Scholar] [CrossRef]
- Nopper, R.; Niekrawietz, R.; Reindl, L. Wireless Readout of Passive LC Sensors. IEEE Trans. Instrum. Meas. 2010, 59, 2450–2457. [Google Scholar] [CrossRef]
- Demori, M.; Baù, M.; Ferrari, M.; Ferrari, V. Interrogation Techniques and Interface Circuits for Coil-Coupled Passive Sensors. Micromachines 2018, 9, 449. [Google Scholar] [CrossRef]
- Kananian, S.; Alexopoulos, G.; Poon, A.S.Y. Coupling-Independent Real-Time Wireless Resistive Sensing Through Nonlinear PT Symmetry. Phys. Rev. Appl. 2020, 14, 064072. [Google Scholar] [CrossRef]
- Kananian, S.; Rho, J.; Chen, C.; Mirjalili, S.; Daus, A.; Kim, M.; Niu, S.; Pop, E.; Wong, H.-S.P.; Bao, Z.; et al. A Disposable Reader-Sensor Solution for Wireless Temperature Logging. Device 2023, 1, 100183. [Google Scholar] [CrossRef]
- Kananian, S.; Alexopoulos, G.; Poon, A.S.Y. Robust Wireless Interrogation of Fully-Passive RLC Sensors. IEEE Trans. Circuits Syst. Regul. Pap. 2022, 69, 1427–1440. [Google Scholar] [CrossRef]
- McCaffrey, C.; Flak, J.; Pursula, P. Readout Range and Sensing Resolution Optimization of a Reader for Fully Passive Wireless Sensors. IEEE Trans. Instrum. Meas. 2020, 69, 7846–7856. [Google Scholar] [CrossRef]
- Consul-Pacareu, S.; Arellano, D.; Morshed, B.I. Body-Worn Fully-Passive Wireless Analog Sensors for Physiological Signal Capture through Load Modulation Using Resistive Transducers. In Proceedings of the 2014 IEEE Healthcare Innovation Conference (HIC), Seattle, WA, USA, 8–10 October 2014; pp. 67–70. [Google Scholar]
- Zhao, J.F.; Chen, X.M.; Liang, B.D.; Chen, Q.X. A Review on Human Body Communication: Signal Propagation Model, Communication Performance, and Experimental Issues. Wirel. Commun. Mob. Comput. 2017, 2017, 5842310. [Google Scholar] [CrossRef]
- Guzmán, D.; Álvarez, J.D.; Granda, F.; Aguilar, D.L. Wireless Communication of Biosensors in the Human Body: Analysis and Simulation of Signal Propagation Model. In Proceedings of the 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA), Valparaíso, Chile, 22–26 March 2021; pp. 1–6. [Google Scholar]
- Vallejo, M.; Recas, J.; Del Valle, P.G.; Ayala, J.L. Accurate Human Tissue Characterization for Energy-Efficient Wireless On-Body Communications. Sensors 2013, 13, 7546–7569. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Santiago, R.; Garcia-Pardo, C.; Fornes-Leal, A.; Vallés-Lluch, A.; Vermeeren, G.; Joseph, W.; Balasingham, I.; Cardona, N. Experimental Path Loss Models for In-Body Communications Within 2.36-2.5 GHz. IEEE J. Biomed. Health Inform. 2015, 19, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ahn, J.; Woo, S.; Huh, S.; Ahn, S. Alignment of Wireless Power Transfer System for Implantable Medical Device Using Permanent Magnet. In Proceedings of the 2023 IEEE Wireless Power Technology Conference and Expo (WPTCE), San Diego, CA, USA, 4–8 June 2023; pp. 1–4. [Google Scholar]
- Dormer, K.J.; Nordquist, R.E.; Richard, G.L.; Hough, J.V.D. The Use of Rare-Earth Magnet Couplers in Cochlear Implants. Laryngoscope 1981, 91, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Soma, M.; Galbraith, D.C.; White, R.L. Radio-Frequency Coils in Implantable Devices: Misalignment Analysis and Design Procedure. IEEE Trans. Biomed. Eng. 1987, BME-34, 276–282. [Google Scholar] [CrossRef]
- Danilov, A.A.; Mindubaev, E.A.; Selishchev, S.V. Methods for Compensation of Coil Misalignment in Systems for Inductive Transcutaneous Power Transfer to Implanted Medical Devices. Biomed. Eng. 2017, 51, 56–60. [Google Scholar] [CrossRef]
- Gamo, N.J.; Birknow, M.R.; Sullivan, D.; Kondo, M.A.; Horiuchi, Y.; Sakurai, T.; Slusher, B.S.; Sawa, A. Valley of Death: A Proposal to Build a “Translational Bridge” for the next Generation. Neurosci. Res. 2017, 115, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Seyhan, A.A. Lost in Translation: The Valley of Death across Preclinical and Clinical Divide—Identification of Problems and Overcoming Obstacles. Transl. Med. Commun. 2019, 4, 18. [Google Scholar] [CrossRef]
- Gbadegeshin, S.A.; Natsheh, A.A.; Ghafel, K.; Mohammed, O.; Koskela, A.; Rimpiläinen, A.; Tikkanen, J.; Kuoppala, A. Overcoming the Valley of Death: A New Model for High Technology Startups. Sustain. Futures 2022, 4, 100077. [Google Scholar] [CrossRef]
- Dudley, A. How Can Medtech Start Ups Avoid the “Valley of Death”? Available online: https://www.mantellassociates.com/how-can-medtech-start-ups-avoid-the-valley-of-death/ (accessed on 22 December 2024).
