SiCRNN: A Siamese Approach for Sleep Apnea Identification via Tracheal Microphone Signals
<p>The scatter plots illustrate the output of the principal component (PCA) applied to the output of the final GRU layer in the SiCRNN model. The resulting embeddings are derived from two patients under two conditions: (<b>a</b>) noise-free patient embeddings and (<b>b</b>) noisy patient embeddings. The observed distances between the <span class="html-italic">apnea</span> and <span class="html-italic">non-apnea</span> clusters are <math display="inline"><semantics> <mrow> <mn>2.0</mn> </mrow> </semantics></math> in the noise-free scenario and <math display="inline"><semantics> <mrow> <mn>0.87</mn> </mrow> </semantics></math> in the presence of noise, respectively.</p> "> Figure 2
<p>Overview of the proposed SiCRNN framework. The purple dashed line highlights the Siamese configuration employed during the training phase, whereas the green dashed line corresponds to the inference phase, which is carried out through the k-means clustering algorithm.</p> "> Figure 3
<p>The scatter density plot shows the results of the hyperparameter tuning by relating the <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>i</mi> <mi>s</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>l</mi> </mrow> </semantics></math>, and <span class="html-italic">F</span>1 <span class="html-italic">score</span> metrics to the number of GRU hidden layers used during training. On the x-axis, <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>i</mi> <mi>s</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math> values are reported, while the y-axis represents <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>l</mi> </mrow> </semantics></math> values, and the size of the points indicates the <span class="html-italic">F</span>1 <span class="html-italic">score</span>. The different shades of orange represent the number of convolutional blocks used in the model’s training.</p> "> Figure 4
<p>The scatter density plot shows the results of the hyperparameter tuning by relating the <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>i</mi> <mi>s</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>l</mi> </mrow> </semantics></math>, and <span class="html-italic">F</span>1 <span class="html-italic">score</span> metrics to the dimension of the kernel size used during training. On the x-axis, <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>i</mi> <mi>s</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math> values are reported, while the y-axis represents <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>l</mi> </mrow> </semantics></math> values, and the size of the points indicates the <span class="html-italic">F</span>1 <span class="html-italic">score</span>. The different shades of gray represent the kernel size used in the model’s training.</p> "> Figure 5
<p>The scatter density plot shows the results of the hyperparameter tuning by relating the <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>i</mi> <mi>s</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>l</mi> </mrow> </semantics></math>, and <span class="html-italic">F</span>1 <span class="html-italic">score</span> metrics to the number of MEL bands selected for each input sample frequency during training. On the x-axis, <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>i</mi> <mi>s</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math> values are reported, while the y-axis represents <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>l</mi> </mrow> </semantics></math> values, and the size of the points indicates the <span class="html-italic">F</span>1 <span class="html-italic">score</span>. The different shades of blue represent the number of MEL bands used in the model’s training.</p> "> Figure 6
<p>The scatter density plot shows the results of the hyperparameter tuning by relating the <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>i</mi> <mi>s</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>l</mi> </mrow> </semantics></math>, and <span class="html-italic">F</span>1 <span class="html-italic">score</span> metrics to the number of convolutional blocks used during training. On the x-axis, <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> <mi>e</mi> <mi>c</mi> <mi>i</mi> <mi>s</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> </mrow> </semantics></math> values are reported, while the y-axis represents <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>l</mi> </mrow> </semantics></math> values, and the size of the points indicates the <span class="html-italic">F</span>1 <span class="html-italic">score</span>. The different shades of green represent the number of convolutional blocks used in the model’s training.</p> "> Figure 7
<p>(<b>a</b>) The region located below the top of the red mask indicates the apnea events; (<b>b</b>,<b>c</b>) spectrograms with the labeled red mask display an apnea event with significant spectral content. The time associated with each individual bin in the spectrograms is <math display="inline"><semantics> <mrow> <mn>11.56</mn> </mrow> </semantics></math> ms.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. SiCRNN Architecture
2.3. Training Strategy
3. Experimental Protocol
3.1. Training Settings and Performance Metrics
- is the loss function.
- N is the number of instances in the dataset.
- is the label of the i-th example.
- is the Euclidean distance between two instances in the dataset provided as input.
