A Surface-Enhanced Raman Scattering Substrate with Tunable Localized Surface Plasmon Resonance Absorption Based on AgNPs
<p>Schematic diagram of AgNP-dielectric-metal structure.</p> "> Figure 2
<p>(<b>a</b>) Absorption spectrum of AgNPs synthesized using the improved Tollens method; (<b>b</b>) SEM image of the synthesized AgNPs.</p> "> Figure 3
<p>The effect of SiO<sub>2</sub> layer thickness on the structural response. (<b>a</b>) SiO<sub>2</sub> with different thicknesses was tested in the simulation, ranging from t = 50 nm to 350 nm. The diameter of AgNPs was set to 40 nm, and the spacing between them was 2 nm. (<b>b</b>) The electric field distribution of the structure: the energy is effectively localized in the dielectric layer (inside the yellow dashed line), the red dashed circle exhibit the AgNPs. (<b>c</b>) The electromagnetic field distribution of the top layer: the LSPR is effectively excited between the particles, and local field enhancement is generated.</p> "> Figure 4
<p>The effect of changing particle size on the response. (<b>a</b>) When the diameter of AgNPs changes from 10 nm to 50 nm, the absorption peak redshifts; (<b>b</b>) The effect of changing the particle spacing.</p> "> Figure 5
<p>Effect of different concentrations of glucose on the structural response of AgNPs synthesized.</p> "> Figure 6
<p>Spectral response of 5 random points in the functional area.</p> "> Figure 7
<p>The effect of the thickness of the dielectric layer of the AgNP-dielectric-metal structure on the absorption peak. (<b>a</b>) The simulation results under three structural parameters: t<sub>1</sub> = 160 nm, t<sub>2</sub> = 190 nm, and t<sub>3</sub> = 220 nm; (<b>b</b>) The measured results under the above three structural parameters.</p> "> Figure 8
<p>SERS detection results of AgNP-dielectric-metal structure; 1–5 are SERS signals obtained from 5 points randomly selected in the functional area.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication
2.3. Synthesis of AgNPs
2.4. Fabrication of the Device
3. Results and Discussion
3.1. The Influence of Dielectric Layer Thickness
3.2. Effect of Nanoparticles
3.3. Effect of Synthesis Concentration
3.4. SERS Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gramotnev, D.; Bozhevolnyi, S. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91. [Google Scholar] [CrossRef]
- Gotschy, W.; Vonmetz, K.; Leitner, A.; Aussenegg, F.R. Thin films by regular patterns of metal nanoparticles: Tailoring the optical properties by nanodesign. Appl. Phys. B 1996, 63, 381–384. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, X.; Dong, J.; Yang, W.; Liu, S.; Shen, C.; Duan, J.; Deng, X. A plasmonic infrared multiple-channel filter based on gold composite nanocavities metasurface. Nanomaterials 2021, 11, 1824. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef]
- Moiseev, S.; Glukhov, I. Tuning and total resonant suppression of reflection in the photonic bandgap range of Bragg reflector by two-dimensional nanoparticle array. J. Appl. Phys. 2024, 135, 083106. [Google Scholar] [CrossRef]
- Andrews, D.L. Rayleigh scattering and Raman effect, theory. In Encyclopedia of Spectroscopy and Spectrometry; Elsevier: Amsterdam, The Netherlands, 2016; pp. 924–930. [Google Scholar]
- Zhang, R.; Zhang, Y.; Dong, Z.C.; Jiang, S.; Zhang, C.; Chen, L.G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y.; et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498, 82–86. [Google Scholar] [CrossRef]
- Zrimsek, A.B.; Chiang, N.; Mattei, M.; Zaleski, S.; McAnally, M.O.; Chapman, C.T.; Henry, A.-I.; Schatz, G.C.; Van Duyne, R.P. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 7583–7613. [Google Scholar] [CrossRef]
- Dick, L.A.; McFarland, A.D.; Haynes, C.L.; Van Duyne, R.P. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 2002, 106, 853–860. [Google Scholar] [CrossRef]
- Wang, J.; Xie, H.; Ding, C. Designed co-DNA-locker and ratiometric SERS sensing for accurate detection of exosomes based on gold nanorod arrays. ACS Appl. Mater. Interfaces 2021, 13, 32837–32844. [Google Scholar] [CrossRef]
- Wen, G.; Pan, S.; Gan, M.; Liang, A.; Jiang, Z. Aptamer-regulated gold nanosol plasmonic SERS/RRS dimode assay of trace organic pollutants based on TpPa-loaded PdNC catalytic amplification. ACS Appl. Bio Mater. 2021, 4, 4582–4590. [Google Scholar] [CrossRef]
