The FeetMe® Insoles System: Repeatability, Standard Error of Measure, and Responsiveness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant
2.2. Material: Insole System
2.3. Procedure and Data Analysis
- -
- Mean force during single stance phase: the ground reaction force in the vertical axis, representing the force exerted by the ground on a body in contact with it;
- -
- Stance duration: the duration of the support phase, representing the time during which the foot is in contact with the ground supporting the body’s weight;
- -
- Single stance duration: the duration of the single support phase, representing the time when only one foot is in contact with the ground while the other foot is in the air;
- -
- Double stance duration: the duration of the double support phase, representing the time when both feet are simultaneously in contact with the ground;
- -
- Swing duration: the duration of the oscillating phase, representing the time when the foot is swinging through the air between ground contacts.
3. Results
3.1. Standard Error of Measurement
3.2. Repeatability
3.3. Magnitude of Sensitivity to Change; Effect Size (ES)
3.4. Degree of Sensitivity to Change; Minimum Detectable Difference (MDD)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, R.; Esquenazi, A.; Benedetti, M.G.; Desloovere, K. Gait Analysis: Clinical Facts. Eur. J. Phys. Rehabil. Med. 2016, 52, 560–574. [Google Scholar] [PubMed]
- Leboeuf, F.; Baker, R.; Barré, A.; Reay, J.; Jones, R.; Sangeux, M. The Conventional Gait Model, an Open-Source Implementation That Reproduces the Past but Prepares for the Future. Gait Posture 2019, 69, 126–129. [Google Scholar] [CrossRef]
- Roche, N.; Bonnyaud, C.; Reynaud, V.; Bensmail, D.; Pradon, D.; Esquenazi, A. Motion Analysis for the Evaluation of Muscle Overactivity: A Point of View. Ann. Phys. Rehabil. Med. 2019, 62, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Del Din, S.; Godfrey, A.; Rochester, L. Validation of an Accelerometer to Quantify a Comprehensive Battery of Gait Characteristics in Healthy Older Adults and Parkinson’s Disease: Toward Clinical and at Home Use. IEEE J. Biomed. Health Inform. 2016, 20, 838–847. [Google Scholar] [CrossRef]
- Bussmann, J.; Veltink, P.; Koelma, F.; Van Lummel, R.; Stam, H. Ambulatory Monitoring of Mobility-Related Activities: The Initial Phase of the Development of an Activity Monitor. Eur. J. Phys. Med. Rehabil. 1995, 5, 2–7. [Google Scholar]
- Watanabe, K.; Hokari, M. Kinematical Analysis and Measurement of Sports Form. IEEE Trans. Syst. Man Cybern. Part. A Syst. Hum. 2006, 36, 549–557. [Google Scholar] [CrossRef]
- Michaud, M.; Guérin, A.; Dejean de La Bâtie, M.; Bancel, L.; Oudre, L.; Tricot, A. The Analytical Validity of Stride Detection and Gait Parameters Reconstruction Using the Ankle-Mounted Inertial Measurement Unit Syde®. Sensors 2024, 24, 2413. [Google Scholar] [CrossRef]
- Schall, M.; Chen, H.; Cavuoto, L. Wearable Inertial Sensors for Objective Kinematic Assessments: A Brief Overview. J. Occup. Environ. Hyg. 2022, 19, 501–508. [Google Scholar] [CrossRef]
- Drăgulinescu, A.; Drăgulinescu, A.-M.; Zincă, G.; Bucur, D.; Feieș, V.; Neagu, D.-M. Smart Socks and In-Shoe Systems: State-of-the-Art for Two Popular Technologies for Foot Motion Analysis, Sports, and Medical Applications. Sensors 2020, 20, 4316. [Google Scholar] [CrossRef]
- Jacobs, D.; Farid, L.; Ferré, S.; Herraez, K.; Gracies, J.-M.; Hutin, E. Evaluation of the Validity and Reliability of Connected Insoles to Measure Gait Parameters in Healthy Adults. Sensors 2021, 21, 6543. [Google Scholar] [CrossRef]
