Photoreconfigurable Metasurface for Independent Full-Space Control of Terahertz Waves
<p>(<b>a</b>) OAM Mode 1 in transmission mode under high laser beam illumination for Metasurface I. (<b>b</b>) OAM Mode 2 in reflection mode without laser beam illumination for Metasurface I. (<b>c</b>) Holographic imaging with high laser beam illumination, generating a holographic image of the letters “NUIST” in reflection mode for Metasurface II. (<b>d</b>) Holographic imaging without laser beam illumination, generating a holographic image of the letters “LOONG” in transmission mode for Metasurface II.</p> "> Figure 2
<p>(<b>a</b>) Schematic of the proposed three-layer metasurface. (<b>b</b>) Top layer with CSRR and dual <span class="html-italic">C</span>-shaped resonators. (<b>c</b>) Bottom layer with circular split ring resonator.</p> "> Figure 3
<p>(<b>a</b>) Phase of co-polarized reflection coefficients (<span class="html-italic">r<sub>xx</sub></span> and <span class="html-italic">r<sub>yy</sub></span>) and co-polarized transmission coefficients (<span class="html-italic">t<sub>xx</sub></span> and <span class="html-italic">t<sub>yy</sub></span>) under laser beam illumination. (<b>b</b>) Phase of co-polarized reflection coefficients (<span class="html-italic">r<sub>xx</sub></span> and <span class="html-italic">r<sub>yy</sub></span>) and co-polarized transmission coefficients (<span class="html-italic">t<sub>xx</sub></span> and <span class="html-italic">t<sub>yy</sub></span>) without laser beam illumination. (<b>c</b>) Amplitude of co-polarized transmission coefficients (<span class="html-italic">t<sub>xx</sub></span> and <span class="html-italic">t<sub>yy</sub></span>) and co-polarized transmission coefficients (<span class="html-italic">t<sub>xx</sub></span> and <span class="html-italic">t<sub>yy</sub></span>) under laser beam illumination. (<b>d</b>) Amplitude of co-polarized transmission coefficients (<span class="html-italic">t<sub>xx</sub></span> and <span class="html-italic">t<sub>yy</sub></span>) and co-polarized transmission coefficients (<span class="html-italic">t<sub>xx</sub></span> and <span class="html-italic">t<sub>yy</sub></span>) without laser beam illumination.</p> "> Figure 4
<p>(<b>a</b>) Reflection amplitude and transmission amplitude at different rotation angles when unit is under laser beam illumination. (<b>b</b>) Transmission amplitude and reflection amplitude at different rotation angles when unit is without laser beam illumination. (<b>c</b>) Reflection phase at different rotation angles when unit is under laser beam illumination. (<b>d</b>) Transmission phase at different rotation angles when unit is without laser beam illumination.</p> "> Figure 5
<p>(<b>a</b>) Surface current distribution on the top layer under strong laser beam illumination, showing time-varying current distribution within the period. (<b>b</b>) Surface current distribution on the bottom layer under strong laser beam illumination, showing time-varying current distribution within the period. (<b>c</b>) Surface current distribution on the top layer without laser beam illumination, showing time-varying current distribution within the period. (<b>d</b>) Surface current distribution on the bottom layer without laser beam illumination, showing time-varying current distribution within the period.</p> "> Figure 6
