Impact of Physiotherapy on Shoulder Kinematics in Swimmers with Swimmer’s Shoulder Pain
<p>Schematic diagram representing the phases of the protocol implemented in the study.</p> "> Figure 2
<p>Mean amplitude trend of internal/external rotation, flexion/extension, and adduction/abduction before physiotherapy treatment (black) and pathological subjects after physiotherapy treatment (red), before (solid line), and after (dashed line) fatiguing protocol.</p> "> Figure 3
<p>Box plots of the amplitude values for each angular rotation and condition (before and after the physiotherapy treatment and before and after the fatiguing protocol). The median values are in red with the box delimiting the 25° and 75° percentiles, and the red point indicates one outlier value.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Protocol
2.3. Acquisition and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goetti, P.; Denard, P.J.; Collin, P.; Ibrahim, M.; Hoffmeyer, P.; Lädermann, A. Shoulder Biomechanics in Normal and Selected Pathological Conditions. EFORT Open Rev. 2020, 5, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.-R.; Anand, P.; Varacallo, M. Anatomy, Shoulder and Upper Limb, Glenohumeral Joint; StatPearls: Tampa, FL, USA, 2022. [Google Scholar]
- Miniato, M.A.; Caire, M.J. Anatomy, Shoulder and Upper Limb, Shoulder; StatPearls: Tampa, FL, USA, 2018. [Google Scholar]
- Gibson, E.S.; Cairo, A.; Räisänen, A.M.; Kuntze, C.; Emery, C.A.; Pasanen, K. The Epidemiology of Youth Sport-Related Shoulder Injuries: A Systematic Review. Transl. Sports Med. 2022, 2022, 8791398. [Google Scholar] [CrossRef] [PubMed]
- Longo, U.G.; De Salvatore, S.; Carnevale, A.; Tecce, S.M.; Bandini, B.; Lalli, A.; Schena, E.; Denaro, V. Optical Motion Capture Systems for 3D Kinematic Analysis in Patients with Shoulder Disorders. Int. J. Environ. Res. Public Health 2022, 19, 12033. [Google Scholar] [CrossRef] [PubMed]
- Antonacci, C.; Longo, U.G.; Nazarian, A.; Schena, E.; Carnevale, A. Monitoring Scapular Kinematics through Wearable Magneto-Inertial Measurement Units: State of the Art and New Frontiers. Sensors 2023, 23, 6940. [Google Scholar] [CrossRef] [PubMed]
- Tooth, C.; Gofflot, A.; Schwartz, C.; Croisier, J.L.; Beaudart, C.; Bruyère, O.; Forthomme, B. Risk Factors of Overuse Shoulder Injuries in Overhead Athletes: A Systematic Review. Sports Health 2020, 12, 478–487. [Google Scholar] [CrossRef]
- Yoma, M.; Herrington, L.; Mackenzie, T. The Effects of Differing Density of Swim-Training Sessions On Shoulder Range of Motion and Isometric Force Production in National and University Level Swimmers. Int. J. Sports Phys. Ther. 2023, 18, 375–387. [Google Scholar] [CrossRef]
- Matthews, M.J.; Green, D.; Matthews, H.; Swanwick, E. The Effects of Swimming Fatigue on Shoulder Strength, Range of Motion, Joint Control, and Performance in Swimmers. Phys. Ther. Sport 2017, 23, 118–122. [Google Scholar] [CrossRef]
- De Martino, I.; Rodeo, S.A. The Swimmer’s Shoulder: Multi-Directional Instability. Curr. Rev. Musculoskelet. Med. 2018, 11, 167–171. [Google Scholar] [CrossRef]