- m is a margin constant that serves to control how much the representations of samples from different classes need to be separated in the embedding space. For our purposes, m was experimentally set to 2.
3.2. SiCRNN Tuning
3.3. State-of-the-Art Comparison
4. Results
Qualitative Results
5. Findings and Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Platon, A.L.; Stelea, C.G.; Boișteanu, O.; Patrascanu, E.; Zetu, I.N.; Roșu, S.N.; Trifan, V.; Palade, D.O. An Update on Obstructive Sleep Apnea Syndrome—A Literature Review. Medicina 2023, 59, 1459. [Google Scholar] [CrossRef] [PubMed]
- Bassaly, A.; Vicini, C. The Obstructive Sleep Apnea Syndrome (OSAS). J.-Otolaryngol.-Ent. Res. 2016, 5, 1–7. [Google Scholar]
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Conley, R.S.; Cattaneo, P.M.; Haskell, B.S. Characterization of the Upper Airway Morphology and Its Changes in the Apneic Patient Using Cone Beam Computed Tomography. In Cone Beam Computed Tomography in Orthodontics: Indications, Insights, and Innovations; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; Chapter 13; pp. 273–291. [Google Scholar]
- Guilleminault, C.; Tilkian, A.; Dement, W.C. The sleep apnea syndromes. Annu. Rev. Med. 1976, 27, 465–484. [Google Scholar] [CrossRef] [PubMed]
- Sink, J.; Bliwise, D.L.; Dement, W.C. Self-reported excessive daytime somnolence and impaired respiration in sleep. Chest 1986, 90 2, 177–180. [Google Scholar] [CrossRef]
- Azagra-Calero, E.; Espinar-Escalona, E.; Barrera-Mora, J.M.; Llamas-Carreras, J.M.; Solano-Reina, E. Obstructive sleep apnea syndrome (OSAS). Review of the literature. Med. Oral Patol. Oral Cir. Bucal 2012, 17, e925. [Google Scholar] [CrossRef]
- Janbakhshi, P.; Ina Kodrasi, H.B. Obstructive Sleep Apnea Syndrome (OSAS). Review of the literature. Med. Oral Patol. Oral Cir. Bucal 2019, 17, e925. [Google Scholar]
- Paduano, S.; Paduano, F.P.; Aiello, D.; Barbara, L.; Zampogna, S.; Pujia, R.; Malara, C.; Cantile, T.; Ferrazzano, G.F. OSAS in developing age: Screening of a Southern Italy population. Eur. J. Paediatr. Dent. 2019, 20 4, 302–305. [Google Scholar]
- Jafari, B.; Mohsenin, V. Polysomnography. Clin. Chest Med. 2010, 31, 287–297. [Google Scholar] [CrossRef]
- Park, J.W. The diagnosis of sleep related breathing disorders and polysomnography. J. Korean Dent. Assoc. 2015, 53, 238–248. [Google Scholar] [CrossRef]
- Ingram, D.G.; Crane, S.C.; Halbower, A.C. Polysomnography. In Sleep in Children with Neurodevelopmental Disabilities: An Evidence-Based Guide; Springer: Berlin/Heidelberg, Germany, 2019; pp. 27–43. [Google Scholar]
- Espinosa, M.A.; Ponce, P.; Molina, A.; Borja, V.; Torres, M.G.; Rojas, M. Advancements in Home-Based Devices for Detecting Obstructive Sleep Apnea: A Comprehensive Study. Sensors 2023, 23, 9512. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.M.; Roffwarg, H.P.; Kennedy, S.J.; Guilleminault, C.; Cinque, J.; Cohn, M.A.; Karacan, I.; Kupfer, D.J.; Lemmi, H.; Miles, L.E.; et al. Sleep-wake disorders based on a polysomnographic diagnosis. A national cooperative study. JAMA 1982, 247 7, 997–1003. [Google Scholar] [CrossRef]