<p>(<b>a</b>) Phase gradients along the +<span class="html-italic">x</span> direction. (<b>b</b>) Phase gradients along the −<span class="html-italic">x</span> direction. (<b>c</b>) Far-field distribution of a +1 order vortex beam deflected by 30° in the +<span class="html-italic">x</span> direction under strong laser beam illumination. (<b>d</b>) Far-field distribution of a −2 order vortex beam deflected by 30° in the −<span class="html-italic">x</span> direction without laser beam illumination. (<b>e</b>) Planar electric field intensity and phase distribution of the +1 order vortex beam under strong laser beam illumination, perpendicular to the 30° direction. (<b>f</b>) Planar electric field intensity and phase distribution of the −2 order vortex beam without laser beam illumination, perpendicular to the −30° direction.</p> "> Figure 7
<p>(<b>a</b>) Target images: “Zhu” in reflection mode, “Long” in transmission mode. (<b>b</b>) Phase distribution for holographic images, with phase changes from 0° to 360°. (<b>c</b>) Metasurface design layout with 50 × 50 unit structures in top and bottom layers. (<b>d</b>) Simulation results under different laser beam illumination: “Zhu” in reflection mode under laser beam illumination; “Long” in transmission mode without laser beam illumination.</p> "> Figure 8
<p>(<b>a</b>) Target images in reflection mode. (<b>b</b>) Phase distribution for reflection mode calculated using the GS algorithm. (<b>c</b>) Reproduced image of “NUIST” in reflection mode. (<b>d</b>) Target images in transmission mode. (<b>e</b>) Phase distribution for transmission mode calculated using the GS algorithm. (<b>f</b>) Reproduced image of “LOOGN” in transmission mode.</p> "> Figure 9
<p>(<b>a</b>) Near-field imaging results. (<b>b</b>) Far-field electric field distribution in reflection mode. (<b>c</b>) Far-field electric field distribution in transmission mode.</p> ">
Abstract
:1. Introduction
2. Theoretical Analysis and Design of Unit Structure
3. Wavefront Manipulation Applications
3.1. Full-Space OAM Generator
3.2. Full-Space Holographic Imaging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pendry, J.B. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef]
- Pendry, J.B.; Schurig, D.; Smith, D.R. Controlling electromagnetic fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Aieta, F.; Genevet, P.; Kats, M.A.; Yu, N.; Blanchard, R.; Gaburro, Z.; Capasso, F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 2012, 12, 4932–4936. [Google Scholar] [CrossRef]
- Rubin, N.A.; Zarubin, G.; Zaidi, A.; Juhl, M.; Li, M.P.; Mueller, J.P.; Devlin, R.C.; Groever, B.; Capasso, F. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 2019, 365, eaax1839. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Overvig, A.C.; Lu, M.; Stein, A.; Yu, N. Broadband achromatic dielectric metalenses. Light Sci. Appl. 2018, 7, 85. [Google Scholar] [CrossRef]
- Wen, D.; Yue, F.; Li, G.; Zheng, G.; Chan, K.; Chen, S.; Chen, M.; Li, K.F.; Wong, P.W.H.; Cheah, K.W.; et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 2015, 6, 8241. [Google Scholar] [CrossRef]
- Arbabi, A.; Arbabi, E.; Kamali, S.M.; Horie, Y.; Han, S.; Faraon, A. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 2016, 7, 13682. [Google Scholar] [CrossRef]
- Devlin, R.C.; Ambrosio, A.; Rubin, N.A.; Mueller, J.P.B.; Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 2017, 358, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Semmlinger, M.; Tseng, M.L.; Yang, J.; Zhang, M.; Zhang, C.; Tsai, W.Y.; Tsai, D.P.; Nordlander, P.; Halas, N.J. Vacuum ultraviolet light-generating metasurface. Sci. Adv. 2022, 8, eabn5644. [Google Scholar] [CrossRef]
- Pors, A.; Nielsen, M.G.; Bozhevolnyi, S.I. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2015, 2, 716–723. [Google Scholar] [CrossRef]
- Mueller, J.P.B.; Leosson, K.; Capasso, F. Ultracompact metasurface in-line polarimeter. Optica 2016, 3, 42–47. [Google Scholar] [CrossRef]
- Devlin, R.C.; Ambrosio, A.; Wintz, D.; Oscurato, S.L.; Zhu, A.Y.; Khorasaninejad, M.; Oh, J.; Maddalena, P.; Capasso, F. Spin-to-orbital angular momentum conversion in dielectric metasurfaces. Opt. Express 2017, 25, 377–393. [Google Scholar] [CrossRef]