- Fantozzi, S.; Giovanardi, A.; Magalhães, F.A.; Di Michele, R.; Cortesi, M.; Gatta, G. Assessment of Three-Dimensional Joint Kinematics of the Upper Limb during Simulated Swimming Using Wearable Inertial-Magnetic Measurement Units. J. Sports Sci. 2016, 34, 1073–1080. [Google Scholar] [CrossRef]
- Ricci, R.; Sona, A. Experimental Validation of an Ultrasound-Based Measurement System for Human Motion Detection and Analysis. In Proceedings of the Conference Record—IEEE Instrumentation and Measurement Technology Conference, Minneapolis, MN, USA, 6–9 May 2013. [Google Scholar]
- Cappozzo, A.; Della Croce, U.; Leardini, A.; Chiari, L. Human Movement Analysis Using Stereophotogrammetry. Part 1: Theoretical Background. Gait Posture 2005, 21, 186–196. [Google Scholar]
- Carnevale, A.; Longo, U.G.; Schena, E.; Massaroni, C.; Lo Presti, D.; Berton, A.; Candela, V.; Denaro, V. Wearable Systems for Shoulder Kinematics Assessment: A Systematic Review. BMC Musculoskelet. Disord. 2019, 20, 546. [Google Scholar] [CrossRef] [PubMed]
- Roldán-Jiménez, C.; Cuadros-Romero, M.; Bennett, P.; Cuesta-Vargas, A.I. Differences in Tridimensional Shoulder Kinematics between Asymptomatic Subjects and Subjects Suffering from Rotator Cuff Tears by Means of Inertial Sensors: A Cross-Sectional Study. Sensors 2023, 23, 1012. [Google Scholar] [CrossRef] [PubMed]
- Guignard, B.; Ayad, O.; Baillet, H.; Mell, F.; Simbaña Escobar, D.; Boulanger, J.; Seifert, L. Validity, Reliability and Accuracy of Inertial Measurement Units (IMUs) to Measure Angles: Application in Swimming. Sports Biomech. 2021, 23, 1471–1503. [Google Scholar] [CrossRef] [PubMed]
- Rigoni, M.; Gill, S.; Babazadeh, S.; Elsewaisy, O.; Gillies, H.; Nguyen, N.; Pathirana, P.N.; Page, R. Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device—A Validation Study. Sensors 2019, 19, 1781. [Google Scholar] [CrossRef] [PubMed]
- Cutti, A.G.; Giovanardi, A.; Rocchi, L.; Davalli, A.; Sacchetti, R. Ambulatory Measurement of Shoulder and Elbow Kinematics through Inertial and Magnetic Sensors. Med. Biol. Eng. Comput. 2008, 46, 169–178. [Google Scholar] [CrossRef]
- Deodato, M.; Martini, M.; Buoite Stella, A.; Citroni, G.; Ajčević, M.; Accardo, A.; Murena, L. Inertial Sensors and Pressure Pain Threshold to Evaluate People with Primary Adhesive Capsulitis: Comparison with Healthy Controls and Effects of a Physiotherapy Protocol. J. Funct. Morphol. Kinesiol. 2023, 8, 142. [Google Scholar] [CrossRef]
- Koshino, Y.; Akimoto, M.; Kawahara, D.; Watanabe, K.; Ishida, T.; Samukawa, M.; Kasahara, S.; Tohyama, H. Inertial Sensor-Based Assessment of Static Balance in Athletes with Chronic Ankle Instability. J. Sports Sci. Med. 2023, 22, 36–43. [Google Scholar] [CrossRef]
- Roldán-Jiménez, C.; Cuesta-Vargas, A.I. Age-Related Changes Analyzing Shoulder Kinematics by Means of Inertial Sensors. Clin. Biomech. 2016, 37, 70–76. [Google Scholar] [CrossRef]
- Deodato, M.; Coan, L.; Buoite Stella, A.; Ajčević, M.; Martini, M.; Di Lenarda, L.; Ratti, C.; Accardo, A.; Murena, L. Inertial Sensors-Based Assessment to Detect Hallmarks of Chronic Ankle Instability during Single-Leg Standing: Is the Healthy Limb “Healthy”? Clin. Biomech. 2023, 107, 106036. [Google Scholar] [CrossRef]