- Penzel, T.; Sabil, A. The use of tracheal sounds for the diagnosis of sleep apnoea. Breathe 2017, 13, e37–e45. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, W.; Moussavi, Z. Design and Analysis of a Contact Piezo Microphone for Recording Tracheal Breathing Sounds. Sensors 2024, 24, 5511. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, S.S.; Mendonça, F.; Ravelo-García, A.G.; Morgado-Dias, F. A Systematic Review of Detecting Sleep Apnea Using Deep Learning. Sensors 2019, 19, 4934. [Google Scholar] [CrossRef] [PubMed]
- Korompili, G.; Kokkalas, L.; Mitilineos, S.A.; Tatlas, N.A.; Potirakis, S.M. Detecting apnea/hypopnea events time location from sound recordings for patients with severe or moderate sleep apnea syndrome. Appl. Sci. 2021, 11, 6888. [Google Scholar] [CrossRef]
- Li, R.; Li, W.; Yue, K.; Li, Y. Convolutional neural network for screening of obstructive sleep apnea using snoring sounds. Biomed. Signal Process. Control 2023, 86, 104966. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, C.; Yue, K.; Li, R.; Shen, F.; Shuai, W.; Li, W.; Dai, L. Automated sleep apnea detection in snoring signal using long short-term memory neural networks. Biomed. Signal Process. Control 2022, 71, 103238. [Google Scholar] [CrossRef]
- Ziqiang, Y.; Jianxin, P.; Zhang, X.; Lijuan, S. Snoring Sound Recognition Using Multi-Channel Spectrograms. Arch. Acoust. 2024, 49, 169–178. [Google Scholar]
- Le, V.L.; Kim, D.; Cho, E.; Jang, H.; Reyes, R.D.; Kim, H.; Lee, D.; Yoon, I.Y.; Hong, J.; Kim, J.W. Real-time detection of sleep apnea based on breathing sounds and prediction reinforcement using home noises: Algorithm development and validation. J. Med. Internet Res. 2023, 25, e44818. [Google Scholar] [CrossRef]
- Saini, B.S.; Kaushik, C.; Vashishth, A.; Tanwar, L. Detection of Sleep Apnea and its Intensity in Adults. In Proceedings of the 2023 World Conference on Communication & Computing (WCONF), Raipur, India, 14–16 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Serrano, S.; Patanè, L.; Serghini, O.; Scarpa, M. Detection and Classification of Obstructive Sleep Apnea Using Audio Spectrogram Analysis. Electronics 2024, 13, 2567. [Google Scholar] [CrossRef]
- Ding, L.; Peng, J.; Song, L.; Zhang, X. Automatically detecting apnea-hypopnea snoring signal based on VGG19+ LSTM. Biomed. Signal Process. Control 2023, 80, 104351. [Google Scholar] [CrossRef]
- Korompili, G.; Amfilochiou, A.; Kokkalas, L.; Mitilineos, S.A.; Tatlas, N.A.; Kouvaras, M.; Kastanakis, E.; Maniou, C.; Potirakis, S.M. PSG-Audio, a scored polysomnography dataset with simultaneous audio recordings for sleep apnea studies. Sci. Data 2021, 8, 197. [Google Scholar] [CrossRef] [PubMed]
- Wyse, L. Audio spectrogram representations for processing with convolutional neural networks. arXiv 2017, arXiv:1706.09559. [Google Scholar]
- Çakır, E.; Parascandolo, G.; Heittola, T.; Huttunen, H.; Virtanen, T. Convolutional Recurrent Neural Networks for Polyphonic Sound Event Detection. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 1291–1303. [Google Scholar] [CrossRef]
- Aironi, C.; Cornell, S.; Principi, E.; Squartini, S. Graph Node Embeddings for ontology-aware Sound Event Classification: An evaluation study. In Proceedings of the 2022 30th European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, 29 August–2 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 414–418. [Google Scholar]
- Shiri, F.M.; Perumal, T.; Mustapha, N.; Mohamed, R. A Comprehensive Overview and Comparative Analysis on Deep Learning Models: CNN, RNN, LSTM, GRU. arXiv 2023, arXiv:2305.17473. [Google Scholar]