- Farid, L.; Jacobs, D.; Do Santos, J.; Simon, O.; Gracies, J.-M.; Hutin, E. FeetMe® Monitor-Connected Insoles Are a Valid and Reliable Alternative for the Evaluation of Gait Speed after Stroke. Top. Stroke Rehabil. 2021, 28, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Granja Domínguez, A.; Romero Sevilla, R.; Alemán, A.; Durán, C.; Hochsprung, A.; Navarro, G.; Páramo, C.; Venegas, A.; Lladonosa, A.; Ayuso, G.I. Study for the Validation of the FeetMe® Integrated Sensor Insole System Compared to GAITRite® System to Assess Gait Characteristics in Patients with Multiple Sclerosis. PLoS ONE 2023, 18, e0272596. [Google Scholar] [CrossRef]
- Parati, M.; Gallotta, M.; Muletti, M.; Pirola, A.; Bellafà, A.; De Maria, B.; Ferrante, S. Validation of Pressure-Sensing Insoles in Patients with Parkinson’s Disease during Overground Walking in Single and Cognitive Dual-Task Conditions. Sensors 2022, 22, 6392. [Google Scholar] [CrossRef] [PubMed]
- Renner, K.E.; Williams, D.S.B.; Queen, R.M. The Reliability and Validity of the Loadsol® under Various Walking and Running Conditions. Sensors 2019, 19, 265. [Google Scholar] [CrossRef] [PubMed]
- Peebles, A.T.; Maguire, L.A.; Renner, K.E.; Queen, R.M. Validity and Repeatability of Single-Sensor Loadsol Insoles during Landing. Sensors 2018, 18, 4082. [Google Scholar] [CrossRef] [PubMed]
- Loiret, I.; Villa, C.; Dauriac, B.; Bonnet, X.; Martinet, N.; Paysant, J.; Pillet, H. Are Wearable Insoles a Validated Tool for Quantifying Transfemoral Amputee Gait Asymmetry? Prosthet. Orthot. Int. 2019, 43, 492–499. [Google Scholar] [CrossRef]
- Seiberl, W.; Jensen, E.; Merker, J.; Leitel, M.; Schwirtz, A. Accuracy and Precision of Loadsol® Insole Force-Sensors for the Quantification of Ground Reaction Force-Based Biomechanical Running Parameters. Eur. J. Sport. Sci. 2018, 18, 1100–1109. [Google Scholar] [CrossRef]
- Burns, G.T.; Deneweth Zendler, J.; Zernicke, R.F. Validation of a Wireless Shoe Insole for Ground Reaction Force Measurement. J. Sports Sci. 2019, 37, 1129–1138. [Google Scholar] [CrossRef]
- Parker, D.; Andrews, J.; Price, C. Validity and Reliability of the XSENSOR In-Shoe Pressure Measurement System. PLoS ONE 2023, 18, e0277971. [Google Scholar] [CrossRef]
- McGinley, J.L.; Baker, R.; Wolfe, R.; Morris, M.E. The Reliability of Three-Dimensional Kinematic Gait Measurements: A Systematic Review. Gait Posture 2009, 29, 360–369. [Google Scholar] [CrossRef]
- Mokkink, L.B.; Terwee, C.B.; Knol, D.L.; Stratford, P.W.; Alonso, J.; Patrick, D.L.; Bouter, L.M.; de Vet, H.C. The COSMIN Checklist for Evaluating the Methodological Quality of Studies on Measurement Properties: A Clarification of Its Content. BMC Med. Res. Methodol. 2010, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Squara, P.; Scheeren, T.W.L.; Aya, H.D.; Bakker, J.; Cecconi, M.; Einav, S.; Malbrain, M.L.N.G.; Monnet, X.; Reuter, D.A.; van der Horst, I.C.C.; et al. Metrology Part 1: Definition of Quality Criteria. J. Clin. Monit. Comput. 2021, 35, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Papa, E.V.; Addison, O.; Foreman, K.B.; Dibble, L. Reproducibility and Responsiveness of Gait Initiation in Parkinson’s Disease. J. Biomech. 2019, 87, 197. [Google Scholar] [CrossRef]
- Milne, S.C.; Kim, S.H.; Murphy, A.; Larkindale, J.; Farmer, J.; Malapira, R.; Danoudis, M.; Shaw, J.; Ramakrishnan, T.; Rasouli, F.; et al. The Responsiveness of Gait and Balance Outcomes to Disease Progression in Friedreich Ataxia. Cerebellum 2022, 21, 963–975. [Google Scholar] [CrossRef]
- Wells, G.; Beaton, D.; Shea, B.; Boers, M.; Simon, L.; Strand, V.; Brooks, P.; Tugwell, P. Minimal Clinically Important Differences: Review of Methods. J. Rheumatol. 2001, 28, 406–412. [Google Scholar]
