A Survey of Advanced Border Gateway Protocol Attack Detection Techniques
<p>BGP-speaking router.</p> "> Figure 2
<p>Noisy BGP hijack.</p> "> Figure 3
<p>Prefix hijack.</p> "> Figure 4
<p>Subprefix hijack.</p> "> Figure 5
<p>AS path forgery hijacks.</p> "> Figure 6
<p>BGP hijacks and interceptions to compromise CAs.</p> "> Figure 7
<p>MED modification.</p> "> Figure 8
<p>Attack was neither stored nor detected.</p> "> Figure 9
<p>BGP-speaking router control and data planes.</p> "> Figure 10
<p>MP leader–follower dynamics for BGP detection.</p> "> Figure 11
<p>MdRQA group anomaly detection.</p> "> Figure 12
<p>Trajectory in phase space of Lorenz Attractor.</p> ">
Abstract
:1. Introduction
- Establish the demand and conditions for an AS-group-level multi-viewpoint approach to the detection of advanced BGP attacks.
- Conduct a systematic survey of 178 unique anomaly detection techniques for the benefit of researchers.
- Identify possible MVP detection candidates for the detection of advanced BGP attacks that target route collector visibility limitations.
- Perform early exploratory analysis of, and report preliminary results from, experiments conducted using some of the identified candidates that have never before been applied to BGP anomaly detection.
2. Inter-Domain Routing and BGP
3. BGP Anomalies and Attacks
3.1. Prefix Attacks
3.2. Subprefix Attacks
3.3. AS Path Forgery
- Type-1 Attack: The attacker (ASA) strictly claims to be a neighbor of the victim (ASV) by announcing a forged AS path A, V. This is a direct assertion of false adjacency and is a clear example of AS path forgery.
- Type-2 to Type-5 Attacks: These involve extending the forged AS path, claiming to be progressively further from the ASV in terms of AS hops. The longer the forged path, the stealthier, but potentially less impactful, the attack becomes in terms of traffic redirection.
3.4. Interception Attacks
3.5. Replay and Suppression Attacks
3.6. Collusion Attacks
3.7. MED Modification Attacks
3.8. RFD/MRAI Timer Exploitation
3.9. Denial of Service (DoS)
3.10. Monitor-Evasive Attacks
4. Why the Need for Low-Parameter Computationally Efficient Techniques?
5. Why the Need for a Group-Level AS Anomaly Detection Technique?
6. Attacks that Require Advanced Detection
- Inclusion Criteria:
- −
- MVP Detection: Attacks detectable earlier through the correlation of data from multiple network viewpoints, revealing inconsistencies in BGP announcements (e.g., attack surfaces and temporal elements).
- −
- Collaborative or Distributed Nature: Attacks involving collusion between ASs, requiring group-level analysis to detect coordinated malicious activities.
- −
- Complex AS Interactions: Attacks involving intricate routing dynamics across multiple ASs that require an understanding of AS relationships for detection.
- −
- Sophisticated BGP Manipulation: Advanced attacks where the manipulation of routing information is subtle and requires a multi-AS viewpoint analysis to detect.
- −
- Stealthy/Evasive Techniques: Attacks designed to evade conventional monitoring, including those that selectively announce or alter AS path attributes to bypass public route collectors.
- Exclusion Criteria:
- −
- Simple Attacks: Direct attacks such as basic prefix hijacking, which are easily detectable without sophisticated multi-point analysis.
- −
- Non-BGP Attacks: Attacks relying on vulnerabilities outside the BGP, such as non-protocol-layer attacks.
- −
- Non-Strategic Impact: Attacks that do not influence BGP routing decisions strategically or involve complex AS-level interactions.
6.1. Prefix Hijacking
6.2. Subprefix
6.3. AS Path Forgery
6.4. AS Path Poisoning
6.5. Interception Attacks
6.6. Replay and Suppression Attacks
6.7. Collusion Attacks
6.8. MED Modifications and RFD/MRAI Timer Exploitation
6.9. Community Manipulation
6.10. DoS
6.11. Monitor-Aware/Evasive Attack
7. Survey of Anomaly Detection Techniques
- Their parameter scope;
- Their ability to be deployed using groups of multiple observable ASs;
- Their ability to identify how the peers in a group of ASs are similar or different, how they interact with each other, and extant group-level AS dynamics;
- Their ability to capture and quantify the group interactions, dynamics, and information about collective ASs, with the objective of the group-level high-dimensional MVP anomaly detection of multiple observables (i.e., advanced BGP anomaly detection).
8. Advanced BGP attack Detection Candidates
8.1. Federated Learning
8.2. Multidimensional and Leader–Follower MP
8.3. Multidimensional RQA
- The Recurrence Rate (RR) is the probability that the system recurs.
- The determinism measurement (DET) is a predictability measure based on the diagonal lines of recurrence points and the percentage of recurrence points that form those structures.
- The maximum length (MaxL) of the diagonal structure formed by adjacent recurrent points.
- The average length of the diagonal structures (MeanL) formed by recurrent points or the mean time trajectory segments that are close to each other.
9. Discussion and Future Work
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ottino, J.M. Engineering complex systems. Nature 2004, 427, 399. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Hui, P. Modeling Internet Security Investments: Tackling Topological Information Uncertainty. In Decision and Game Theory for Security; Baras, J.S., Katz, J., Altman, E., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7037, pp. 239–257. [Google Scholar] [CrossRef]
- Alderson, D.L.; Doyle, J.C.; Willinger, W. Lessons from “a First-Principles Approach to Understanding the Internet’s Router-Level Topology”. SIGCOMM Comput. Commun. Rev. 2019, 49, 96–103. [Google Scholar] [CrossRef]
- Motamedi, R.; Yeganeh, B.; Chandrasekaran, B.; Rejaie, R.; Maggs, B.M.; Willinger, W. On Mapping the Interconnections in Today’s Internet. IEEE/ACM Trans. Netw. 2019, 27, 2056–2070. [Google Scholar] [CrossRef]
- Cerf, V.G.; Kahn, R.E. A protocol for packet network intercommunication. ACM SIGCOMM Comput. Commun. Rev. 2005, 35, 71–82. [Google Scholar] [CrossRef]
- Mitseva, A.; Panchenko, A.; Engel, T. The state of affairs in BGP security: A survey of attacks and defenses. Comput. Commun. 2018, 124, 45–60. [Google Scholar] [CrossRef]
- Testart, C.; Richter, P.; King, A.; Dainotti, A.; Clark, D. Profiling BGP Serial Hijackers: Capturing Persistent Misbehavior in the Global Routing Table. In Proceedings of the Internet Measurement Conference, Amsterdam, The Netherlands, 21–23 October 2019; pp. 420–434. [Google Scholar] [CrossRef]
- Sermpezis, P.; Kotronis, V.; Dainotti, A.; Dimitropoulos, X. A Survey among Network Operators on BGP Prefix Hijacking. SIGCOMM Comput. Commun. Rev. 2018, 48, 64–69. [Google Scholar] [CrossRef]
- de Urbina Cazenave, I.O.; Köşlük, E.; Ganiz, M.C. An anomaly detection framework for BGP. In Proceedings of the 2011 International Symposium on Innovations in Intelligent Systems and Applications, Istanbul, Turkey, 15–18 June 2011; pp. 107–111. [Google Scholar]
- Cho, S.; Fontugne, R.; Cho, K.; Dainotti, A.; Gill, P. BGP hijacking classification. In Proceedings of the 2019 Network Traffic Measurement and Analysis Conference (TMA), Paris, France, 19–12 June 2019; pp. 25–32. [Google Scholar] [CrossRef]
- Al-Musawi, B.; Branch, P.; Armitage, G. BGP Anomaly Detection Techniques: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 377–396. [Google Scholar] [CrossRef]
- Hammood, N.H.; Al-Musawi, B. Using BGP Features Towards Identifying Type of BGP Anomaly. In Proceedings of the 2021 International Congress of Advanced Technology and Engineering (ICOTEN), Taiz, Yemen, 4–5 July 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Cheng, M.; Xu, Q.; Lv, J.; Liu, W.; Li, Q.; Wang, J. MS-LSTM: A multi-scale LSTM model for BGP anomaly detection. In Proceedings of the 2016 IEEE 24th International Conference on Network Protocols (ICNP), Singapore, 8–11 November 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Matcharashvili, T.; Elmokashfi, A.; Prangishvili, A. Analysis of the regularity of the Internet Interdomain Routing dynamics. Phys. A Stat. Mech. Its Appl. 2020, 551, 124142. [Google Scholar] [CrossRef]
- Milolidakis, A.; Bühler, T.; Wang, K.; Chiesa, M.; Vanbever, L.; Vissicchio, S. On the Effectiveness of BGP Hijackers That Evade Public Route Collectors. IEEE Access 2023, 11, 31092–31124. [Google Scholar] [CrossRef]
- Al-Musawi, B.; Branch, P. Identifying Recurrence Behaviour in the Underlying BGP Traffic. IJICTA 2018, 4, 34–47. [Google Scholar] [CrossRef]
- Schmidl, S.; Wenig, P.; Papenbrock, T. Anomaly detection in time series: A comprehensive evaluation. Proc. VLDB Endow. 2022, 15, 1779–1797. [Google Scholar] [CrossRef]
- Manzoor, A.; Hussain, M.; Mehrban, S. Performance Analysis and Route Optimization: Redistribution between EIGRP, OSPF & BGP Routing Protocols. Comput. Stand. Interfaces 2020, 68, 103391. [Google Scholar] [CrossRef]
- Huston, G.; Armitage, G.J. Projecting future IPv4 router requirements from trends in dynamic BGP behaviour. In Proceedings of the Australian Telecommunication Networks and Applications Conference (ATNAC), Adelaide, Australia, 7–10 December 2006. [Google Scholar]
- Awe, K.F.; Malik, Y.; Zavarsky, P.; Jaafar, F. Validating BGP Update Using Blockchain-Based Infrastructure. In Decentralised Internet of Things; Khan, M.A., Quasim, M.T., Algarni, F., Alharthi, A., Eds.; Studies in Big Data; Springer International Publishing: Cham, Swizterland, 2020; Volume 71, pp. 151–165. [Google Scholar] [CrossRef]
- Boitmanis, K.; Brandes, U.; Pich, C. Visualizing Internet Evolution on the Autonomous Systems Level. In Graph Drawing; Hong, S.H., Nishizeki, T., Quan, W., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; pp. 365–376. [Google Scholar] [CrossRef]
- Rekhter, Y.; Li, T. A Border Gateway Protocol 4 (BGP-4); RFC 1771 (Draft Standard); Obsoleted by RFC 4271; RFC Editor: Fremont, CA, USA, 1995. [Google Scholar] [CrossRef]
- Rekhter, Y.; Li, T.; Hares, S. (Eds.) A Border Gateway Protocol 4 (BGP-4); RFC 4271 (Draft Standard); Updated by RFCs 6286, 6608, 6793, 7606, 7607, 7705, 8212, 8654, 9072; RFC Editor: Fremont, CA, USA, 2006. [Google Scholar] [CrossRef]
- Chen, E. Route Refresh Capability for BGP-4; RFC 2918 (Proposed Standard); Updated by RFC 7313; RFC Editor: Fremont, CA, USA, 2000. [Google Scholar] [CrossRef]
- Patel, K.; Chen, E.; Venkatachalapathy, B. Enhanced Route Refresh Capability for BGP-4; RFC Editor: Fremont, CA, USA, 2014. [Google Scholar] [CrossRef]
- Madory, D. Digging into the Optus Outage. 2023. Available online: https://www.kentik.com/blog/digging-into-the-optus-outage/ (accessed on 19 November 2023).