- ElMoaqet, H.; Eid, M.; Glos, M.; Ryalat, M.; Penzel, T. Deep Recurrent Neural Networks for Automatic Detection of Sleep Apnea from Single Channel Respiration Signals. Sensors 2020, 20, 5037. [Google Scholar] [CrossRef]
- Chicco, D. Siamese neural networks: An overview. Artif. Neural Netw. 2021, 2190, 73–94. [Google Scholar]
- Shalaby, M.; Belal, N.A.; Omar, Y. Data clustering improves Siamese neural networks classification of Parkinson’s disease. Complexity 2021, 2021, 3112771. [Google Scholar] [CrossRef]
- Nanni, L.; Rigo, A.; Lumini, A.; Brahnam, S. Spectrogram Classification Using Dissimilarity Space. Appl. Sci. 2020, 10, 4176. [Google Scholar] [CrossRef]
- Juba, B.; Le, H.S. Precision-recall versus accuracy and the role of large data sets. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 4039–4048. [Google Scholar]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In Proceedings of the Australasian Joint Conference on Artificial Intelligence, Hobart, Australia, 4–8 December 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1015–1021. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Huzaifah, M. Comparison of time-frequency representations for environmental sound classification using convolutional neural networks. arXiv 2017, arXiv:1706.07156. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Li, Y.; Chen, C.L.P.; Zhang, T. A Survey on Siamese Network: Methodologies, Applications, and Opportunities. IEEE Trans. Artif. Intell. 2022, 3, 994–1014. [Google Scholar] [CrossRef]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G.E. A Simple Framework for Contrastive Learning of Visual Representations. arXiv 2020, arXiv:2002.05709. [Google Scholar]
- Droghini, D.; Squartini, S.; Principi, E.; Gabrielli, L.; Piazza, F. Audio Metric Learning by Using Siamese Autoencoders for One-Shot Human Fall Detection. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 5, 108–118. [Google Scholar] [CrossRef]
- Cantarini, M.; Gabrielli, L.; Squartini, S. Few-Shot Emergency Siren Detection. Sensors 2022, 22, 4338. [Google Scholar] [CrossRef]
- Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A Unified Embedding for Face Recognition and Clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Malhotra, A.; Ayappa, I.; Ayas, N.; Collop, N.; Kirsch, D.; Mcardle, N.; Mehra, R.; Pack, A.I.; Punjabi, N.; White, D.P.; et al. Metrics of sleep apnea severity: Beyond the apnea-hypopnea index. Sleep 2021, 44, zsab030. [Google Scholar] [CrossRef]
- Berry, D.T.R.; Webb, W.B.; Block, A.J. Sleep apnea syndrome. A critical review of the apnea index as a diagnostic criterion. Chest 1984, 86, 529–531. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
CNN kernel size | [5,5], [3,3], [5,1], [3,1] |
Convolutional blocks | 2, 3, 4 |
GRU hidden layers | 32, 64, 128 |
Input Type | MEL Bands | Frequency Range [Hz] | Input Size |
---|---|---|---|
MEL | 8 | 0–500 | [8,374] |
MEL | 12 | 0–1000 | [12,374] |
MEL | 18 | 0–2000 | [18,374] |
MEL | 25 | 0–4000 | [25,374] |
MEL | 32 | 0–8000 | [32,374] |
STFT | - | 0–500 | [1025,24] |
Input Type | MEL Bands | Kernel Size | Conv. Layers | Hidden GRU | F1 | Recall | Precision |
---|---|---|---|---|---|---|---|
MEL | 8 | [3,3] | 2 | 128 | 0.89 | 0.86 | 0.91 |