- Fairus, F.Z.; Joseph, L.H.; Omar, B.; Ahmad, J.; Sulaiman, R. Intra-Rater Reliability and Minimal Detectable Change of Vertical Ground Reaction Force Measurement during Gait and Half-Squat Tasks on Healthy Male Adults. Malays. J. Med. Sci. MJMS 2016, 23, 21. [Google Scholar]
- Weerdesteyn, V.; Hollands, K.L.; Hollands, M.A. Gait Adaptability. Handb. Clin. Neurol. 2018, 159, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Boekesteijn, R.J.; van Gerven, J.; Geurts, A.C.H.; Smulders, K. Objective Gait Assessment in Individuals with Knee Osteoarthritis Using Inertial Sensors: A Systematic Review and Meta-Analysis. Gait Posture 2022, 98, 109–120. [Google Scholar] [CrossRef]
- Brady, R.A.; Peters, B.T.; Batson, C.D.; Ploutz-Snyder, R.; Mulavara, A.P.; Bloomberg, J.J. Gait Adaptability Training Is Affected by Visual Dependency. Exp. Brain Res. 2012, 220, 1–9. [Google Scholar] [CrossRef]
- Geerse, D.J.; Roerdink, M.; Marinus, J.; van Hilten, J.J. Assessing Walking Adaptability in Stroke Patients. Disabil. Rehabil. 2021, 43, 3242–3250. [Google Scholar] [CrossRef]
- Martelli, D.; Xia, B.; Prado, A.; Agrawal, S.K. Gait Adaptations during Overground Walking and Multidirectional Oscillations of the Visual Field in a Virtual Reality Headset. Gait Posture 2019, 67, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Eikema, D.J.A.; Chien, J.H.; Stergiou, N.; Myers, S.A.; Scott-Pandorf, M.M.; Bloomberg, J.J.; Mukherjee, M. Optic Flow Improves Adaptability of Spatiotemporal Characteristics during Split-Belt Locomotor Adaptation with Tactile Stimulation. Exp. Brain Res. 2016, 234, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Simon, S.R. Quantification of Human Motion: Gait Analysis-Benefits and Limitations to Its Application to Clinical Problems. J. Biomech. 2004, 37, 1869–1880. [Google Scholar] [CrossRef] [PubMed]
- Muro-de-la-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait Analysis Using Wearable Sensors. Sensors 2012, 12, 2255–2283. [Google Scholar] [CrossRef]
- Lord, S.; Galna, B.; Rochester, L. Moving Forward on Gait Measurement: Toward a More Refined Approach. Mov. Disord. 2013, 28, 1534–1543. [Google Scholar] [CrossRef]
- Salarian, A.; Russmann, H.; Vingerhoets, F.J.G.; Dehollain, C.; Blanc, Y.; Burkhard, P.R.; Aminian, K. Gait Assessment in Parkinson’s Disease: Toward an Ambulatory System for Long-Term Monitoring. IEEE Trans. Biomed. Eng. 2004, 51, 1434–1443. [Google Scholar] [CrossRef]
- Brognara, L.; Palumbo, P.; Grimm, B.; Palmerini, L. Assessing Gait in Parkinson’s Disease Using Wearable Motion Sensors: A Systematic Review. Diseases 2019, 7, 18. [Google Scholar] [CrossRef]
- Patel, M.; Pavic, A.; Goodwin, V.A. Wearable Inertial Sensors to Measure Gait and Posture Characteristic Differences in Older Adult Fallers and Non-Fallers: A Scoping Review. Gait Posture 2020, 76, 110–121. [Google Scholar] [CrossRef]
- Petraglia, F.; Scarcella, L.; Pedrazzi, G.; Brancato, L.; Puers, R.; Costantino, C. Inertial Sensors versus Standard Systems in Gait Analysis: A Systematic Review and Meta-Analysis. Eur. J. Phys. Rehabil. Med. 2019, 55, 265–280. [Google Scholar] [CrossRef]
- Figueiredo, J.; Carvalho, S.P.; Vilas-Boas, J.P.; Gonçalves, L.M.; Moreno, J.C.; Santos, C.P. Wearable Inertial Sensor System Towards Daily Human Kinematic Gait Analysis: Benchmarking Analysis to MVN BIOMECH. Sensors 2020, 20, 2185. [Google Scholar] [CrossRef] [PubMed]
- Stroke Rehabilitation and Recovery. In Stroke Prevention and Treatment: An Evidence-Based Approach; Hankey, G.J.; Saver, J.L. (Eds.) Cambridge University Press: Cambridge, UK, 2020; pp. 485–550. ISBN 978-1-107-11314-5. [Google Scholar]