- APH. Submissions. 2023. Available online: https://www.aph.gov.au/Parliamentary_Business/Committees/Senate/Environment_and_Communications/OptusNetworkOutage/Submissions (accessed on 5 July 2024).
- Gregory, M.A. An Analysis of the Optus National Outage and Recommendations for Enhanced Regulation. J. Telecommun. Digit. Econ. 2023, 11, 185–198. [Google Scholar] [CrossRef]
- Lad, M.; Zhao, X.; Zhang, B.; Massey, D.; Zhang, L. Analysis of BGP Update Surge during Slammer Worm Attack; Springer: Berlin/Heidelberg, Germany, 2003; pp. 66–79. [Google Scholar]
- Moriano, P.; Hill, R.; Camp, L.J. Using Bursty Announcements for Early Detection of BGP Routing Anomalies. arXiv 2019, arXiv:1905.05835. [Google Scholar]
- Demchak, C.C.; Shavitt, Y. China’s Maxim–Leave No Access Point Unexploited: The Hidden Story of China Telecom’s BGP Hijacking. Mil. Cyber Aff. 2018, 3, 7. [Google Scholar] [CrossRef]
- Smith, J.M.; Birkeland, K.; McDaniel, T.; Schuchard, M. Withdrawing the BGP Re-Routing Curtain: Understanding the Security Impact of BGP Poisoning through Real-World Measurements. In Proceedings of the 2020 Network and Distributed System Security Symposium, San Diego, CA, USA, 23–26 February 2020. [Google Scholar] [CrossRef]
- Sherman, J. The Politics of Internet Security: Private Industry and the Future of the Web; Technical Report; Atlantic Council: Washington, DC, USA, 2020. [Google Scholar]
- Miller, L.; Pelsser, C. A Taxonomy of Attacks Using BGP Blackholing. In Computer Security—ESORICS 2019; Sako, K., Schneider, S., Ryan, P.Y.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 107–127. [Google Scholar]
- Zhao, X.; Band, S.S.; Elnaffar, S.; Sookhak, M.; Mosavi, A.; Salwana, E. The Implementation of Border Gateway Protocol Using Software-Defined Networks: A Systematic Literature Review. IEEE Access 2021, 9, 112596–112606. [Google Scholar] [CrossRef]
- Birge-Lee, H.; Wang, L.; Rexford, J.; Mittal, P. SICO: Surgical Interception Attacks by Manipulating BGP Communities. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS ’19, New York, NY, USA, 11–15 November 2019; pp. 431–448. [Google Scholar] [CrossRef]
- McDaniel, T.; Smith, J.M.; Schuchard, M. The Maestro Attack: Orchestrating Malicious Flows with BGP. In Security and Privacy in Communication Networks; Park, N., Sun, K., Foresti, S., Butler, K., Saxena, N., Eds.; Springer: Cham, Switzerland, 2020; pp. 97–117. [Google Scholar]
- Streibelt, F.; Lichtblau, F.; Beverly, R.; Feldmann, A.; Pelsser, C.; Smaragdakis, G.; Bush, R. BGP Communities: Even more Worms in the Routing Can. In Proceedings of the Internet Measurement Conference 2018, IMC ’18, New York, NY, USA, 31 October–2 November 2018; pp. 279–292. [Google Scholar] [CrossRef]
- Jonker, M.; Pras, A.; Dainotti, A.; Sperotto, A. A First Joint Look at DoS Attacks and BGP Blackholing in the Wild. In Proceedings of the Internet Measurement Conference 2018, IMC ’18, New York, NY, USA, 31 October–2 November 2018; pp. 457–463. [Google Scholar] [CrossRef]
- Nawrocki, M.; Blendin, J.; Dietzel, C.; Schmidt, T.C.; Wählisch, M. Down the Black Hole: Dismantling Operational Practices of BGP Blackholing at IXPs. In Proceedings of the Internet Measurement Conference, Amsterdam, The Netherlands, 21–23 October 2019; pp. 435–448. [Google Scholar] [CrossRef]
- Birge-Lee, H.; Wang, L.; McCarney, D.; Shoemaker, R.; Rexford, J.; Mittal, P. Experiences Deploying Multi-Vantage-Point Domain Validation at Let’s Encrypt. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), USENIX Association, Vancouver, BC, Canada, 11–13 August 2021; pp. 4311–4327. [Google Scholar]
- Cimaszewski, G.; Birge-Lee, H.; Wang, L.; Rexford, J.; Mittal, P. How Effective is Multiple-Vantage-Point Domain Control Validation? arXiv 2023, arXiv:2302.08000. [Google Scholar] [CrossRef]
- Birge-Lee, H.; Sun, Y.; Edmundson, A.; Rexford, J.; Mittal, P. Bamboozling certificate authorities with BGP. In Proceedings of the 27th USENIX Conference on Security Symposium, SEC’18, Baltimore, MD, USA, 15–17 August 2018; pp. 833–849. [Google Scholar]
- Sriram, V.K.; Montgomery, D. Design and analysis of optimization algorithms to minimize cryptographic processing in BGP security protocols. Comput. Commun. 2017, 106, 75–85. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Zhu, H.; Wan, P.J.; Gao, L.; Zhang, Y.; Tian, Z. A novel routing verification approach based on blockchain for inter-domain routing in smart metropolitan area networks. J. Parallel Distrib. Comput. 2020, 142, 77–89. [Google Scholar] [CrossRef]
- Milolidakis, A. Understanding the Capabilities of Route Collectors to Observe Stealthy Hijacks: Does Adding More Monitors or Reporting More Paths Help? KTH Royal Institute of Technology: Stockholm, Sweden, 2022. [Google Scholar]
- Alfroy, T.; Holterbach, T.; Krenc, T.; Claffy, K.; Pelsser, C. Internet Science Moonshot: Expanding BGP Data Horizons. In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks, Cambridge, MA, USA, 28–29 November 2023; pp. 102–108. [Google Scholar] [CrossRef]
- Alfroy, T.; Holterbach, T.; Pelsser, C. MVP: Measuring internet routing from the most valuable points. In Proceedings of the 22nd ACM Internet Measurement Conference, Nice, France, 25–27 October 2022; pp. 770–771. [Google Scholar] [CrossRef]
- Chi, Y.J.; Oliveira, R.; Zhang, L. Cyclops: The AS-Level Connectivity Observatory. SIGCOMM Comput. Commun. Rev. 2008, 38, 5–16. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Mao, Z.M.; Hu, C.; MacDowell Maggs, B. On the Impact of Route Monitor Selection. In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, IMC ’07, San Diego, CA, USA, 24–26 August 2007; pp. 215–220. [Google Scholar] [CrossRef]
- Asenov, H.; Cotton, C. Next generation resilient redundant router. In Proceedings of the 2015 IEEE 16th International Conference on High Performance Switching and Routing (HPSR), Budapest, Hungary, 1–4 July 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Rojas-Cessa, R.; Kijkanjanarat, T.; Wangchai, W.; Patil, K.; Thirapittayatakul, N. Helix: IP lookup scheme based on helicoidal properties of binary trees. Comput. Netw. 2015, 89, 78–89. [Google Scholar] [CrossRef]
- Li, Q.; Wu, Y.; Duan, J.; Yang, J.; Jiang, Y. Weighted NSFIB Aggregation With Generalized Next Hop of Strict Partial Order. IEEE Trans. Netw. Serv. Manag. 2022, 19, 890–904. [Google Scholar] [CrossRef]
- Li, Q.; Xu, M.; Li, Q.; Wang, D.; Jiang, Y.; Xia, S.T.; Liao, Q. Scale the Internet routing table by generalized next hops of strict partial order. Inf. Sci. 2017, 412–413, 101–115. [Google Scholar] [CrossRef]
- Holterbach, T.; Vissicchio, S.; Dainotti, A.; Vanbever, L. SWIFT: Predictive Fast Reroute. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication, Los Angeles, CA, USA, 21–25 August 2017; pp. 460–473. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Wang, N.; Li, J.; Chen, P.; Liang, F. Compressing IP Forwarding Tables with Small Bounded Update Time. Comput. Netw. 2016, 106, 77–90. [Google Scholar] [CrossRef]
- Scott, B.A.; Johnstone, M.N.; Szewczyk, P.; Richardson, S. Matrix Profile data mining for BGP anomaly detection. Comput. Netw. 2024, 242, 110257. [Google Scholar] [CrossRef]
- Bu, K.; Laird, A.; Yang, Y.; Cheng, L.; Luo, J.; Li, Y.; Ren, K. Unveiling the Mystery of Internet Packet Forwarding: A Survey of Network Path Validation. ACM Comput. Surv. 2020, 53, 104:1–104:34. [Google Scholar] [CrossRef]
- Da Silva, R.B.; Souza Mota, E. A Survey on Approaches to Reduce BGP Interdomain Routing Convergence Delay on the Internet. IEEE Commun. Surv. Tutor. 2017, 19, 2949–2984. [Google Scholar] [CrossRef]
- Bak-Coleman, J.B.; Alfano, M.; Barfuss, W.; Bergstrom, C.T.; Centeno, M.A.; Couzin, I.D.; Donges, J.F.; Galesic, M.; Gersick, A.S.; Jacquet, J.; et al. Stewardship of global collective behavior. Proc. Natl. Acad. Sci. USA. 2021, 118, e2025764118. [Google Scholar] [CrossRef]