MEL | 12 | [5,5] | 4 | 32 | 0.90 | 0.95 | 0.86 |
MEL | 18 | [5,5] | 4 | 32 | 0.89 | 0.91 | 0.88 |
MEL | 25 | [3,3] | 2 | 128 | 0.85 | 0.79 | 0.93 |
MEL | 32 | [5,5] | 3 | 64 | 0.88 | 0.87 | 0.90 |
STFT | - | [5,5] | 4 | 32 | 0.89 | 0.93 | 0.86 |
Input Type | MEL Bands | F1 | Recall | Precision |
---|---|---|---|---|
MEL | 8 | 0.75 | 0.84 | 0.68 |
MEL | 12 | 0.71 | 0.79 | 0.65 |
MEL | 18 | 0.71 | 0.81 | 0.64 |
MEL | 25 | 0.66 | 0.77 | 0.58 |
MEL | 32 | 0.70 | 0.72 | 0.68 |
STFT | - | 0.71 | 0.85 | 0.61 |
Model | Input Type | MEL Bands | Params (M) | FLOPS (G) | Input Size (MB) | Total Size (MB) |
---|---|---|---|---|---|---|
SiCRNN | MEL | 8 | 0.60 | 0.04 | 0.01 | 7.65 |
MEL | 12 | 1.1 | 0.33 | 0.02 | 13.07 | |
MEL | 18 | 1.1 | 0.73 | 0.03 | 18.67 | |
MEL | 25 | 0.60 | 0.11 | 0.04 | 18.14 | |
MEL | 32 | 0.86 | 0.33 | 0.05 | 22.87 | |
STFT | - | 1.1 | 0.13 | 0.09 | 41.06 | |
VGG19+LSTM | MEL | 8 | 24 | 1.27 | 0.01 | 105.37 |
MEL | 12 | 24 | 1.60 | 0.02 | 111.25 | |
MEL | 18 | 24 | 2.39 | 0.03 | 120.81 | |
MEL | 25 | 24 | 3.56 | 0.04 | 133.13 | |
MEL | 32 | 24 | 4.60 | 0.05 | 145.62 | |
STFT | - | 24 | 9.19 | 0.09 | 195.21 |
SiCRNN | VGG19+LSTM | |||||
---|---|---|---|---|---|---|
F1 | Recall | Precision | F1 | Recall | Precision | |
Split 1 | 0.90 | 0.90 | 0.90 | 0.75 | 0.84 | 0.68 |
Split 2 | 0.91 | 0.91 | 0.92 | 0.62 | 0.78 | 0.51 |
Split 3 | 0.90 | 0.88 | 0.92 | 0.64 | 0.91 | 0.50 |
Mean (SD) | 0.90 (0.008) | 0.90 (0.01) | 0.91 (0.01) | 0.67 (0.07) | 0.84 (0.06) | 0.56 (0.1) |
Read-Out | F1 | Precision | Recall | Inference Time (s) |
---|---|---|---|---|
K-means | ||||
SVC | ||||
KNN |
Train | Validation | Test | |
---|---|---|---|
Split 1 | 1112, 1110, 1108, 1106, 1095, 1093, 1089, 1088, 1086, 1082, 1071, 1069, 1057, 1045, 1041, 1039, 1037, 1028, 1022, 1010, 1008, 1006, 995 | 1120, 1104, 1043, 1024, 1018, 1014 | 1118, 1116, 1073, 1059, 1026, 1020, 1000, 999 |
Split 2 | 1120, 1118, 1116, 1112, 1110, 1108, 1106, 1104, 1095, 1093, 1089, 1088, 1086, 1082, 1073, 1071, 1069, 1059, 1057, 1045, 1043, 1041, 1039 | 1010, 1008, 1006, 1000, 999, 995 | 1037, 1028, 1026, 1024, 1022, 1020, 1018, 1014 |
Split 3 | 1086, 1082, 1073, 1071, 1069, 1059, 1057, 1045, 1043, 1041, 1039, 1037, 1028, 1026, 1024, 1022, 1020, 1018, 1014, 1010, 1008, 1006, 1000 | 1120, 1118, 1116 1112, 999, 995 | 1110, 1108, 1106, 1104, 1095, 1093, 1089, 1088 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lillini, D.; Aironi, C.; Migliorelli, L.; Gabrielli, L.; Squartini, S. SiCRNN: A Siamese Approach for Sleep Apnea Identification via Tracheal Microphone Signals. Sensors 2024, 24, 7782. https://doi.org/10.3390/s24237782
Lillini D, Aironi C, Migliorelli L, Gabrielli L, Squartini S. SiCRNN: A Siamese Approach for Sleep Apnea Identification via Tracheal Microphone Signals. Sensors. 2024; 24(23):7782. https://doi.org/10.3390/s24237782
Chicago/Turabian StyleLillini, Davide, Carlo Aironi, Lucia Migliorelli, Leonardo Gabrielli, and Stefano Squartini. 2024. "SiCRNN: A Siamese Approach for Sleep Apnea Identification via Tracheal Microphone Signals" Sensors 24, no. 23: 7782. https://doi.org/10.3390/s24237782
APA StyleLillini, D., Aironi, C., Migliorelli, L., Gabrielli, L., & Squartini, S. (2024). SiCRNN: A Siamese Approach for Sleep Apnea Identification via Tracheal Microphone Signals. Sensors, 24(23), 7782. https://doi.org/10.3390/s24237782