- Taylor, N.P. FDA Starts Advisory Program Pilot to Reduce ‘Valley of Death’ Risk for Medical Devices. Available online: https://www.medtechdive.com/news/fda-starts-advisory-program-pilot-to-reduce-valley-of-death-risk-for-medi/633889/ (accessed on 22 December 2024).
- Huter, K.; Krick, T.; Rothgang, H. Health Economic Evaluation of Digital Nursing Technologies: A Review of Methodological Recommendations. Health Econ. Rev. 2022, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Zhang, K.; Zhou, M.; Xing, C.; An, Y.; Zhang, Q.; Guo, J.; Liu, S.; Qu, Z.; Feng, S.; et al. An Implantable Self-Driven Diaphragm Pacing System Based on a Microvibration Triboelectric Nanogenerator for Phrenic Nerve Stimulation. ACS Appl. Mater. Interfaces 2024, 16, 43199–43211. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Meng, X.; Rubab, N.; Kim, D.; Mo, H.; Xiao, X.; Park, M.J.; Cho, D.S.; Kim, S.M.; Choi, B.-O.; et al. Ultrasound-Driven Highly Stable Implantable Triboelectric Nanogenerator with Human-Tissue Acoustic Impedance-Matched Polyether Ether Ketone. Adv. Mater. Technol. 2024, 9, 2400317. [Google Scholar] [CrossRef]
- Quan, Y.; Wang, E.; Ouyang, H.; Xu, L.; Jiang, L.; Teng, L.; Li, J.; Luo, L.; Wu, X.; Zeng, Z.; et al. Biodegradable and Implantable Triboelectric Nanogenerator Improved by β-Lactoglobulin Fibrils-Assisted Flexible PVA Porous Film. Adv. Sci. 2024, 2409914. [Google Scholar] [CrossRef] [PubMed]
- Baburaj, A.; Banerjee, S.; Aliyana, A.K.; Shee, C.; Banakar, M.; Bairagi, S.; Naveen Kumar, S.K.; Ali, S.W.; Stylios, G.K. Biodegradable Based TENGs for Self-Sustaining Implantable Medical Devices. Nano Energy 2024, 127, 109785. [Google Scholar] [CrossRef]
- Rao, Y.; Xu, C.; Voss, M.; Ying, P.; Reith, H.; Nielsch, K.; Bechtold, T.; Hohlfeld, D. Fabrication and Characterization of a Thermoelectric Generator with High Aspect Ratio Thermolegs for Electrically Active Implants. Adv. Mater. Technol. 2024, 9, 2301157. [Google Scholar] [CrossRef]
- Zhang, Y.; Kassanos, P. Modelling and Optimization of a Wearable Thermoelectric Cooler. In Proceedings of the 2024 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Tampere, Finland, 30 June–July 2024; pp. 1–4. [Google Scholar]
- Lewandowski, B.E.; Kilgore, K.L.; Gustafson, K.J. In Vivo Demonstration of a Self-Sustaining, Implantable, Stimulated-Muscle-Powered Piezoelectric Generator Prototype. Ann. Biomed. Eng. 2009, 37, 2390–2401. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, B.I.; Kedzierski, J.T.; Sarpeshkar, R. A Glucose Fuel Cell for Implantable Brain–Machine Interfaces. PLoS ONE 2012, 7, e38436. [Google Scholar] [CrossRef]
- Almarri, N.; Chang, J.; Song, W.; Jiang, D.; Demosthenous, A. Piezoelectric Energy Harvesting and Ultra-Low-Power Management Circuits for Medical Devices. Nano Energy 2024, 131, 110196. [Google Scholar] [CrossRef]
Sensor Type | Application | Sensor Scheme | Communication | Transiency | Ref. |
---|---|---|---|---|---|
pH | SSI | Speed of biodegradation process | Slot antenna at 1.5 GHz (max. size 5.1 cm) | Yes | [51] |