- Ren, R.; Li, Z.; Deng, L.; Shan, X.; Dai, Q.; Guan, Z.; Zheng, G.; Yu, S. Non-orthogonal polarization multiplexed metasurfaces for tri-channel polychromatic image displays and information encryption. Nanophotonics 2021, 10, 2903–2914. [Google Scholar] [CrossRef]
- Guo, J.; Wang, T.; Quan, B.; Zhao, H.; Gu, C.; Li, J.; Wang, X.; Situ, G.; Zhang, Y. Polarization multiplexing for double images display. Opto-Electron. Adv. 2019, 2, 07180029. [Google Scholar] [CrossRef]
- Hu, S.; Du, S.; Li, J.; Gu, C. Multidimensional image and beam splitter based on hyperbolic metamaterials. Nano Lett. 2021, 21, 1792–1799. [Google Scholar] [CrossRef] [PubMed]
- Kamali, S.M.; Arbabi, E.; Arbabi, A.; Horie, Y.; Faraon, A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics 2018, 7, 1041–1068. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, K.; Zheng, Y.; Hu, Q.; Qu, K.; Zhao, J.; Wang, J.; Feng, Y. Programmable coding metasurface for dual-band independent real-time beam control. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 20–28. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Q.; Huang, X.; Wu, J.; Yang, H. Simultaneous transmissive and reflective polarization conversion cross different operating bands in a single metasurface. Opt. Laser Technol. 2024, 169, 109140. [Google Scholar] [CrossRef]
- Shang, G.; Hu, G.; Guan, C.; Liu, T.; Liu, K.; Luo, J. A non-interleaved bidirectional Janus metasurface with full-space scattering channels. Nanophotonics 2022, 11, 3729–3739. [Google Scholar] [CrossRef]
- Mao, R.Q.; Wang, G.M.; Cai, T.; Liu, K.; Wang, D.P.; Wu, B. Ultra-thin and high efficiency full-space Pancharatnam-Berry metasurface. Opt. Express 2020, 28, 31216–31225. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Cheng, Y.; He, B. High-efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies. J. Phys. D Appl. Phys. 2020, 54, 025105. [Google Scholar] [CrossRef]
- Chen, K.; Ding, G.; Hu, G.; Jin, Z.; Zhao, J.; Feng, Y.; Jiang, T.; Alù, A.; Qiu, C.-W. Directional Janus metasurface. Adv. Mater. 2020, 32, 1906352. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Choi, M.; Kim, T.-T.; Lee, S.; Liu, M.; Yin, X.; Choi, H.K.; Lee, S.S.; Choi, C.-G.; Choi, S.-Y.; et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater. 2012, 11, 936–941. [Google Scholar] [CrossRef]
- Dicken, M.J.; Aydin, K.; Pryce, I.M.; Sweatlock, L.A.; Boyd, E.M.; Walavalkar, S.; Ma, J.; Atwater, H.A. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express 2009, 17, 18330–18339. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; He, X.; Jiang, J.; Yao, Y.; Lu, G. Recent progresses in terahertz modulators based on metal halide perovskites. Opt. Laser Technol. 2024, 171, 110342. [Google Scholar] [CrossRef]
- Xiong, R.H.; Peng, X.Q.; Li, J.S. Terahertz Switch Utilizing Inorganic Perovskite Embedded Metasurface. Front. Phys. 2020, 8, 141. [Google Scholar] [CrossRef]
- Chanana, A.; Liu, X.; Zhang, C.; Vardeny, Z.V.; Nahata, A. Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites. Sci. Adv. 2018, 4, 7353. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.H.; Li, J.S. Muti-band terahertz modulator based on double metamaterial/perovskite hybrid structure. Opt. Commun. 2019, 447, 1–5. [Google Scholar]
- Long, G.; Adamo, G.; Tian, J.; Klein, M.; Krishnamoorthy, H.N.S.; Feltri, E.; Wang, H.; Soci, C. Perovskite metasurfaces with large superstructural chirality. Nat. Commun. 2022, 13, 1551. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wu, J.; Liu, T.; Zhu, R. Patterned perovskites for optoelectronic applications. Small Methods 2018, 2, 1800110. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, P.; Zhang, J.; Zhao, Z.; Yan, S.; Li, X.; Wang, N. Lithographic multicolor patterning on hybrid perovskites for nano-optoelectronic applications. Small 2022, 18, 2205227. [Google Scholar] [CrossRef] [PubMed]