- Li, Z.; Boyle, L. The Penrose Tiling is a Quantum Error-Correcting Code. arXiv 2023, arXiv:2311.13040. [Google Scholar] [CrossRef]
- Al-Musawi, B.; Al-Saadi, R.; Branch, P.; Armitage, G. BGP Replay Tool (BRT) v0. 1; Tech. Rep. A; I4T Research Lab, Swinburne University of Technology: Melbourne, Australia, 2016; Volume 170606, p. 06. [Google Scholar]
- Keogh, E.; Lin, J.; Fu, A. HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence. In Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05), Houston, TX, USA, 27–30 November 2005; pp. 226–233. [Google Scholar] [CrossRef]
- Tafazoli, S.; Keogh, E. Matrix Profile XXVIII: Discovering Multi-Dimensional Time Series Anomalies with K of N Anomaly Detection. In Proceedings of the 2023 SIAM International Conference on Data Mining (SDM), Saint Paul, MN, USA, 27–29 April 2023; pp. 685–693. [Google Scholar] [CrossRef]
- Mai, J.; Yuan, L.; Chuah, C.N. Detecting BGP anomalies with wavelet. In Proceedings of the NOMS 2008—2008 IEEE Network Operations and Management Symposium, Salvador, Brazil, 7–11 April 2008; pp. 465–472. [Google Scholar] [CrossRef]
- Labovitz, C.; Malan, G.; Jahanian, F. Internet routing instability. IEEE/ACM Trans. Netw. 1998, 6, 515–528. [Google Scholar] [CrossRef]
- Prakash, B.A.; Valler, N.; Andersen, D.; Faloutsos, M.; Faloutsos, C. BGP-Lens: Patterns and Anomalies in Internet Routing Updates. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, Paris, France, 28 June–1 July 2009; pp. 1315–1324. [Google Scholar] [CrossRef]
- Al-Musawi, B. Detecting BGP Anomalies Using Recurrence Quantification Analysis. Ph.D. Thesis, Swinburne University of Technology, Melbourne, Australia, 2018. [Google Scholar]
- Putina, A.; Barth, S.; Bifet, A.; Pletcher, D.; Precup, C.; Nivaggioli, P.; Rossi, D. Unsupervised real-time detection of BGP anomalies leveraging high-rate and fine-grained telemetry data. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, 15–19 April 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Putina, A.; Rossi, D. Online Anomaly Detection Leveraging Stream-Based Clustering and Real-Time Telemetry. IEEE Trans. Netw. Serv. Manag. 2021, 18, 839–854. [Google Scholar] [CrossRef]
- Al-Rousan, N.; Haeri, S.; Trajković, L. Feature selection for classification of BGP anomalies using Bayesian models. In Proceedings of the 2012 International Conference on Machine Learning and Cybernetics, Xi’an, China, 15–17 July 2012; Volume 1, pp. 140–147. [Google Scholar] [CrossRef]
- Batta, P.; Singh, M.; Li, Z.; Ding, Q.; Trajković, L. Evaluation of Support Vector Machine Kernels for Detecting Network Anomalies. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Alkadi, O.S.; Moustafa, N.; Turnbull, B.; Choo, K.K.R. An Ontological Graph Identification Method for Improving Localization of IP Prefix Hijacking in Network Systems. IEEE Trans. Inf. Forensics Secur. 2020, 15, 1164–1174. [Google Scholar] [CrossRef]
- Sanchez, O.R.; Ferlin, S.; Pelsser, C.; Bush, R. Comparing Machine Learning Algorithms for BGP Anomaly Detection using Graph Features. In Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine Learning and Artificial Intelligence for Data Communication Networks, Orlando, FL, USA, 9 December 2019; Big-DAMA ’19, pp. 35–41. [Google Scholar] [CrossRef]
- Hashem, M.; Bashandy, A.; Shaheen, S. Improving anomaly detection in BGP time-series data by new guide features and moderated feature selection algorithm. Turk. J. Electr. Eng. Comput. Sci. 2019, 27, 392–406. [Google Scholar] [CrossRef]
- Allahdadi, A.; Morla, R.; Prior, R. A Framework for BGP Abnormal Events Detection. arXiv 2017, arXiv:1708.03453. [Google Scholar] [CrossRef]
- Al-Rousan, N.M.; Trajković, L. Machine learning models for classification of BGP anomalies. In Proceedings of the 2012 IEEE 13th International Conference on High Performance Switching and Routing, Belgrade, Serbia, 24–27 June 2012; pp. 103–108. [Google Scholar]
- Ding, Q.; Li, Z.; Batta, P.; Trajkovic, L. Detecting BGP anomalies using machine learning techniques. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 003352–003355. [Google Scholar] [CrossRef]
- Dai, X.; Wang, N.; Wang, W. Application of machine learning in BGP anomaly detection. J. Phys. Conf. Ser. 2019, 1176, 032015. [Google Scholar] [CrossRef]
- Hoarau, K.; Tournoux, P.U.; Razafindralambo, T. Suitability of Graph Representation for BGP Anomaly Detection. In Proceedings of the 2021 IEEE 46th Conference on Local Computer Networks (LCN), Edmonton, AB, Canada, 4–7 October 2021; pp. 305–310. [Google Scholar] [CrossRef]
- Park, H.; Kim, K.; Shin, D.; Shin, D. BGP Dataset-Based Malicious User Activity Detection Using Machine Learning. Information 2023, 14, 501. [Google Scholar] [CrossRef]
- Abdoun, M.; Guennoun, M.; Amar, A.; Saad, T.; Taha, M. Efficient BGP Intrusion Detection Model Using Machine Learning: A Comparative Study with AdaBoost as the Optimal Classifier. In Proceedings of the 2023 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Regina, SK, Canada, 24–27 September 2023; pp. 399–404. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, S.; Muthuraman, S.; Jiang, J. One Class Support Vector Machine for Anomaly Detection in the Communication Network Performance Data. In Proceedings of the 5th Conference on Applied Electromagnetics, Wireless and Optical Communications, ELECTROSCIENCE’07, Stevens Point, WI, USA, 14–16 December 2007; pp. 31–37. [Google Scholar]
- Ma, J.; Perkins, S. Time-series novelty detection using one-class support vector machines. In Proceedings of the International Joint Conference on Neural Networks, Portland, OR, USA, 20–24 July 2003; Volume 3, pp. 1741–1745. [Google Scholar] [CrossRef]
- Lamrini, B.; Gjini, A.; Daudin, S.; Travé-Massuyès, L. Anomaly Detection using Similarity-based One-Class SVM for Network Traffic Characterization. 2018. Available online: https://ceur-ws.org/Vol-2289/paper12.pdf (accessed on 4 July 2024).
- Deo Verma, R.; Chandra Govil, M.; Kumar Keserwani, P. ELM based Ensemble of Classifiers for BGP Security against Network Anomalies. In Proceedings of the 2023 11th International Symposium on Electronic Systems Devices and Computing (ESDC), Sri City, India, 4–6 May 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Edwards, P.; Cheng, L.; Kadam, G. Border Gateway Protocol Anomaly Detection Using Machine Learning Techniques. SMU Data Sci. Rev. 2019, 2, 5. [Google Scholar]
- Silva, R.S.; De Assis, F.M.F.; Macedo, E.L.C.; De Moraes, L.F.M. Inferring the Confidence Level of BGP-Based Distributed Intrusion Detection Systems Alarms. In Proceedings of the 2023 7th Cyber Security in Networking Conference (CSNet), Montreal, QC, Canada, 16–18 October 2023; pp. 157–162. [Google Scholar] [CrossRef]
- Nizar, N.A.; PM, K.R.; BP, V.K. Anomaly Detection In Telemetry Data Using Ensemble Machine Learning. In Proceedings of the 2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 8–10 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, K.W.; Qin, S.J. A hybrid approach for anomaly detection using K-means and PSO. In Proceedings of the 2nd International Conference on Electronics, Network and Computer Engineering (ICENCE 2016), Yinchuan, China, 13–14 August 2016. [Google Scholar] [CrossRef]
- Subtil, A.; Oliveira, M.R.; Valadas, R.; Salvador, P.; Pacheco, A. Detection of Internet-wide traffic redirection attacks using machine learning techniques. IET Netw. 2023, 12, 179–195. [Google Scholar] [CrossRef]
- Welch, J. Through the Looking Glass: Classifying Anomalous BGP Communities. Technical Report. 2016. Available online: https://apps.dtic.mil/sti/citations/AD1126678 (accessed on 1 September 2020).