pH | Soft-tissue trauma monitoring | Speed of biodegradation process | RFID tag, 4–11 GHz | Yes | [52] |
pH | Detection of gastric leakage | LC circuit embedded in pH-responsive hydrogel | LC at 20 MHz | Yes | [53] |
Pressure | Intra-abdominal pressure | Microfluidic channel with reservoir | Ultrasound imaging system (21–55 MHz transducer) | No | [54] |
Pressure | Intracranial Dynamic Pressure Detection | Deformation of soft elastomer between two coils | LC between 200 and 500 MHz | Yes | [55] |
Pressure | - | Capacitance, MEMS-type | LC at 30 MHz | Yes | [56] |
Pressure | - | Capacitance, macroscopic MEMS-type | LC at 3 GHz | Yes | [57] |
Pressure | Continuous arterial blood flow monitoring | Capacitance, MEMs-type and fringe-field | LC at 500 MHz | Yes | [58] |
Pressure | Blood pressure monitoring on stents | Capacitance, MEMS-type | LC at 150 MHz | Yes | [59] |
Pressure | Intracranial, intra-abdominal, and pulmonary hypertension, compartment syndromes | Capacitance, MEMS-type | LC at 250 MHz | Yes | [60] |
Pressure | Blood pressure | Capacitance, MEMS-type | SAW at 0.87 GHz | No | [61] |
Strain | Cardiomyocyte detection | Magnetic hysteresis loops | Vibrating sample magnetometer (VSM) | No | [62] |
Strain | Orthopedic implants | Microfluidic channel with reservoir | Commercial medical ultrasonic device | No | [63] |
Strain | Musculoskeletal soft tissue strains | Stretchable capacitor | LC at 15 MHz | No | [64] |
Strain | Long-bone fracture healing | Stretchable capacitor | SRR at 530 MHz | No | [65] |
Glucose | Continuous glucose monitoring | Capacitance, Volume change of glucose-sensitive hydrogel | RF ID (LC) 400–800 MHz | No | [66] |
Glucose | Continuous glucose monitoring | Capacitance, dielectric constant of interstitial fluid | RF at 2.2 GHz | No | [67] |
Tissue conductivity | Congestive heart failure | Discharging of capacitor | Alternating current bursts >1 MHz | No | [68] |
Proteolytic activity | Healthcare applications | Capacitance, dielectric constant change by gelatin degradation | RF (LC) at ~15 MHz | Yes | [69] |
Temperature | SSI | Ultrasound reflection | Ultrasound reflection at 5 MHz | No | [70] |
Temperature | Regional Body Temperature | Capacitance, dielectric constant change due to temperature | LC at 70–90 MHz | Yes | [71] |
Neural Recorder | Neuropotentials | Capacitance, varactor | RF at 2.32 GHz | No | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassanos, P.; Hourdakis, E. Implantable Passive Sensors for Biomedical Applications. Sensors 2025, 25, 133. https://doi.org/10.3390/s25010133
Kassanos P, Hourdakis E. Implantable Passive Sensors for Biomedical Applications. Sensors. 2025; 25(1):133. https://doi.org/10.3390/s25010133
Chicago/Turabian StyleKassanos, Panagiotis, and Emmanouel Hourdakis. 2025. "Implantable Passive Sensors for Biomedical Applications" Sensors 25, no. 1: 133. https://doi.org/10.3390/s25010133
APA StyleKassanos, P., & Hourdakis, E. (2025). Implantable Passive Sensors for Biomedical Applications. Sensors, 25(1), 133. https://doi.org/10.3390/s25010133