- De Baets, L.; van der Straaten, R.; Matheve, T.; Timmermans, A. Shoulder Assessment According to the International Classification of Functioning by Means of Inertial Sensor Technologies: A Systematic Review. Gait Posture 2017, 57, 278–294. [Google Scholar] [CrossRef]
- Luinge, H.J.; Veltink, P.H.; Baten, C.T.M. Ambulatory Measurement of Arm Orientation. J. Biomech. 2007, 40, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Picerno, P.; Cereatti, A.; Cappozzo, A. Joint Kinematics Estimate Using Wearable Inertial and Magnetic Sensing Modules. Gait Posture 2008, 28, 588–595. [Google Scholar] [CrossRef] [PubMed]
- de Magalhaes, F.; Magalhães, F.A. Three-Dimensional Joint Kinematics of Swimming Using Body-Worn Inertial and Magnetic Sensors. Ph.D. Thesis, Department of Electrical, Electronic and Information Engineering, Alma Mater Studiorum Università di Bologna, Bologna, Italy, 2014. [Google Scholar]
- Yoma, M.; Herrington, L.; Mackenzie, T.A. The Effect of Exercise Therapy Interventions on Shoulder Pain and Musculoskeletal Risk Factors for Shoulder Pain in Competitive Swimmers: A Scoping Review. J. Sport Rehabil. 2022, 31, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Tavares, N.; Dias, G.; Carvalho, P.; Vilas-Boas, J.P.; Castro, M.A. Effectiveness of Therapeutic Exercise in Musculoskeletal Risk Factors Related to Swimmer’s Shoulder. Eur. J. Investig. Health Psychol. Educ. 2022, 12, 601–615. [Google Scholar] [CrossRef]
- Ciullo, J.V.; Stevens, G.G. The Prevention and Treatment of Injuries to the Shoulder in Swimming. Sports Med. 1989, 7, 182–204. [Google Scholar] [CrossRef]
- Raffini, A.; Buoite Stella, A.; Martini, M.; Mazzari, L.; Accardo, A. Influence of Fatigue in Swimmers Suffering from Swimmer Shoulder Pain. In Proceedings of the 9th European Medical and Biological Engineering Conference, Portorož, Slovenia, 9–13 June 2024; Jarm, T., Šmerc, R., Mahnič-Kalamiza, S., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 91–97. [Google Scholar]
- Tovin, B.J. Prevention and Treatment of Swimmer’s Shoulder. N. Am. J. Sports Phys. Ther. 2006, 1, 166–175. [Google Scholar]
- Buoite Stella, A.; Cargnel, A.; Raffini, A.; Mazzari, L.; Martini, M.; Ajcevic, M.; Accardo, A.; Deodato, M.; Murena, L. Shoulder Tensiomyography and Isometric Strength in Swimmers before and after a Fatiguing Protocol. J. Athl. Train. 2023, 59, 738–744. [Google Scholar] [CrossRef]
- Liaghat, B.; Pedersen, J.R.; Young, J.J.; Thorlund, J.B.; Juul-Kristensen, B.; Juhl, C.B. Joint Hypermobility in Athletes Is Associated with Shoulder Injuries: A Systematic Review and Meta-Analysis. BMC Musculoskelet. Disord. 2021, 22, 1–9. [Google Scholar] [CrossRef]
- Blanch, P. Conservative Management of Shoulder Pain in Swimming. Phys. Ther. Sport 2004, 5, 109–124. [Google Scholar] [CrossRef]
- Cools, A.M.; Johansson, F.R.; Borms, D.; Maenhout, A. Prevention of Shoulder Injuries in Overhead Athletes: A Science-Based Approach. Braz. J. Phys. Ther. 2015, 19, 331–339. [Google Scholar] [CrossRef]