- Hoarau, K.; Tournoux, P.U.; Razafindralambo, T. BML: An Efficient and Versatile Tool for BGP Dataset Collection. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–18 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Paffenroth, R.; Kay, K.; Servi, L. Robust PCA for Anomaly Detection in Cyber Networks. arXiv 2018, arXiv:1801.01571. [Google Scholar]
- Lutu, A.; Bagnulo, M.; Pelsser, C.; Maennel, O.; Cid-Sueiro, J. The BGP Visibility Toolkit: Detecting Anomalous Internet Routing Behavior. IEEE/ACM Trans. Netw. 2016, 24, 1237–1250. [Google Scholar] [CrossRef]
- Lutu, A.; Bagnulo, M.; Cid-Sueiro, J.; Maennel, O. Separating wheat from chaff: Winnowing unintended prefixes using machine learning. In Proceedings of the IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 May 2014; pp. 943–951. [Google Scholar] [CrossRef]
- Li, J.; Dou, D.; Wu, Z.; Kim, S.; Agarwal, V. An internet routing forensics framework for discovering rules of abnormal BGP events. SIGCOMM Comput. Commun. Rev. 2005, 35, 55–66. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, B.; Cao, L.; Wu, X.; Zhang, C.; Hao, Z.; Yang, F.; Cao, J. Multi-sphere Support Vector Data Description for Outliers Detection on Multi-distribution Data. In Proceedings of the 2009 IEEE International Conference on Data Mining Workshops, Miami, FL, USA, 6 December 2009; pp. 82–87. [Google Scholar] [CrossRef]
- Das, S.; Matthews, B.L.; Lawrence, R. Fleet level anomaly detection of aviation safety data. In Proceedings of the 2011 IEEE Conference on Prognostics and Health Management, Denver, CO, USA, 20–23 June 2011; pp. 1–10. [Google Scholar] [CrossRef]
- Mounce, S.R.; Mounce, R.B.; Boxall, J.B. Novelty detection for time series data analysis in water distribution systems using support vector machines. J. Hydroinform. 2011, 13, 672–686. [Google Scholar] [CrossRef]
- Wang, X.; Lin, J.; Patel, N.; Braun, M. Exact variable-length anomaly detection algorithm for univariate and multivariate time series. Data Min. Knowl. Discov. 2018, 32, 1806–1844. [Google Scholar] [CrossRef]
- Samariya, D.; Ma, J. Anomaly Detection on Health Data. In Health Information Science; Traina, A., Wang, H., Zhang, Y., Siuly, S., Zhou, R., Chen, L., Eds.; Lecture Notes in Computer Science; Springer Nature: Cham, Switzerland, 2022; Volume 13705, pp. 34–41. [Google Scholar] [CrossRef]
- Xie, Z.; Quirino, T.; Shyu, M.L.; Chen, S.C.; Chang, L. UNPCC: A Novel Unsupervised Classification Scheme for Network Intrusion Detection. In Proceedings of the 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’06), Arlington, VA, USA, 13–15 November 2006; pp. 743–750. [Google Scholar] [CrossRef]
- Burnaev, E.; Ishimtsev, V. Conformalized density- and distance-based anomaly detection in time-series data. arXiv 2016, arXiv:1608.04585. [Google Scholar] [CrossRef]
- Wang, X.; Lin, J.; Patel, N.; Braun, M. A Self-Learning and Online Algorithm for Time Series Anomaly Detection, with Application in CPU Manufacturing. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, Indianapolis, IN, USA, 24–28 October 2016; pp. 1823–1832. [Google Scholar] [CrossRef]
- Parsa, A.B.; Movahedi, A.; Taghipour, H.; Derrible, S.; Mohammadian, A.K. Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis. Accid. Anal. Prev. 2020, 136, 105405. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Verdejo, V.; Arenas-García, J.; Lazaro-Gredilla, M.; Navia-Vázquez, Á. Adaptive One-Class Support Vector Machine. IEEE Trans. Signal Process. 2011, 59, 2975–2981. [Google Scholar] [CrossRef]
- Nikkinen, O.; Kolehmainen, T.; Aaltonen, T.; Jämsä, E.; Alahuhta, S.; Vakkala, M. Developing a supervised machine learning model for predicting perioperative acute kidney injury in arthroplasty patients. Comput. Biol. Med. 2022, 144, 105351. [Google Scholar] [CrossRef]
- Dufrenois, F. A One-Class Kernel Fisher Criterion for Outlier Detection. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 982–994. [Google Scholar] [CrossRef]
- Cosovic, M.; Obradovic, S.; Junuz, E. Deep Learning for Detection of BGP Anomalies. In Time Series Analysis and Forecasting; Rojas, I., Pomares, H., Valenzuela, O., Eds.; Contributions to Statistics; Springer: Cham, Switzerland, 2018; pp. 95–113. [Google Scholar] [CrossRef]
- Shapira, T.; Shavitt, Y. A Deep Learning Approach for IP Hijack Detection Based on ASN Embedding. In Proceedings of the Workshop on Network Meets AI & ML, NetAI ’20, Virtual Event, 10–14 August 2020; pp. 35–41. [Google Scholar] [CrossRef]
- Li, Z.; Rios, A.L.G.; Trajkovic, L. Detecting Internet Worms, Ransomware, and Blackouts Using Recurrent Neural Networks. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 2165–2172. [Google Scholar] [CrossRef]
- Li, Z.; Rios, A.L.G.; Xu, G.; Trajkovic, L. Machine Learning Techniques for Classifying Network Anomalies and Intrusions. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Cheng, M.; Li, Q.; Lv, J.; Liu, W.; Wang, J. Multi-Scale LSTM Model for BGP Anomaly Classification. IEEE Trans. Serv. Comput. 2021, 14, 765–778. [Google Scholar] [CrossRef]
- Xu, M.; Li, X. BGP Anomaly Detection Based on Automatic Feature Extraction by Neural Network. In Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 12–14 June 2020; pp. 46–50. [Google Scholar] [CrossRef]
- Fonseca, P.; Mota, E.S.; Bennesby, R.; Passito, A. BGP Dataset Generation and Feature Extraction for Anomaly Detection. In Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 29 June–3 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Chauhan, S.; Vig, L. Anomaly detection in ECG time signals via deep long short-term memory networks. In Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Campus des Cordeliers, Paris, France, 19–21 October 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Park, D.; Hoshi, Y.; Kemp, C.C. A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder. IEEE Robot. Autom. Lett. 2018, 3, 1544–1551. [Google Scholar] [CrossRef]
- Niu, Z.; Yu, K.; Wu, X. LSTM-Based VAE-GAN for Time-Series Anomaly Detection. Sensors 2020, 20, 3738. [Google Scholar] [CrossRef] [PubMed]
- Shapira, T.; Shavitt, Y. AP2Vec: An Unsupervised Approach for BGP Hijacking Detection. IEEE Trans. Netw. Serv. Manag. 2022, 19, 2255–2268. [Google Scholar] [CrossRef]
- Shapira, T.; Shavitt, Y. Unveiling the Type of Relationship Between Autonomous Systems Using Deep Learning. In Proceedings of the NOMS 2020—2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Shapira, T.; Shavitt, Y. SASA: Source-Aware Self-Attention for IP Hijack Detection. IEEE/ACM Trans. Netw. 2022, 30, 437–449. [Google Scholar] [CrossRef]
- Hoarau, K.; Tournoux, P.U.; Razafindralambo, T. Detecting forged AS paths from BGP graph features using Recurrent Neural Networks. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2022; pp. 735–736. [Google Scholar] [CrossRef]
- He, Z.; Li, C.; Wang, X. BiRNNs-SAT for Detecting BGP Traffic Anomalies in Communication Networks. In Proceedings of the The 6th International Conference on Machine Learning and Machine Intelligence, Chongqing China, 27–29 October 2023; pp. 143–150. [Google Scholar] [CrossRef]
- Takhar, H.K.; Trajković, L. BGP Features and Classification of Internet Worms and Ransomware Attacks. In Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Honolulu, HI, USA, 1–4 October 2023; pp. 1664–1669. [Google Scholar] [CrossRef]
- Peng, S.; Nie, J.; Shu, X.; Ruan, Z.; Wang, L.; Sheng, Y.; Xuan, Q. A multi-view framework for BGP anomaly detection via graph attention network. Comput. Netw. 2022, 214, 109129. [Google Scholar] [CrossRef]
- Kayathri, T.; Kumaresan, N.; Vijayabhasker, R. SDBGPChain: A decentralized low complexity framework to detect and prevent the BGPattacks using SDN with smart contract based Dendrimer tree blockchain. Comput. Netw. 2023, 230, 109800. [Google Scholar] [CrossRef]
- McGlynn, K.; Acharya, H.B.; Kwon, M. Detecting BGP Route Anomalies with Deep Learning. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; pp. 1039–1040. [Google Scholar] [CrossRef]
- Zeng, M.; Li, D.; Zhang, P.; Xie, K.; Huang, X. Federated Route Leak Detection in Inter-domain Routing with Privacy Guarantee. ACM Trans. Internet Technol. 2022, 23, 3561051. [Google Scholar] [CrossRef]
- Sunita, M.; Mallapur, S.V. Optimal detection of border gateway protocol anomalies with extensive feature set. Multimed. Tools Appl. 2023, 87, 50893–50919. [Google Scholar] [CrossRef]
- Dias, M.L.D.; Mattos, C.L.C.; Da Silva, T.L.C.; De Macedo, J.A.F.; Silva, W.C.P. Anomaly Detection in Trajectory Data with Normalizing Flows. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Gerz, F.; Basturk, T.R.; Kirchhoff, J.; Denker, J.; Al-Shrouf, L.; Jelali, M. A Comparative Study and a New Industrial Platform for Decentralized Anomaly Detection Using Machine Learning Algorithms. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Soelch, M.; Bayer, J.; Ludersdorfer, M.; van der Smagt, P. Variational Inference for On-line Anomaly Detection in High-Dimensional Time Series. arXiv 2016, arXiv:1602.07109. [Google Scholar]
- Chang, M.; Terzis, A.; Bonnet, P. Mote-Based Online Anomaly Detection Using Echo State Networks. In Distributed Computing in Sensor Systems; Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5516, pp. 72–86. [Google Scholar] [CrossRef]