- Xomalis, A.; Zheng, X.; Demetriadou, A.; Martínez, A.; Chikkaraddy, R.; Baumberg, J.J. Interfering plasmons in coupled nanoresonators to boost light localization and SERS. Nano Lett. 2021, 21, 2512–2518. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, L.; Jing, X.; Miao, H.; Zhao, Y. SERS-active composites with Au–Ag janus nanoparticles/perovskite in immunoassays for staphylococcus aureus enterotoxins. ACS Appl. Mater. Interfaces 2022, 14, 3293–3301. [Google Scholar] [CrossRef] [PubMed]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Wiley, B.J.; Im, S.H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. Phys. Chem. B. 2006, 110, 15666–15675. [Google Scholar] [CrossRef] [PubMed]
- Stockman, M. Nanoplasmonics: The physics behind the applications. Phys. Today 2011, 64, 39–44. [Google Scholar] [CrossRef]
- Doiron, B.; Mota, M.; Wells, M.P.; Bower, R.; Mihai, A.; Li, Y.; Cohen, L.F.; Alford, N.M.; Petrov, P.K.; Oulton, R.F.; et al. Quantifying figures of merit for localized surface plasmon resonance applications: A materials survey. ACS Photonics 2019, 6, 240–259. [Google Scholar] [CrossRef]
- Balci, S.; Ertugrul, K.; Coskun, K. Strong coupling between localized and propagating plasmon polaritons. Opt. Lett. 2015, 40, 3177–3180. [Google Scholar] [CrossRef]
- Yao, X.; Jiang, S.; Luo, S.; Liu, B.-W.; Huang, T.-X.; Hu, S.; Zhu, J.; Wang, X.; Ren, B. Uniform periodic bowtie SERS substrate with narrow nanogaps obtained by monitored pulsed electrodeposition. ACS Appl. Mater. Interfaces 2020, 12, 36505–36512. [Google Scholar] [CrossRef]
- Lin, G.; Zhu, J.; Wu, M.; Lu, P.; Wu, W. Ultrasensitive and Uniform Surface-Enhanced Raman Scattering Substrates for the Methidathion Detection. AIP Adv. 2019, 9, 035203. [Google Scholar] [CrossRef]
- Lin, G.; Zhang, K.; Huang, Y.; Jin, S.; Kang, T.; Chen, Y.; Li, L.; Lu, P.; Wu, W. A Flexible AgNPs-PDMS Substrate to Produce Ultrasensitive SERS Detection. In Proceedings of the 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 25–29 April 2021; pp. 889–892. [Google Scholar]
- Lin, G.; Yang, B.; Zhang, C.; Zhu, J.; Wang, Y.; Li, L.; Xiong, S.; Zhang, J.; Qi, Z.; Wu, W. A Surface Enhanced Raman Scattering (SERS) Sensing Method Enhanced by All-Metal Metasurface. Phys. Scr. 2023, 98, 125964. [Google Scholar] [CrossRef]
- Brongersma, M.; Pieter, G. Surface Plasmon Nanophotonics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Yunker, P.J.; Still, T.; Lohr, M.A.; Yodh, A.G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 2011, 476, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Yunker, P.J.; Lohr, M.A.; Still, T.; Borodin, A.; Durian, D.J.; Yodh, A.G. Effects of particle shape on growth dynamics at edges of evaporating drops of colloidal suspensions. Phys. Rev. Lett. 2013, 110, 035501. [Google Scholar] [CrossRef] [PubMed]
- Bigioni, T.P.; Lin, X.-M.; Nguyen, T.T.; Corwin, E.I.; Witten, T.A.; Jaeger, H.M. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat. Mater. 2006, 5, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Lin, G.; Wu, M.; Chen, Z.; Lu, P.; Wu, W. Large-Scale Fabrication of Ultrasensitive and Uniform Surface-Enhanced Raman Scattering Substrates for the Trace Detection of Pesticides. Nanomaterials 2018, 8, 520. [Google Scholar] [CrossRef] [PubMed]
Raman Shift (cm−1) | Assignment Mode |
---|---|
612 | C-C-C in-plane bending vibration |
774 | C-H stretching |
1127 | C-H in-plane bending vibration |
1180 | C-H and N-H bending vibration |
1310 | C=C stretching |
1364 | Stretching vibration of the C-C bond |
1509 | Stretching vibration of the C-C bond |
1574 | Stretching vibration of the C=O bond |
1647 | Stretching vibration of the C-C bond |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, G.; Wu, M.; Tang, R.; Wu, B.; Wang, Y.; Zhu, J.; Zhang, J.; Wu, W. A Surface-Enhanced Raman Scattering Substrate with Tunable Localized Surface Plasmon Resonance Absorption Based on AgNPs. Sensors 2024, 24, 5778. https://doi.org/10.3390/s24175778
Lin G, Wu M, Tang R, Wu B, Wang Y, Zhu J, Zhang J, Wu W. A Surface-Enhanced Raman Scattering Substrate with Tunable Localized Surface Plasmon Resonance Absorption Based on AgNPs. Sensors. 2024; 24(17):5778. https://doi.org/10.3390/s24175778
Chicago/Turabian StyleLin, Guanzhou, Meizhang Wu, Rui Tang, Bo Wu, Yang Wang, Jia Zhu, Jinwen Zhang, and Wengang Wu. 2024. "A Surface-Enhanced Raman Scattering Substrate with Tunable Localized Surface Plasmon Resonance Absorption Based on AgNPs" Sensors 24, no. 17: 5778. https://doi.org/10.3390/s24175778
APA StyleLin, G., Wu, M., Tang, R., Wu, B., Wang, Y., Zhu, J., Zhang, J., & Wu, W. (2024). A Surface-Enhanced Raman Scattering Substrate with Tunable Localized Surface Plasmon Resonance Absorption Based on AgNPs. Sensors, 24(17), 5778. https://doi.org/10.3390/s24175778