- Walker, H.; Gabbe, B.; Wajswelner, H.; Blanch, P.; Bennell, K. Shoulder Pain in Swimmers: A 12-Month Prospective Cohort Study of Incidence and Risk Factors. Phys. Ther. Sport 2012, 13, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Liaghat, B.; Juul-Kristensen, B.; Frydendal, T.; Marie Larsen, C.; Søgaard, K.; Ilkka Tapio Salo, A. Competitive Swimmers with Hypermobility Have Strength and Fatigue Deficits in Shoulder Medial Rotation. J. Electromyogr. Kinesiol. 2018, 39, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sharples, A.P.; Turner, D.C. Skeletal Muscle Memory. Am. J. Physiol. Cell Physiol. 2023, 324, C1274–C1294. [Google Scholar] [CrossRef] [PubMed]
- Kovoor, M.; Durairaj, M.; Karyakarte, M.S.; Zair Hussain, M.; Ashraf, M.; Maguluri, L.P. Sensor-Enhanced Wearables and Automated Analytics for Injury Prevention in Sports. Meas. Sens. 2024, 32, 101054. [Google Scholar] [CrossRef]
- Burns, D.M.; Leung, N.; Hardisty, M.; Whyne, C.M.; Henry, P.; McLachlin, S. Shoulder Physiotherapy Exercise Recognition: Machine Learning the Inertial Signals from a Smartwatch. Physiol. Meas. 2018, 39, 075007. [Google Scholar] [CrossRef]
- Bächlin, M.; Tröster, G. Swimming Performance and Technique Evaluation with Wearable Acceleration Sensors. Pervasive Mob. Comput. 2012, 8, 68–81. [Google Scholar] [CrossRef]
- Bao, K.; Gao, J.; Zhang, X.; Qi, W.; Liu, X.; Tian, H. The Value of Wearable Sensors in Swimming Flexibility Training under the Background of the Internet of Things. Wirel. Commun. Mob. Comput. 2022, 2022, 3035001. [Google Scholar] [CrossRef]
- Morais, J.E.; Oliveira, J.P.; Sampaio, T.; Barbosa, T.M. Wearables in Swimming for Real-Time Feedback: A Systematic Review. Sensors 2022, 22, 3677. [Google Scholar] [CrossRef]
Internal/External [°] | Flexion/Extension [°] | Abduction/Adduction [°] | ||
---|---|---|---|---|
Before Treatment | Before fatigue | 80 ± 5 | 72 ± 28 | 124 ± 15 |
After fatigue | 92 ± 8 | 71 ± 34 | 131 ± 10 | |
After Treatment | Before fatigue | 80 ± 8 | 54 ± 22 | 126 ± 17 |
After fatigue | 81 ± 11 | 59 ± 21 | 134 ± 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raffini, A.; Martini, M.; Mazzari, L.; Buoite Stella, A.; Deodato, M.; Murena, L.; Accardo, A. Impact of Physiotherapy on Shoulder Kinematics in Swimmers with Swimmer’s Shoulder Pain. Sensors 2024, 24, 7936. https://doi.org/10.3390/s24247936
Raffini A, Martini M, Mazzari L, Buoite Stella A, Deodato M, Murena L, Accardo A. Impact of Physiotherapy on Shoulder Kinematics in Swimmers with Swimmer’s Shoulder Pain. Sensors. 2024; 24(24):7936. https://doi.org/10.3390/s24247936
Chicago/Turabian StyleRaffini, Alessandra, Miriam Martini, Laura Mazzari, Alex Buoite Stella, Manuela Deodato, Luigi Murena, and Agostino Accardo. 2024. "Impact of Physiotherapy on Shoulder Kinematics in Swimmers with Swimmer’s Shoulder Pain" Sensors 24, no. 24: 7936. https://doi.org/10.3390/s24247936
APA StyleRaffini, A., Martini, M., Mazzari, L., Buoite Stella, A., Deodato, M., Murena, L., & Accardo, A. (2024). Impact of Physiotherapy on Shoulder Kinematics in Swimmers with Swimmer’s Shoulder Pain. Sensors, 24(24), 7936. https://doi.org/10.3390/s24247936