- Kato, J.; Tanaka, G.; Nakane, R.; Hirose, A. Reconstructive reservoir computing for anomaly detection in time-series signals. Nonlinear Theory Its Appl. 2024, 15, 183–204. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, A.; Huang, T.; He, Q.; Song, Y. Imbalanced dataset-based echo state networks for anomaly detection. Neural Comput. Appl. 2020, 32, 3685–3694. [Google Scholar] [CrossRef]
- Heim, N.; Avery, J.E. Adaptive Anomaly Detection in Chaotic Time Series with a Spatially Aware Echo State Network. arXiv 2019, arXiv:1909.01709. [Google Scholar]
- Kim, C.; Lee, J.; Kim, R.; Park, Y.; Kang, J. DeepNAP: Deep neural anomaly pre-detection in a semiconductor fab. Inf. Sci. 2018, 457–458, 1–11. [Google Scholar] [CrossRef]
- Muneer, A.; Mohd Taib, S.; Mohamed Fati, S.; Balogun, A.O.; Abdul Aziz, I. A Hybrid Deep Learning-Based Unsupervised Anomaly Detection in High Dimensional Data. Comput. Mater. Contin. 2022, 70, 5363–5381. [Google Scholar] [CrossRef]
- Wu, J.; Yao, L.; Liu, B.; Ding, Z.; Zhang, L. Multi-task learning based Encoder-Decoder: A comprehensive detection and diagnosis system for multi-sensor data. Adv. Mech. Eng. 2021, 13, 168781402110131. [Google Scholar] [CrossRef]
- Song, H.; Jiang, Z.; Men, A.; Yang, B. A Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data. Comput. Intell. Neurosci. 2017, 2017, 8501683. [Google Scholar] [CrossRef]
- Khan, S.S.; Mailewa, A.B. Detecting Network Transmission Anomalies using Autoencoders-SVM Neural Network on Multi-class NSL-KDD Dataset. In Proceedings of the 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 8–11 March 2023; pp. 0835–0843. [Google Scholar] [CrossRef]
- Sekh, A.A.; Dogra, D.P.; Kar, S.; Roy, P.P.; Prasad, D.K. ELM-HTM guided bio-inspired unsupervised learning for anomalous trajectory classification. Cogn. Syst. Res. 2020, 63, 30–41. [Google Scholar] [CrossRef]
- Zamani, S.; Talebi, H.; Stevens, G. Time Series Anomaly Detection in Smart Homes: A Deep Learning Approach. arXiv 2023, arXiv:2302.14781. [Google Scholar] [CrossRef]
- Nalepa, J.; Myller, M.; Andrzejewski, J.; Benecki, P.; Piechaczek, S.; Kostrzewa, D. Evaluating algorithms for anomaly detection in satellite telemetry data. Acta Astronaut. 2022, 198, 689–701. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S.; Zhang, H.; Chen, Y. VELC: A New Variational AutoEncoder Based Model for Time Series Anomaly Detection. arXiv 2020, arXiv:1907.01702. [Google Scholar]
- Li, Z.; Chen, W.; Pei, D. Robust and Unsupervised KPI Anomaly Detection Based on Conditional Variational Autoencoder. In Proceedings of the 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC), Orlando, FL, USA, 17–19 November 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Li, H.; Li, T.; Chen, T.; Zhao, G.; Zhu, Y.; Kong, X. A Detection Based on OMES and MTAD-GAT for False Data Injection Attack in Smart Grid. In Proceedings of the 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2), Chengdu, China, 11–13 November 2022; pp. 1578–1584. [Google Scholar] [CrossRef]
- Saridou, B.; Bendiab, G.; Shiaeles, S.N.; Papadopoulos, B.K. Thermal Management in Large Data Centres: Security Threats and Mitigation. In Security in Computing and Communications; Thampi, S.M., Wang, G., Rawat, D.B., Ko, R., Fan, C.I., Eds.; Communications in Computer and Information Science; Springer: Singapore, 2021; Volume 1364, pp. 165–179. [Google Scholar] [CrossRef]
- Hong, S.W.; Kwon, J.W. Anomaly Detection In Real Power Plant Vibration Data by MSCRED Base Model Improved By Subset Sampling Validation. J. Converg. Inf. Technol. 2022, 12, 31–38. [Google Scholar] [CrossRef]
- Wang, J.; Shao, S.; Bai, Y.; Deng, J.; Lin, Y. Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. [Google Scholar] [CrossRef]
- Alizadeh, M.; Rahimi, S.; Ma, J. A hybrid ARIMA–WNN approach to model vehicle operating behavior and detect unhealthy states. Expert Syst. Appl. 2022, 194, 116515. [Google Scholar] [CrossRef]
- Keprate, A.; Sheikhi, S.; Siddiqui, M.S.; Tanwar, M. Comparing Deep Learning Based Image Processing Techniques for Unsupervised Anomaly Detection in Offshore Wind Turbines. In Proceedings of the 2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 18–21 December 2023; pp. 274–278. [Google Scholar] [CrossRef]
- Lee, C.K.; Cheon, Y.J.; Hwang, W.Y. Studies on the GAN-Based Anomaly Detection Methods for the Time Series Data. IEEE Access 2021, 9, 73201–73215. [Google Scholar] [CrossRef]
- Chen, R.Q.; Shi, G.H.; Zhao, W.L.; Liang, C.H. A joint model for IT operation series prediction and anomaly detection. Neurocomputing 2021, 448, 130–139. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Y.; Li, Z.; Guan, H.; Xie, G. AD 2 S: Adaptive anomaly detection on sporadic data streams. Comput. Commun. 2023, 209, 151–162. [Google Scholar] [CrossRef]
- Zou, B.; Yang, K.; Kui, X.; Liu, J.; Liao, S.; Zhao, W. Anomaly detection for streaming data based on grid-clustering and Gaussian distribution. Inf. Sci. 2023, 638, 118989. [Google Scholar] [CrossRef]
- Lakey, D.; Schlippe, T. A Comparison of Deep Learning Architectures for Spacecraft Anomaly Detection. arXiv 2024, arXiv:2403.12864. [Google Scholar] [CrossRef]
- Yan, S.; Tang, B.; Yang, Q.; He, Y.; Zhang, X. Robust and Unsupervised KPI Anomaly Detection Based on Highly Sensitive Conditional Variational Auto-Encoders. In Proceedings of the 2022 IEEE International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Melbourne, Australia, 21–24 December 2022; pp. 597–604. [Google Scholar] [CrossRef]
- Li, J.; Di, S.; Shen, Y.; Chen, L. FluxEV: A Fast and Effective Unsupervised Framework for Time-Series Anomaly Detection. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, Virtual Event, 8–12 March 2021; pp. 824–832. [Google Scholar] [CrossRef]
- Huang, Y.; Feamster, N.; Lakhina, A.; Xu, J.J. Diagnosing network disruptions with network-wide analysis. SIGMETRICS Perform. Eval. Rev. 2007, 35, 61–72. [Google Scholar] [CrossRef]
- Deshpande, S.; Thottan, M.; Ho, T.K.; Sikdar, B. An Online Mechanism for BGP Instability Detection and Analysis. IEEE Trans. Comput. 2009, 58, 1470–1484. [Google Scholar] [CrossRef]
- Al-Musawi, B.; Branch, P.; Armitage, G. Detecting BGP instability using recurrence quantification analysis (RQA). In Proceedings of the 2015 IEEE 34th International Performance Computing and Communications Conference (IPCCC), Nanjing, China, 14–16 December 2015; pp. 1–8. [Google Scholar]
- Carter, K.M.; Streilein, W.W. Probabilistic reasoning for streaming anomaly detection. In Proceedings of the 2012 IEEE Statistical Signal Processing Workshop (SSP), Ann Arbor, MI, USA, 5–8 August 2012; pp. 377–380. [Google Scholar] [CrossRef]
- Zhou, Z.G.; Tang, P. Improving time series anomaly detection based on exponentially weighted moving average (EWMA) of season-trend model residuals. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3414–3417. [Google Scholar] [CrossRef]
- Wallot, S.; Roepstorff, A.; Mønster, D. Multidimensional Recurrence Quantification Analysis (MdRQA) for the Analysis of Multidimensional Time-Series: A Software Implementation in MATLAB and Its Application to Group-Level Data in Joint Action. Front. Psychol. 2016, 7, 1835. [Google Scholar] [CrossRef] [PubMed]
- Chiera, B.; Kraetzl, M.; Roughan, M.; White, L. Use of a Cepstral Information Norm for Anomaly Detection in a BGP-inferred Internet. In Proceedings of the Australian Communication Theory Workshop, Adelaide, Australia, 31 January–3 February 2007. [Google Scholar]
- Zou, C.; Gong, W.; Towsley, D.; Gao, L. The monitoring and early detection of Internet worms. IEEE/ACM Trans. Netw. 2005, 13, 961–974. [Google Scholar] [CrossRef]
- Guillot, A.; Fontugne, R.; Winter, P.; Merindol, P.; King, A.; Dainotti, A.; Pelsser, C. Chocolatine: Outage Detection for Internet Background Radiation. In Proceedings of the 2019 Network Traffic Measurement and Analysis Conference (TMA), Paris, France, 19–21 June 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Teoh, S.T.; Zhang, K.; Tseng, S.M.; Ma, K.L.; Wu, S.F. Combining visual and automated data mining for near-real-time anomaly detection and analysis in BGP. In Proceedings of the 2004 ACM workshop on Visualization and data mining for computer security—VizSEC/DMSEC ’04, Washington DC, USA, 29 October 2004; p. 35. [Google Scholar] [CrossRef]
- Chen, M.; Xu, M.; Li, Q.; Yang, Y. Measurement of large-scale BGP events: Definition, detection, and analysis. Comput. Netw. 2016, 110, 31–45. [Google Scholar] [CrossRef]
- Theodoridis, G.; Tsigkas, O.; Tzovaras, D. A Novel Unsupervised Method for Securing BGP Against Routing Hijacks. In Computer and Information Sciences III; Gelenbe, E., Lent, R., Eds.; Springer: London, UK, 2013; pp. 21–29. [Google Scholar]
- Rousseeuw, P.J.; Driessen, K.V. A Fast Algorithm for the Minimum Covariance Determinant Estimator. Technometrics 1999, 41, 212–223. [Google Scholar] [CrossRef]
- Hochenbaum, J.; Vallis, O.S.; Kejariwal, A. Automatic Anomaly Detection in the Cloud Via Statistical Learning. arXiv 2017, arXiv:1704.07706. [Google Scholar]
- Aboode, A. Anomaly Detection in Time Series Data Based on Holt-Winters Method. 2018. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226344 (accessed on 1 September 2020).