- Kazis, L.E.; Anderson, J.J.; Meenan, R.F. Effect Sizes for Interpreting Changes in Health Status. Med. Care 1989, 27, S178–S189. [Google Scholar] [CrossRef] [PubMed]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Ducharme, S.W.; Liddy, J.J.; Haddad, J.M.; Busa, M.A.; Claxton, L.J.; van Emmerik, R.E.A. Association between Stride Time Fractality and Gait Adaptability during Unperturbed and Asymmetric Walking. Human. Mov. Sci. 2018, 58, 248–259. [Google Scholar] [CrossRef]
- Ito, T.; Tsubahara, A.; Shinkoda, K.; Yoshimura, Y.; Kobara, K.; Osaka, H. Excitability Changes in Intracortical Neural Circuits Induced by Differentially Controlled Walking Patterns. PLoS ONE 2015, 10, e0117931. [Google Scholar] [CrossRef]
- Carr, S.; Rasouli, F.; Kim, S.H.; Reed, K.B. Real-Time Feedback Control of Split-Belt Ratio to Induce Targeted Step Length Asymmetry. J. Neuroeng. Rehabil. 2022, 19, 65. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass Correlations: Uses in Assessing Rater Reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- Portney, L.G.; Watkins, M.P. Foundations of Clinical Reseach: Applications to Practice, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2009; ISBN 978-0-13-234470-8. [Google Scholar]
- Atkinson, G.; Nevill, A.M. Statistical Methods For Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Haley, S.M.; Fragala-Pinkham, M.A. Interpreting Change Scores of Tests and Measures Used in Physical Therapy. Phys. Ther. 2006, 86, 735–743. [Google Scholar] [CrossRef]
- Beninato, M.; Portney, L.G. Applying Concepts of Responsiveness to Patient Management in Neurologic Physical Therapy. J. Neurol. Phys. Ther. 2011, 35, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, G.M.; Feinn, R. Using Effect Size—Or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Malone, A.; Kiernan, D.; French, H.; Saunders, V.; O’Brien, T. Do Children with Cerebral Palsy Change Their Gait When Walking over Uneven Ground? Gait Posture 2015, 41, 716–721. [Google Scholar] [CrossRef]
- Chakraborty, S.; Nandy, A.; Kesar, T.M. Gait Deficits and Dynamic Stability in Children and Adolescents with Cerebral Palsy: A Systematic Review and Meta-Analysis. Clin. Biomech. 2020, 71, 11–23. [Google Scholar] [CrossRef]
- Pau, M.; Corona, F.; Pili, R.; Casula, C.; Sors, F.; Agostini, T.; Cossu, G.; Guicciardi, M.; Murgia, M. Effects of Physical Rehabilitation Integrated with Rhythmic Auditory Stimulation on Spatio-Temporal and Kinematic Parameters of Gait in Parkinson’s Disease. Front. Neurol. 2016, 7, 126. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, J.-T.; Novak, A.C.; Brouwer, B.; Li, Q. Estimation of Spatio-Temporal Parameters for Post-Stroke Hemiparetic Gait Using Inertial Sensors. Gait Posture 2013, 37, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Winiarski, S.; Rutkowska-Kucharska, A.; Pozowski, A.; Aleksandrowicz, K. A New Method of Evaluating the Symmetry of Movement Used to Assess the Gait of Patients after Unilateral Total Hip Replacement. Appl. Bionics Biomech. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Lee, M.M.; Song, C.H.; Lee, K.J.; Jung, S.W.; Shin, D.C.; Shin, S.H. Concurrent Validity and Test-Retest Reliability of the OPTOGait Photoelectric Cell System for the Assessment of Spatio-Temporal Parameters of the Gait of Young Adults. J. Phys. Ther. Sci. 2014, 26, 81–85. [Google Scholar] [CrossRef]
- Confidence Limits in the SEM. Walking with Richard 2016. Available online: https://wwrichard.net/ (accessed on 16 September 2024).
