Stochastic H∞ Filtering of the Attitude Quaternion †
<p>Time histories of the Attenuation Ratio (black line) and the best guaranteed bound <math display="inline"><semantics> <msubsup> <mi>γ</mi> <mrow> <mi>Q</mi> <mi>H</mi> <mi>F</mi> </mrow> <mn>2</mn> </msubsup> </semantics></math> (blue line). 500 MC runs. <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi>σ</mi> <mi>ϵ</mi> </msub> <mo>,</mo> <msub> <mi>σ</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 2
<p>Time histories of the MC-mean of the Attenuation Ratios for various initial quaternion estimates. 50 MC runs. <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi>σ</mi> <mi>ϵ</mi> </msub> <mo>,</mo> <msub> <mi>σ</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 3
<p>Time histories of the MC-mean of the Attenuation Ratios for various initial matrices <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>P</mi> <mo stretchy="false">˜</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>. 50 MC runs. <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi>σ</mi> <mi>ϵ</mi> </msub> <mo>,</mo> <msub> <mi>σ</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 4
<p>Time histories of the quaternion estimation error MC-means (blue) and MC-standard deviations (red). 50 MC runs. <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi>σ</mi> <mi>ϵ</mi> </msub> <mo>,</mo> <msub> <mi>σ</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.001</mn> <mo>,</mo> <mn>0.1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 5
<p>Time histories of the angular estimation error MC-mean (blue) and of the ± MC-<math display="inline"><semantics> <mi>σ</mi> </semantics></math> envelope (red). 50 MC runs. <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi>σ</mi> <mi>ϵ</mi> </msub> <mo>,</mo> <msub> <mi>σ</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.001</mn> <mo>,</mo> <mn>0.1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 6
<p>Time histories of the MC-means of the quaternion estimation errors in QHF (blue), MEKF (red), and UQF (green). Case A. 50 MC runs. <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi>σ</mi> <mi>ϵ</mi> </msub> <mo>,</mo> <msub> <mi>σ</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.001</mn> <mo>,</mo> <mn>0.1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 7
<p>Time histories of the MC-means of the quaternion estimation errors in QHF (blue), MEKF (red), and UQF (green). Case B. 50 MC runs. <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi>σ</mi> <mi>ϵ</mi> </msub> <mo>,</mo> <msub> <mi>σ</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0.001</mn> <mo>,</mo> <mn>0.1</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Quaternion Stochastic Filtering
2.1. Problem Statement
2.2. Augmented Stochastic Process
2.3. Hamilton-Jacobi-Bellman Inequality
2.3.1. Case Where
Summary
2.3.2. Case Where
2.4. Storage Function V
2.5. Sufficient Conditions on the Matrices , ,
2.5.1. Convexity Condition with Respect to
2.5.2. Case Where
Sufficient Conditions in the Form of Linear Matrix Inequalities
2.5.3. Case Where
Sufficient Conditions in the Form of LMI
2.6. Quaternion Stochastic Filters Summary
2.6.1. Case Where
2.6.2. Case Where
3. Quaternion and Gyro Drift Estimation
3.1. Statement of the Problem
3.2. Design Model Development
4. Numerical Simulation
4.1. Description
4.2. Attenuation of Gyro
4.3. Attenuation of and
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wertz, J.R. (Ed.) Spacecraft Attitude Determination and Control; D. Reidel: Dordrecht, The Netherlands, 1984. [Google Scholar]
- Crassidis, J.; Markley, F.L.; Cheng, Y. Survey of Nonlinear Attitude Methods. J. Guid. Control Dyn. 2007, 30, 12–28. [Google Scholar] [CrossRef]
- Lefferts, E.J.; Markley, F.L.; Shuster, M.D. Kalman Filtering for Spacecraft Attitude Estimation. J. Guid. Control Dyn. 1982, 5, 417–429. [Google Scholar] [CrossRef]
- Bar-Itzhack, I.Y.; Oshman, Y. Attitude Determination from Vector Observations: Quaternion Estimation. IEEE Trans. Aerosp. Electron. Syst. 1985, AES-21, 128–136. [Google Scholar] [CrossRef]
- Crassidis, J.L.; Markley, F.L. Unscented Filtering for Spacecraft Attitude Estimation. J. Guid. Control Dyn. 2003, 26, 536–542. [Google Scholar] [CrossRef]