- Subramaniam, S.; Palpanas, T.; Papadopoulos, D.; Kalogeraki, V.; Gunopulos, D. Online outlier detection in sensor data using non-parametric models. In Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB ’06, Seoul, Republic of Korea, 12–15 September 2006; pp. 187–198. [Google Scholar]
- Basu, S.; Meckesheimer, M. Automatic outlier detection for time series: An application to sensor data. Knowl. Inf. Syst. 2007, 11, 137–154. [Google Scholar] [CrossRef]
- Vieira, R.G.; Leone Filho, M.A.; Semolini, R. An Enhanced Seasonal-Hybrid ESD Technique for Robust Anomaly Detection on Time Series. In Proceedings of the Anais do XXXVI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2018), Campos do Jordão, Brazil, 10 May 2018; pp. 281–294. [Google Scholar] [CrossRef]
- Nachman, B.; Shih, D. Anomaly detection with density estimation. Phys. Rev. D 2020, 101, 075042. [Google Scholar] [CrossRef]
- Lee, M.C.; Lin, J.C.; Gran, E.G. RePAD: Real-Time Proactive Anomaly Detection for Time Series. In Advanced Information Networking and Applications; Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2020; Volume 1151, pp. 1291–1302. [Google Scholar] [CrossRef]
- Yang, C.L.; Liao, W.J. Adjacent Mean Difference (AMD) method for dynamic segmentation in time series anomaly detection. In Proceedings of the 2017 IEEE/SICE International Symposium on System Integration (SII), Taipei, Taiwan, 11–14 December 2017; pp. 241–246. [Google Scholar] [CrossRef]
- Siffer, A.; Fouque, P.A.; Termier, A.; Largouet, C. Anomaly Detection in Streams with Extreme Value Theory. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 1067–1075. [Google Scholar] [CrossRef]
- Antoni, J.; Borghesani, P. A statistical methodology for the design of condition indicators. Mech. Syst. Signal Process. 2019, 114, 290–327. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, Y.; Li, S.; Wan, D. Time Series Outlier Detection Based on Sliding Window Prediction. Math. Probl. Eng. 2014, 2014, 879736. [Google Scholar] [CrossRef]
- Gardiner, J.D. Multiple Markov Models for Detecting Internet Anomalies from BGP Data. In Proceedings of the 2009 DoD High Performance Computing Modernization Program Users Group Conference, San Diego, CA, USA, 14–18 June 2009; pp. 374–377. [Google Scholar] [CrossRef]
- Azzalini, D.; Castellini, A.; Luperto, M.; Farinelli, A.; Amigoni, F. HMMs for anomaly detection in autonomous robots. In Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020), IFAAMAS, Auckland, New Zealand, 9–13 May 2020; pp. 105–113. [Google Scholar]
- Li, J.; Pedrycz, W.; Jamal, I. Multivariate time series anomaly detection: A framework of Hidden Markov Models. Appl. Soft Comput. 2017, 60, 229–240. [Google Scholar] [CrossRef]
- Park, D.; Erickson, Z.; Bhattacharjee, T.; Kemp, C.C. Multimodal execution monitoring for anomaly detection during robot manipulation. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 407–414. [Google Scholar] [CrossRef]
- Lorbeer, B.; Deutsch, T.; Ruppel, P.; Kupper, A. Anomaly Detection with HMM Gauge Likelihood Analysis. In Proceedings of the 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService), Newark, CA, USA, 4–9 April 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Mukaeda, T.; Shima, K.; Miyajima, S.; Hashimoto, Y.; Tanaka, T.; Tani, N.; Izumi, H. Development of an anomaly detection method with a novel hidden semi-Markov model incorporating unlearned states. In Proceedings of the 2020 IEEE/SICE International Symposium on System Integration (SII), Honolulu, HI, USA, 12–15 January 2020; pp. 1270–1275. [Google Scholar] [CrossRef]
- Allahdadi, A.; Pernes, D.; Cardoso, J.S.; Morla, R. Hidden Markov models on a self-organizing map for anomaly detection in 802.11 wireless networks. Neural Comput. Appl. 2021, 33, 8777–8794. [Google Scholar] [CrossRef]
- Leon-Lopez, K.M.; Mouret, F.; Arguello, H.; Tourneret, J.Y. Anomaly Detection and Classification in Multispectral Time Series Based on Hidden Markov Models. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Daqi, J.; Wang, H. An Improved Adaptive Genetic Algorithm Based on Dynamic Bayesian Network. In 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control; Ren, Z., Wang, M., Hua, Y., Eds.; Lecture Notes in Electrical Engineering; Springer Nature: Singapore, 2023; Volume 934, pp. 1315–1325. [Google Scholar] [CrossRef]
- Pauwels, S.; Calders, T. An anomaly detection technique for business processes based on extended dynamic bayesian networks. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019; pp. 494–501. [Google Scholar] [CrossRef]
- Konijn, R.M.; Kowalczyk, W. An Interactive Approach to Outlier Detection. In Rough Set and Knowledge Technology; Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., et al., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6401, pp. 379–385. [Google Scholar] [CrossRef]
- Tripathi, A.M.; Baruah, R.D. Anomaly Detection in Multivariate Time Series Using Fuzzy AdaBoost and Dynamic Naive Bayesian Classifier. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 1938–1944. [Google Scholar] [CrossRef]
- Thill, M.; Konen, W.; Bäck, T. Online Adaptable Time Series Anomaly Detection with Discrete Wavelet Transforms and Multivariate Gaussian Distributions. 2018. Available online: https://publikationen.bibliothek.kit.edu/1000097489 (accessed on 1 September 2020). [CrossRef]
- Zhang, J.; Rexford, J.; Feigenbaum, J. Learning-based anomaly detection in BGP updates. In Proceedings of the 2005 ACM SIGCOMM Workshop on Mining Network Data—MineNet ’05, Philadelphia, PA, USA, 22–26 August 2005; p. 219. [Google Scholar] [CrossRef]
- Prangishvili, A.; Matcharashvili, T.; Davitashvili, I.; Mepharidze, E.; Tepnadze, D.; Laliashvili, L.; Sborshchikovi, A. Changes Occurred in the Variation of Internet Border Gateway Protocol Updates, Caused by Influence of Self-Propagated Slammer Worm. Bull. Georg. Natl. Acad. Sci. 2021, 15. [Google Scholar]
- Rasheed, F.; Peng, P.; Alhajj, R.; Rokne, J. Fourier Transform Based Spatial Outlier Mining. In Intelligent Data Engineering and Automated Learning—IDEAL 2009; Corchado, E., Yin, H., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5788, pp. 317–324. [Google Scholar] [CrossRef]
- Ariemma, L.; Dell’Orco, A.; Liotta, S.; Candela, M.; Di Battista, G. Long-lasting sequences of BGP updates. Comput. Netw. 2023, 220, 109481. [Google Scholar] [CrossRef]
- Ren, H.; Xu, B.; Wang, Y.; Yi, C.; Huang, C.; Kou, X.; Xing, T.; Yang, M.; Tong, J.; Zhang, Q. Time-Series Anomaly Detection Service at Microsoft. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 3009–3017. [Google Scholar] [CrossRef]
- Thill, M.; Konen, W.; Bäck, T. Time Series Anomaly Detection with Discrete Wavelet Transforms and Maximum Likelihood Estimation. In Proceedings of the 2017 International Work-Conference on Time Series, Granada, Spain, 18–20 September 2019. [Google Scholar]
- Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data—SIGMOD ’00, Dallas, TX, USA, 16–18 May 2000; pp. 93–104. [Google Scholar] [CrossRef]
- Akoglu, L.; McGlohon, M.; Faloutsos, C. Anomaly Detection in Large Graphs; Technical Report; Carnegie Mellon University: Pittsburgh, PA, USA, 2009. [Google Scholar]
- Alghushairy, O.; Alsini, R.; Soule, T.; Ma, X. A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data Streams. BDCC 2020, 5, 1. [Google Scholar] [CrossRef]
- Ali, S.; Wang, G.; Cottrell, R.L.; Anwar, T. Detecting Anomalies from End-to-End Internet Performance Measurements (PingER) Using Cluster Based Local Outlier Factor. In Proceedings of the 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), Guangzhou, China, 12–15 December 2017; pp. 982–989. [Google Scholar] [CrossRef]
- Yin, S.; Yang, H.; Xu, K.; Zhu, C.; Zhang, S.; Liu, G. Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty. Appl. Energy 2022, 307, 118314. [Google Scholar] [CrossRef]
- Melquiades, C.; De Lima Neto, F.B. Isolation Forest-based semi-supervised Anomaly Detection of multiple classes. In Proceedings of the 2022 17th Iberian Conference on Information Systems and Technologies (CISTI), Madrid, Spain, 22–25 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation-Based Anomaly Detection. ACM Trans. Knowl. Discov. Data 2012, 6, 1–39. [Google Scholar] [CrossRef]
- Chun-Hui, X.; Chen, S.; Cong-Xiao, B.; Xing, L. Anomaly Detection in Network Management System Based on Isolation Forest. In Proceedings of the 2018 4th Annual International Conference on Network and Information Systems for Computers (ICNISC), Wuhan, China, 20–22 April 2018; pp. 56–60. [Google Scholar] [CrossRef]
- Hariri, S.; Kind, M.C.; Brunner, R.J. Extended Isolation Forest. IEEE Trans. Knowl. Data Eng. 2021, 33, 1479–1489. [Google Scholar] [CrossRef]