- Kessel, A.; Frydendahl, C.; Indukuri, S.R.K.C.; Makarov, S.V.; Zakhidov, A.A. Facile patterning of hybrid perovskite metasurfaces for opto-electronic applications. In Proceedings of the 2020 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 10–15 May 2020; pp. 1–2. [Google Scholar]
- Li, Y.F.; Zhang, Y.T.; Li, T.T.; Xu, Z.Z.; Liu, Y.; Shao, L.L.; Wang, Y.; Jiang, Y.D.; Bai, Z.M. Ultrabroadband, ultraviolet to terahertz, and high sensitivity CH3NH3PbI3 perovskite photodetectors. Nano Lett. 2020, 20, 5646–5654. [Google Scholar] [CrossRef]
- Wilson, J.N.; Frost, J.M.; Wallace, S.K.; Walsh, A. Dielectric and ferroic properties of metal halide perovskites. APL Mater. 2019, 7, 010901. [Google Scholar] [CrossRef]
- Ding, G.; Liu, C.; Xu, Y.; Tang, J.; Hu, G.; Chen, K.; Jiang, T.; Feng, Y.; Qiu, C.-W. Ultrathin single-substrate Pancharatnam–Berry phase metasurface with high transmission efficiency. IEEE Trans. Antennas Propag. 2023, 71, 9571–9580. [Google Scholar] [CrossRef]
- Hasman, E.; Kleiner, V.; Biener, G.; Niv, A. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl. Phys. Lett. 2003, 82, 328–330. [Google Scholar] [CrossRef]
- Mueller, J.P.B.; Rubin, N.A.; Devlin, R.C.; Groever, B.; Capasso, F. Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization. Phys. Rev. Lett. 2017, 118, 113901. [Google Scholar] [CrossRef]
- Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Chen, K.; Zhang, N.; Jin, Z.; Tang, J.; Hu, G.; He, Q.; Feng, Y.; Qiu, C.-W. Independent wavefront tailoring in full polarization channels by helicity-decoupled metasurface. Ann. Phys. 2022, 534, 2100546. [Google Scholar] [CrossRef]
- Hao, X.; Chen, Y.; Liu, M.; Zhang, Y.; Li, L.; Wen, L.; Chai, G. Recent advances in terahertz manipulations using C-shape-split-ring-resonator metasurfaces (Review). Adv. Optical Mater. 2024, 12, 2302975. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Niu, J. Dynamic PB metasurface for transmissive and reflective wavefront manipulation. Phys. Scr. 2024, 99, 065513. [Google Scholar] [CrossRef]
- Qiao, X.; Wang, A.; Xiao, W.; Zhang, J.; Xia, X.; Liang, Y.; Wang, J.; Jiang, P. A simple structured and homo-frequency point mode switchable THz full-space metasurface based on temperature-controlled vanadium dioxide. Opt. Laser Technol. 2024, 170, 110233. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Silva, A.; Monticone, F.; Castaldi, G.; Galdi, V.; Alù, A.; Engheta, N. Performing mathematical operations with metamaterials. Science 2014, 343, 160–163. [Google Scholar] [CrossRef]
- Lee, G.-Y.; Sung, J.; Lee, B. Recent advances in metasurface hologram technologies (Invited paper). ETRI J. 2019, 41, 10–22. [Google Scholar] [CrossRef]
- Genevet, P.; Capasso, F. Holographic optical metasurfaces: A review of current progress. Rep. Prog. Phys. 2015, 78, 024401. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Ding, G.; Luo, X.; Wang, S. Photoreconfigurable Metasurface for Independent Full-Space Control of Terahertz Waves. Sensors 2025, 25, 119. https://doi.org/10.3390/s25010119
Jiang Z, Ding G, Luo X, Wang S. Photoreconfigurable Metasurface for Independent Full-Space Control of Terahertz Waves. Sensors. 2025; 25(1):119. https://doi.org/10.3390/s25010119
Chicago/Turabian StyleJiang, Zhengxuan, Guowen Ding, Xinyao Luo, and Shenyun Wang. 2025. "Photoreconfigurable Metasurface for Independent Full-Space Control of Terahertz Waves" Sensors 25, no. 1: 119. https://doi.org/10.3390/s25010119
APA StyleJiang, Z., Ding, G., Luo, X., & Wang, S. (2025). Photoreconfigurable Metasurface for Independent Full-Space Control of Terahertz Waves. Sensors, 25(1), 119. https://doi.org/10.3390/s25010119