- Choukroun, D.; Oshman, Y.; Bar-Itzhack, I.Y. Novel Quaternion Kalman Filter. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 174–190. [Google Scholar] [CrossRef]
- Choukroun, D. Novel Stochastic Modeling and Filtering of the Attitude Quaternion. J. Astronaut. Sci. 2009, 57, 167–189. [Google Scholar] [CrossRef]
- Choukroun, D.; Choukroun, D. On Quaternion Modeling and Kalman Filtering from Vector Observations. J. Guid. Contro Dyn. 2023, 46, 1526–1535. [Google Scholar] [CrossRef]
- Markley, F.L.; Crassidis, J.L. Fundamentals of Spacecraft Attitude Determination and Control; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Thienel, J.; Sanner, R.M. A Coupled Nonlinear Spacecraft Attitude Controller and Observer with an Unknown Constant Gyro Bias and Gyro Noise. IEEE Trans. Autom. Control 2003, 48, 2011–2015. [Google Scholar] [CrossRef]
- Zanetti, R.; Bishop, R.H. Kalman Filters with Uncompensated Biases. J. Guid. Control Dyn. 2012, 35, 327–335. [Google Scholar] [CrossRef]
- Markley, F.L.; Berman, N.; Shaked, U. Deterministic EKF-like Estimator for Spacecraft Attitude Estimation. In Proceedings of the American Control Conference, Baltimore, MD, USA, 29 June–1 July 1994; IEEE: Piscataway, NJ, USA, 1994; pp. 247–251. [Google Scholar] [CrossRef]
- Silva, W.; Kuga, H.; Zanardi, M. Application of the Extended H∞ Filter for Attitude Determination and Gyro Calibration. In Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting, Santa-Fe, NM, USA, 26–30 February 2014. [Google Scholar]
- Silva, W.; Garcia, R.; Kuga, H.; Zanardi, M. Spacecraft Attitude Estimation using Unscented Kalman Filters, Regularized Particle Filter, and Extended H∞ Filter. In Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting, Snowbird, UT, USA, 8–12 January 2018. [Google Scholar]
- Lavoie, M.A.; Arsenault, J.; Forbes, J.R. An Invariant Extended H∞ Filter. In Proceedings of the IEEE 58th Conference on Decision and Control, Nice, France, 11–13 December 2019; pp. 7905–7910. [Google Scholar] [CrossRef]
- Berman, N.; Shaked, U. H∞ Filtering for Nonlinear Stochastic Systems. In Proceedings of the 13th Mediterranean Conference on Control and Automation, Limassol, Cyprus, 27–29 June 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 749–754. [Google Scholar] [CrossRef]
- Berman, N.; Shaked, U. H∞-like Control for Nonlinear Stochastic Systems. Syst. Control Lett. 2006, 55, 247–257. [Google Scholar] [CrossRef]
- Cooper, L.; Choukroun, D.; Berman, N. Spacecraft Attitude Estimation via Stochastic H∞ Filtering. In Proceedings of the AIAA Guidance Navigation and Control Conference, Toronto, ON, Canada, 2–5 August 2010. AIAA 2010-8340. [Google Scholar] [CrossRef]
- Jazwinski, A.H. Stochastic Processes and Filtering Theory; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Speyer, J.L.; Chung, W.H. Stochastic Processes, Estimation, and Control; Advances in Design and Control, 17; SIAM: Philadelphia, PA, USA, 2008. [Google Scholar]
- Sturm, J.F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 1999, 11, 625–653. [Google Scholar] [CrossRef]
- Lofberg, J. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the IEEE International Symposium on Computer Aided Control Systems Design, San Jose, CA, USA, 7–11 November 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 284–289. [Google Scholar] [CrossRef]
- Gershon, E.; Shaked, U.; Yaesh, I. H∞ Control and Estimation of State-Multiplicative Linear Systems; LNCIS-Lecture Notes in Control and Information Sciences; Springer: Berlin/Heidelberg, Germany, 2005; Volume 318, Appendix C. [Google Scholar]
0 | ||||||
---|---|---|---|---|---|---|
0 | ||||||
UQF MEKF QHF | UQF MEKF QHF | UQF MEKF QHF | |
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choukroun, D.; Cooper, L.; Berman, N. Stochastic H∞ Filtering of the Attitude Quaternion. Sensors 2024, 24, 7971. https://doi.org/10.3390/s24247971
Choukroun D, Cooper L, Berman N. Stochastic H∞ Filtering of the Attitude Quaternion. Sensors. 2024; 24(24):7971. https://doi.org/10.3390/s24247971
Chicago/Turabian StyleChoukroun, Daniel, Lotan Cooper, and Nadav Berman. 2024. "Stochastic H∞ Filtering of the Attitude Quaternion" Sensors 24, no. 24: 7971. https://doi.org/10.3390/s24247971
APA StyleChoukroun, D., Cooper, L., & Berman, N. (2024). Stochastic H∞ Filtering of the Attitude Quaternion. Sensors, 24(24), 7971. https://doi.org/10.3390/s24247971