- Xu, H.W.; Qin, W.; Sun, Y.N.; Lv, Y.L.; Zhang, J. An adaptive Copula function-based framework for fault detection in semiconductor wafer fabrication. Comput. Ind. Eng. 2024, 188, 109905. [Google Scholar] [CrossRef]
- Tran, L.; Fan, L.; Shahabi, C. Fast Distance-based Outlier Detection in Data Streams based on Micro-clusters. In Proceedings of the Tenth International Symposium on Information and Communication Technology—SoICT 2019, Hanoi, Ha Long Bay, Vietnam, 4–6 December 2019; pp. 162–169. [Google Scholar] [CrossRef]
- Seo, S.; Park, S.; Hwang, I.; Kim, J. ADSTREAM: Anomaly Detection in Large-Scale Data Streams Using Local Outlier Factor Based on Micro-Cluster. Adv. Sci. Lett. 2017, 23, 10204–10209. [Google Scholar] [CrossRef]
- Dani, M.C.; Jollois, F.X.; Nadif, M.; Freixo, C. Adaptive Threshold for Anomaly Detection Using Time Series Segmentation. In Neural Information Processing; Arik, S., Huang, T., Lai, W.K., Liu, Q., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9491, pp. 82–89. [Google Scholar] [CrossRef]
- Yeh, C.C.M.; Zhu, Y.; Ulanova, L.; Begum, N.; Ding, Y.; Dau, H.A.; Silva, D.F.; Mueen, A.; Keogh, E. Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; pp. 1317–1322. [Google Scholar] [CrossRef]
- Duque Anton, S.; Ahrens, L.; Fraunholz, D.; Schotten, H.D. Time is of the Essence: Machine Learning-Based Intrusion Detection in Industrial Time Series Data. In Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, R.; Mueen, A.; Zuluaga, M.A.; Keogh, E. Matrix Profile XXIV: Scaling Time Series Anomaly Detection to Trillions of Datapoints and Ultra-fast Arriving Data Streams. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 1173–1182. [Google Scholar] [CrossRef]
- Chinpattanakarn, N.; Amornbunchornvej, C. Framework for Variable-lag Motif Following Relation Inference In Time Series using Matrix Profile analysis. arXiv 2024, arXiv:2401.02860. [Google Scholar]
- Ganiz, M.C.; Kanitkar, S.; Chuah, M.C.; Pottenger, W.M. Detection of Interdomain Routing Anomalies Based on Higher-Order Path Analysis. In Proceedings of the Sixth International Conference on Data Mining (ICDM’06), Hong Kong, China, 18–22 December 2006; pp. 874–879. [Google Scholar] [CrossRef]
- Yang, C.; Jia, W. BGP anomaly detection—A path-based approach. In Proceedings of the 2023 3rd Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS), Shenyang, China, 25–27 February 2023; pp. 408–414. [Google Scholar] [CrossRef]
- Zhu, Y.; Yeh, C.C.M.; Zimmerman, Z.; Kamgar, K.; Keogh, E. Matrix profile XI: SCRIMP++: Time series motif discovery at interactive speeds. In Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; pp. 837–846. [Google Scholar]
- Zimmerman, Z.; Kamgar, K.; Senobari, N.S.; Crites, B.; Funning, G.; Brisk, P.; Keogh, E. Matrix Profile XIV: Scaling Time Series Motif Discovery with GPUs to Break a Quintillion Pairwise Comparisons a Day and Beyond. In Proceedings of the ACM Symposium on Cloud Computing, Santa Cruz, CA, USA, 20–23 November 2019; pp. 74–86. [Google Scholar] [CrossRef]
- Nakamura, T.; Imamura, M.; Mercer, R.; Keogh, E. MERLIN: Parameter-Free Discovery of Arbitrary Length Anomalies in Massive Time Series Archives. In Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November 2020; pp. 1190–1195. [Google Scholar] [CrossRef]
- Keogh, E.; Lonardi, S.; Chiu, B.Y.C. Finding surprising patterns in a time series database in linear time and space. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD ’02, Edmonton, AB, Canada, 23–26 July 2002; p. 550. [Google Scholar] [CrossRef]
- Benschoten, A.V.; Ouyang, A.; Bischoff, F.; Marrs, T. MPA: A novel cross-language API for time series analysis. J. Open Source Softw. 2020, 5, 2179. [Google Scholar] [CrossRef]
- Linardi, M.; Zhu, Y.; Palpanas, T.; Keogh, E. Matrix profile goes MAD: Variable-length motif and discord discovery in data series. Data Min. Knowl. Discov. 2020, 34, 1022–1071. [Google Scholar] [CrossRef]
- Hubballi, N.; Biswas, S.; Nandi, S. Sequencegram: N-gram modeling of system calls for program based anomaly detection. In Proceedings of the 2011 3rd International Conference on Communication Systems and Networks (COMSNETS 2011), Bangalore, India, 4–8 January 2011; pp. 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; He, X.; Ming, R.; Xiao, M. G-Gecm: A Robust Time Series Prediction Model for River Water Level. 2023. Available online: https://www.ssrn.com/abstract=4589158 (accessed on 1 October 2023). [CrossRef]
- Zhou, M.J.; Chen, X.J. An Outlier Mining Algorithm Based on Dissimilarity. Procedia Environ. Sci. 2012, 12, 810–814. [Google Scholar] [CrossRef]
- Boniol, P.; Palpanas, T. Series2Graph: Graph-based subsequence anomaly detection for time series. Proc. VLDB Endow. 2020, 13, 1821–1834. [Google Scholar] [CrossRef]
- Zymbler, M.; Grents, A.; Kraeva, Y.; Kumar, S. A Parallel Approach to Discords Discovery in Massive Time Series Data. Comput. Mater. Contin. 2021, 66, 1867–1878. [Google Scholar] [CrossRef]
- Böhmer, K.; Rinderle-Ma, S. Mining association rules for anomaly detection in dynamic process runtime behavior and explaining the root cause to users. Inf. Syst. 2020, 90, 101438. [Google Scholar] [CrossRef]
- Senin, P.; Lin, J.; Wang, X.; Oates, T.; Gandhi, S.; Boedihardjo, A.P.; Chen, C.; Frankenstein, S. GrammarViz 3.0: Interactive Discovery of Variable-Length Time Series Patterns. ACM Trans. Knowl. Discov. Data 2018, 12, 1–28. [Google Scholar] [CrossRef]
- Boniol, P.; Linardi, M.; Roncallo, F.; Palpanas, T.; Meftah, M.; Remy, E. Unsupervised and scalable subsequence anomaly detection in large data series. VLDB J. 2021, 30, 909–931. [Google Scholar] [CrossRef]
- Gupta, U.; Bhattacharjee, V.; Bishnu, P.S. A New Neighborhood-Based Outlier Detection Technique. In Third International Conference on Microelectronics, Computing and Communication Systems; Nath, V., Mandal, J.K., Eds.; Lecture Notes in Electrical Engineering; Springer: Singapore, 2019; Volume 556, pp. 527–534. [Google Scholar] [CrossRef]
- Tkach, V.; Kudin, A.; Kebande, V.R.; Baranovskyi, O.; Kudin, I. Non-Pattern-Based Anomaly Detection in Time-Series. Electronics 2023, 12, 721. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, J.G.; Lee, B.S. Ultrafast Local Outlier Detection from a Data Stream with Stationary Region Skipping. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 23–27 August 2020; pp. 1181–1191. [Google Scholar] [CrossRef]
- Yang, J.; Wang, W.; Yu, P.S. Infominer: Mining surprising periodic patterns. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 26–29 August 2001; pp. 395–400. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, J.; Brif, C. Ensemble Grammar Induction For Detecting Anomalies in Time Series. 2020. Available online: https://openproceedings.org/2020/conf/edbt/paper_45.pdf (accessed on 4 July 2024). [CrossRef]
- Schneider, J.; Wenig, P.; Papenbrock, T. Distributed detection of sequential anomalies in univariate time series. VLDB J. 2021, 30, 579–602. [Google Scholar] [CrossRef]
- Yu, Y.; Wan, D.; Zhao, Q.; Liu, H. Detecting Pattern Anomalies in Hydrological Time Series with Weighted Probabilistic Suffix Trees. Water 2020, 12, 1464. [Google Scholar] [CrossRef]
- Wang, X.; Garg, S.; Lin, H.; Hu, J.; Kaddoum, G.; Jalil Piran, M.; Hossain, M.S. Toward Accurate Anomaly Detection in Industrial Internet of Things Using Hierarchical Federated Learning. IEEE Internet Things J. 2022, 9, 7110–7119. [Google Scholar] [CrossRef]
- Gharibi, M.; Rao, P. RefinedFed: A Refining Algorithm for Federated Learning. In Proceedings of the 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 13–15 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Zhu, Y.; Mueen, A.; Keogh, E. Matrix Profile IX: Admissible Time Series Motif Discovery With Missing Data. IEEE Trans. Knowl. Data Eng. 2021, 33, 2616–2626. [Google Scholar] [CrossRef]
- Wankhedkar, R.; Jain, S.K. Motif discovery and anomaly detection in an ECG using matrix profile. In Progress in Advanced Computing and Intelligent Engineering; Springer: Singapore, 2021; pp. 88–95. [Google Scholar]
- Yeh, C.C.M.; Kavantzas, N.; Keogh, E. Matrix Profile VI: Meaningful Multidimensional Motif Discovery. In Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 565–574. [Google Scholar] [CrossRef]
- Coco, M.I.; Mønster, D.; Leonardi, G.; Dale, R.; Wallot, S. Unidimensional and Multidimensional Methods for Recurrence Quantification Analysis with crqa. arXiv 2020, arXiv:2006.01954. [Google Scholar] [CrossRef]
Criteria Type | Description |
---|---|