N° | Condition | Description | Belt Speed (m/s) | Belt Speed (m/s) | Asymmetry |
---|---|---|---|---|---|
Right | Left | ||||
1 | TDM6-SYM-GROUND | TDM6 overground | N/A | N/A | Symmetric |
2 | TDM6-SYM-MGAIT | TDM6 treadmill: equal belt speeds | 1.2 | 1.2 | Symmetric |
3 | TDM6-ASYM-MGAIT-16L | TDM6 treadmill: 16% left asymmetry | 1.2 | 1.4 s | +16% left asymmetry |
4 | TDM6-ASYM-MGAIT-33L | TDM6 treadmill: 33% left asymmetry | 1.2 | 1.6 | +33% left asymmetry |
5 | TDM6-ASYM-MGAIT-50L | TDM6 treadmill: 50% left asymmetry | 1.2 | 1.8 | +50% left asymmetry |
6 | TDM6-ASYM-MGAIT-16R | TDM6 treadmill: 16% right asymmetry | 1.4 | 1.2 | +16% right asymmetry |
7 | TDM6-ASYM-MGAIT-33R | TDM6 treadmill: 33% right asymmetry | 1.6 | 1.2 | +33% right asymmetry |
8 | TDM6-ASYM-MGAIT-50R | TDM6 treadmill: 50% right asymmetry | 1.8 | 1.2 | +50% right asymmetry |
Gait Parameters | Overground Walking (TDM6-SYM-GROUND) | Treadmill without Induced Asymmetry (TDM6-SYM-MGAIT) | Treadmill with Induced Asymmetry (TDM6-ASYM-MGAIT) | Effect Size | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Values Mean (sd) | SEM Value (%) | MDD95 Value (%) | Values Mean (sd) | SEM Value (%) | MDD95 Value (%) | Values Mean (sd) | SEM Value (%) | MDD95 Value (%) | O-TA Value | T-TA Value | |
Mean force during single stance phase (kg·cm−2) | 8.13 (0.02) 8.75 (0.01) | 0.31 (3.8%) 0.34 (3.9%) | 0.86 (10.58%) 0.94 (10.74%) | 8.32 (0.05) 8.72 (0.04) | 0.09 (1.1%) 0.14 (1.6%) | 0.25 (3%) 0.39 (4.47%) | 8.04 (0.03) 8.6 (0.03) | 0.08 (0.9%) 0.31 (3.7%) | 0.22 (2.56%) 0.86 (10.23%) | - | - |
Stance duration (ms) | 730.3 (19.2) 744.8 (18.5) | 42.89 (5.9%) 47.82 (6.4%) | 118.89 (16.28%) 132.55 (17.8%) | 706.9 (11.5) 719.5 (11.7) | 3.44 (0.5%) 6.14 (0.9%) | 9.54 (1.33%) 17.02 (2.41%) | 583.8 (9.8) 714.1 (13.4) | 0.91 (0.1%) 12.17 (1.8%) | 2.52 (0.36%) 33.73 (5.01%) | −7.85 −1.66 | −10.7 −0.46 |
Single stance duration (ms) | 413.6 (24.2) 428.6 (18.0) | 23.99 (5.8%) 29.22 (6.8%) | 66.5 (16.08%) 80.99 (18.9%) | 395.3 (16.2) 407.5 (20.0) | 3.17 (0.8%) 6.3 (1.6%) | 8.79 (2.16%) 17.46 (4.42%) | 314.9 (10.9) 420.7 (11) | 1.8 (0.4%) 8.84 (2.6%) | 4.99 (1.19%) 24.5 (7.16%) | −5.78 −0.28 | −4.96 0.71 |