Inclusion 1 | Attacks that could be detected earlier by leveraging data from multiple vantage points across the Internet, providing a more comprehensive view of the global routing table than single-point observations. This includes attacks where discrepancies in BGP announcements across different locations could indicate an anomaly, requiring the correlation of data from multiple sources for early detection (attack surface and temporal elements). |
Inclusion 2 | Attacks that involve collusion between ASs or are distributed in nature, benefiting from a group-level analysis to uncover coordinated malicious activities (collaborative or distributed nature). |
Inclusion 3 | Attacks that involve complex interactions across multiple Autonomous Systems, especially those that require an understanding of the dynamics of AS relationships to be detected (complex interactions across ASs). |
Inclusion 4 | Attacks that involve the advanced manipulation of routing information, where attackers leverage in-depth knowledge of the BGP to craft attacks that are difficult to detect without analyzing group-level interactions and dynamics (sophisticated manipulation of routing information). |
Inclusion 5 | Attacks that employ stealthy maneuvers or aim to evade detection by conventional public inter-domain routing monitoring and collector infrastructure. This includes attacks that manipulate AS path attributes or selectively announce paths to bypass detection by public route collectors (stealthiness and evasive techniques). |
Exclusion 1 | Attacks that are direct and lack complexity, such as simple prefix hijacking without any evasion tactics, might not benefit as much from a multi-vantage point approach since they can often be detected by conventional means (direct, simple attacks). |
Exclusion 2 | Attacks that do not directly involve BGP manipulation and predominantly rely on vulnerabilities outside the BGP protocol itself (non-BGP layered attacks). |
Exclusion 3 | Attacks whose impact on routing decisions is not strategic or does not involve the manipulation of BGP attributes or paths. This includes attacks that, while they may cause disruption, do not require an understanding of the BGP’s decision-making process or the relationships between ASs to be detected or mitigated. |
Attack Type/Criterion | I1 | I2 | I3 | I4 | I5 | E1 | E2 | E3 |
---|---|---|---|---|---|---|---|---|
Prefix Hijacking | Y | N | N | N | N | Y | N | N |
Subprefix | Y | N | Y | Y | Y | Y | N | N |
AS Path Forgery | Y | N | Y | Y | Y | N | N | N |
AS Path Poisoning | Y | N | Y | Y | Y | N | N | N |
Interception Attacks | Y | N | Y | Y | Y | N | N | N |
Replay and Suppression | Y | N | Y | N | N | N | N | N |
Collusion Attack | Y | Y | Y | Y | Y | N | N | N |
MED and RFD/MRAI | Y | N | Y | Y | Y | N | N | N |
Community Manipulation | Y | N | Y | Y | Y | N | N | N |
Denial-of-Service (DoS) | P | N | P | P | P | P | P | P |
Monitor Evasive | Y | Y | Y | Y | Y | N | N | N |
Citation | Technique | AD | MVP | #Params |
---|---|---|---|---|
[74,75,76,77,78,79,80,81,82] | SVM and its variants | Y | N | >2 |
[83] | NetworkSVM | N | N | >2 |
[84] | PhaseSpace-SVM | N | N | >2 |
[85] | Eros-SVMs | N | N | >2 |
[86] | ELM, KNN, NB | Y | N | >2 |
[9,10,73,87] | K-means/DBscan and variants | Y | N | >2 |
[88] | K-Means clustering | Y | N | >2 |
[89] | K-Means | N | N | >2 |
[90] | Hybrid K-Means | N | N | >2 |
[91] | HMM and Tukey’s | Y | N | >2 |
[92] | HBOS and others | Y | N | ≤2 |
[32,93] | PCA | Y | N | ≤2 |
[94] | RobustPCA | N | N | ≤2 |
[95,96] | Winnowing | Y | N | ≤2 |
[69] | DENSTREAM | Y | N | >2 |
[97] | c4.5 | Y | N | >2 |
[98] | MS-SVDD | N | N | >2 |
[99] | sequenceMiner | N | N | >2 |
[100] | NoveltySVR | N | N | >2 |
[101] | SLADE-MTS | N | N | >2 |
[102] | HBOS | N | N | ≤2 |
[103] | PCC | N | N | ≤2 |
[104] | KNN | N | N | ≤2 |
[105] | SLADE-TS | N | N | >2 |
[106] | XGBoost and variant | N | N | >2 |
[107] | Adaptive One-Class SVM | N | N | >2 |
[108] | RUSBoost | N | N | >2 |
[109] | OC-KFD | N | N | >2 |
Citation | Technique | AD | MVP | #Params |
---|---|---|---|---|
[13,75,78,81,111,112,114,115,116] | LSTM and variants | Y | N | >2 |
[117,118,119] | Other LSTM variants | N | N | >2 |
[110] | Deep ANN | Y | N | >2 |
[120,121] | Deep Embedding Models | Y | N | >2 |
[122,123,124,125] | RNNs | Y | N | >2 |
[126] | GAT | Y | N | >2 |
[127] | GRU | Y | N | >2 |
[128] | DLAE | Y | N | >2 |
[129] | Federated Learning | Y | P | >2 |
[130] | Deep Belief Network (DBN) | Y | N | >2 |
[131] | Normalizing Flow | N | N | >2 |
[132] | DeepAnT | N | N | >2 |
[133] | STORN | N | N | >2 |
[134,135,136,137] | ESNs | N | N | >2 |
[138] | DeepNAP | N | N | >2 |
[139] | DANN | N | N | >2 |
[140] | MTLED | N | N | >2 |
[141] | Hybrid KNN | N | N | >2 |
[142] | Hybrid DAE | N | N | >2 |
[143] | ELM-HTM | N | N | >2 |
[144] | TCN-AE | N | N | >2 |
[145] | LTI | N | N | >2 |
[146,147] | VarAE | N | N | >2 |
[148] | OMES/MTAD-GAT | N | N | >2 |
[149] | HTM/RADM | N | N | >2 |
[150] | MSCRED | N | N | >2 |
[151] | MEGA | N | N | >2 |
[152] | Hybrid ARIMA-WNN | N | N | >2 |
[153] | DL image-based | N | N | >2 |
[154] | GAN-based | N | N | >2 |
[155] | Hybrid VAELSTM | N | N | >2 |
[156] | D2S | N | N | >2 |
[157] | GC-ADS | N | N | >2 |
[158] | XceptionTimePlus/Telemanom | N | N | >2 |
[159] | HS-VAE | N | N | >2 |
[160] | FluxEV | N | N | >2 |
Citation | Technique | AD | MVP | #Params |
---|---|---|---|---|
[30,40,162] | EWMA and variants | Y | N | ≤2 |
[164,165] | Other EWMA variants | N | N | ≤2 |
[163] | RQA | Y | N | >2 |
[166] | MdRQA | N | Y | >2 |
[167,168] | Kalman Filter | Y | N | >2 |
[169] | SARIMA | Y | N | >2 |
[170] | NIDES/STAT | Y | N | >2 |
[171] | Heuristic algorithms | Y | N | >2 |
[172] | Z-score | Y | N | ≤2 |
[173] | MRCD | N | N | >2 |
[174] | MEDIFF | N | N | >2 |
[175] | ARFIMA/Holt-Winter | N | N | >2 |
[176] | MGDD | N | N | >2 |
[177] | One-sided Median | N | N | ≤2 |
[178] | Seasonal-Hybrid ESD | N | N | >2 |
[179] | ANODE/R-ANODE | N | N | >2 |
[180] | RePAD2 | N | N | >2 |
[181] | AMD | N | N | >2 |
[182] | DCDSPOT | N | N | >2 |
[183] | SASE/SMSE | N | N | >2 |
[184] | PCI | N | N | ≤2 |
Citation | Technique | AD | MVP | #Params |
---|---|---|---|---|
[185] | HMM | Y | N | >2 |
[186,187,188,189,190,191,192] | HMM variants | N | N | >2 |
[193,194] | DBNs | N | N | >2 |
[195] | Interactive OD | N | N | >2 |
[196] | FABDNBC | N | N | >2 |
Citation | Technique | AD | MVP | #Params |
---|---|---|---|---|
[66,200] | FFT | Y | N | ≤2 |
[199] | SSA, HHT | Y | N | >2 |
[201] | DWT | Y | N | >2 |
[67] | DWT and Haar wavelets | Y | N | >2 |
[65] | db5 transform | Y | N | >2 |
[198] | Wavelet transform | Y | N | >2 |
[202] | SR | N | N | >2 |
[203] | DWT-MLEAD | N | N | >2 |
[197] | Online DWTMLEAD | N | N | >2 |
Citation | Technique | AD | MVP | #Params |
---|---|---|---|---|
[92] | HBOS, Isolation Forest | Y | N | >2 |
[205] | LOCI, LOF | Y | N | >2 |
[206,207,208] | LOFs and RFCOF | N | N | >2 |
[209] | Semi-supervised HIF | N | N | >2 |
[210,211,212] | IFs | N | N | >2 |
[213] | COPOD-IKDM | N | N | >2 |
[214] | Distance-based OD | N | N | >2 |
[215] | ADSTREAM | N | N | >2 |
[216] | ATAD | N | N | >2 |
Citation | Technique | AD | MVP | #Params |
---|---|---|---|---|
[170] | NIDES/STAT | Y | N | >2 |
[221] | HOPA | Y | N | >2 |
[222] | Random Walk | Y | N | >2 |
[57,63,217,219,223,224,225,226,227,228] | MP and variants | Y | P | ≤2 |
[229] | SequenceGram | N | N | >2 |
[230] | THLS G-GECM | N | N | >2 |
[231] | OMABD | N | N | >2 |
[232] | GraphAn | N | N | >2 |
[233] | ParalellDadd | N | N | >2 |
[234] | AR Mining | N | N | >2 |
[235] | GrammarViz3.0 | N | N | >2 |
[236] | NormA | N | N | >2 |
[237] | OBN-based | N | N | >2 |
[238] | NP-AP | N | N | >2 |
[239] | STARE | N | N | >2 |
[240] | InfoMiner | N | N | >2 |
[241] | EnsembleGI | N | N | >2 |
[242] | DADS | N | N | >2 |
[243] | Weighted-PST | N | N | >2 |
RQA(x) | RQA(y) | RQA(z) | MdRQA | |
---|---|---|---|---|
RR | ||||
DET | ||||
MeanL | ||||
MaxL | 131 | 118 | 82 | 167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scott, B.A.; Johnstone, M.N.; Szewczyk, P. A Survey of Advanced Border Gateway Protocol Attack Detection Techniques. Sensors 2024, 24, 6414. https://doi.org/10.3390/s24196414
Scott BA, Johnstone MN, Szewczyk P. A Survey of Advanced Border Gateway Protocol Attack Detection Techniques. Sensors. 2024; 24(19):6414. https://doi.org/10.3390/s24196414
Chicago/Turabian StyleScott, Ben A., Michael N. Johnstone, and Patryk Szewczyk. 2024. "A Survey of Advanced Border Gateway Protocol Attack Detection Techniques" Sensors 24, no. 19: 6414. https://doi.org/10.3390/s24196414
APA StyleScott, B. A., Johnstone, M. N., & Szewczyk, P. (2024). A Survey of Advanced Border Gateway Protocol Attack Detection Techniques. Sensors, 24(19), 6414. https://doi.org/10.3390/s24196414