Double stance duration (ms) | 314.9 (17.9) 315.3 (13.4) | 19.28 (6.1%) 19.76 (6.3%) | 53.44 (16.97%) 54.77 (17.37%) | 310.6 (16.0) 310.9 (12.5) | 2 (0.6%) 2.37 (0.8%) | 5.54 (1.78%) 6.57 (2.12%) | 268.2 (8.6) 297.9 (11.1) | 1.43 (0.5%) 5.12 (1.7%) | 3.96 (1.45%) 14.19 (4.78%) | −3.51 −1.01 | −3.36 −0.79 |
Swing duration (ms) | 414.5 (14.3) 429 (13.9) | 24.24 (5.8%) 29.04 (6.8%) | 67.19 (16.21%) 80.49 (18.76%) | 395.7 (11.7) 408.3 (10.4) | 2.45 (0.6%) 6.77 (1.7%) | 6.79 (1.66%) 18.77 (4.74%) | 315.0 (10.9) 420.7 (11.0) | 1.77 (0.4) 8.32 (2.5%) | 4.91 (1.17%) 23.06 (7.07%) | −7.47 −0.51 | −8 1.19 |
Condition | Leg | Stance Duration | Single Stance Duration | Double Stance Duration | Swing Duration |
---|---|---|---|---|---|
TDM6-SYM-GROUND | Left | 0.989 | 0.991 | 0.943 | 0.95 |
Right | 0.963 | 0.948 | 0.939 | 0.99 | |
TDM6-SYM-MGAIT | Left | 0.996 | 0.991 | 0.972 | 0.978 |
Right | 0.988 | 0.978 | 0.971 | 0.991 | |
TDM6-ASYM-MGAIT-16L | Left | 0.976 | 0.981 | 0.941 | 0.875 |
Right | 0.453 | 0.881 | 0.956 | 0.988 | |
TDM6-ASYM-MGAIT-33L | Left | 0.992 | 0.994 | 0.935 | 0.95 |
Right | 0.913 | 0.951 | 0.936 | 0.994 | |
TDM6-ASYM-MGAIT-50L | Left | 0.999 | 0.999 | 0.999 | 0.999 |
Right | 0.999 | 0.999 | 0.999 | 0.999 | |
TDM6-ASYM-MGAIT-16R | Left | 0.994 | 0.969 | 0.982 | 0.995 |
Right | 0.997 | 0.995 | 0.984 | 0.983 | |
TDM6-ASYM-MGAIT-33R | Left | 0.943 | 0.995 | 0.948 | 0.994 |
Right | 0.964 | 0.985 | 0.975 | 0.995 | |
TDM6-ASYM-MGAIT-50R | Left | 0.904 | 0.958 | 0.917 | 0.995 |
Right | 0.994 | 0.995 | 0.917 | 0.958 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, N.; Leboeuf, F.; Pradon, D. The FeetMe® Insoles System: Repeatability, Standard Error of Measure, and Responsiveness. Sensors 2024, 24, 6043. https://doi.org/10.3390/s24186043
Martin N, Leboeuf F, Pradon D. The FeetMe® Insoles System: Repeatability, Standard Error of Measure, and Responsiveness. Sensors. 2024; 24(18):6043. https://doi.org/10.3390/s24186043
Chicago/Turabian StyleMartin, Nathan, Fabien Leboeuf, and Didier Pradon. 2024. "The FeetMe® Insoles System: Repeatability, Standard Error of Measure, and Responsiveness" Sensors 24, no. 18: 6043. https://doi.org/10.3390/s24186043
APA StyleMartin, N., Leboeuf, F., & Pradon, D. (2024). The FeetMe® Insoles System: Repeatability, Standard Error of Measure, and Responsiveness. Sensors, 24(18), 6043. https://doi.org/10.3390/s24186043