Photobleaching Effect on the Sensitivity Calibration at 638 nm of a Phosphorus-Doped Single-Mode Optical Fiber Dosimeter
<p>Refractive index profile measured at 633 nm for the LUMINA P-doped optical fiber. On the top, the simulated 2D electric field distribution for the fundamental mode at λ = 638 nm. Simulations were carried out using COMSOL Multiphysics software, version is 5.2.1.152 [<a href="#B35-sensors-24-05547" class="html-bibr">35</a>].</p> "> Figure 2
<p>Scheme of the set-up used for the two parallel acquisition methods: (<b>up</b>) configuration ON; (<b>down</b>) configuration ON–OFF.</p> "> Figure 3
<p>Acquired signal with a 10 µW injected power in the reference (1 m long sample) and sample (5 m long sample) channels. To eliminate the contribution from the laser source fluctuations and the transport fibers losses, the two signals were subtracted. In the figure are also marked the three different acquisition periods. When the irradiation is off, the laser remains switched on.</p> "> Figure 4
<p>RIA kinetics at 638 nm, in configuration ON, for different injected powers on the tested LUMINA SM fiber, with each curve corresponding to a different irradiation run. (<b>a</b>) RIA growth vs. time and dose during ~15 h irradiation, up to a cumulated dose of 28–35 Gy, using a 530 µGy/s dose rate. Dashed lines indicate the irradiation end and the recovery start while the laser source is still switched ON. (<b>b</b>) RIA levels normalized by the achieved value at the irradiation end. Decay kinetics of the RIA post irradiation for 3 h; the decay remains limited to 6% in the worst-case scenario (1 mW of injected power light).</p> "> Figure 5
<p>RIA kinetics at 638 nm, in configuration ON–OFF, for different injected powers on the tested LUMINA SM fiber, with each curve corresponding to a different irradiation run. (<b>a</b>) RIA growth vs. time and dose during 15 h irradiation, up to a cumulated dose of 27–35 Gy, using a 530 µGy/s dose rate. Dashed lines indicate the irradiation end and the recovery start while the laser source is still in configuration ON–OFF. (<b>b</b>) RIA levels normalized by the achieved value at the irradiation end.</p> "> Figure 6
<p>Sensitivity coefficient evolution as a function of the injected laser power, for both configurations ON (black curve) and ON–OFF (red curve). The error bars come from repeatability tests.</p> "> Figure 7
<p>Sensitivity function used to estimate the losses knowing the propagating signal power at 638 nm, starting from the experimental data in configuration ON.</p> "> Figure 8
<p>(<b>a</b>) Simulated 638 nm losses evolution along a 2 km long optical fiber, up to a 5 Gy cumulated dose, considering the photobleaching effect. In the inset is shown the transmitted power along the fiber length for different intermediary doses between 0–10 Gy, when 125 µW is injected in input. (<b>b</b>) Calculated sensitivity coefficient of all the coil as a function of the deposited dose.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
- -
- LUMINA fiber sample
- -
- Experimental Setup
- Configuration ON means that the laser is always switched on during all the acquisition time, including the “recovery” period following the end of irradiation. If any photobleaching occurs, this configuration will maximize the effect;
- Configuration ON–OFF involves the use of a function generator able to generate laser pulses for which the laser is ON for 20 s and OFF for 580 s, resulting in periodic sequences in which the laser is injected ~3% of the cycle duration time.
3. Analysis and Results
3.1. Configuration ON
3.2. Configuration ON–OFF
4. Discussion
- -
- Model of the photobleaching effects in a fiber coil
- -
- Application example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cucinotta, F.A.; Durante, M. Cancer Risk from Exposure to Galactic Cosmic Rays: Implications for Space Exploration by Human Beings. Lancet Oncol. 2006, 7, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Barth, J.L.; LaBel, K.A.; Poivey, C. Radiation Assurance for the Space Environment. In Proceedings of the 2004 International Conference on Integrated Circuit Design and Technology (IEEE Cat. No.04EX866), Austin, TX, USA, 17–20 May 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 323–333. [Google Scholar]
- Eckart, P. Future Life Support in Space. In Spaceflight Life Support and Biospherics; Eckart, P., Ed.; Springer: Dordrecht, The Netherlands, 1996; pp. 397–412. ISBN 978-94-017-3038-9. [Google Scholar]
- Cucinotta, F.A.; Schimmerling, W.; Wilson, J.W.; Peterson, L.E.; Badhwar, G.D.; Saganti, P.B.; Dicello, J.F. Space Radiation Cancer Risks and Uncertainties for Mars Missions. Radiat. Res. 2001, 156, 682–688. [Google Scholar] [CrossRef]
- Townsend, L.W.; Fry, R.J.M. Radiation Protection Guidance for Activities in Low-Earth Orbit. Adv. Space Res. 2002, 30, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Singleterry, R.C.; Badavi, F.F.; Shinn, J.L.; Cucinotta, F.A.; Badhwar, G.D.; Clowdsley, M.S.; Heinbockel, J.H.; Wilson, J.W.; Atwell, W.; Beaujean, R.; et al. Estimation of Neutron and Other Radiation Exposure Components in Low Earth Orbit. Radiat. Meas. 2001, 33, 355–360. [Google Scholar] [CrossRef]
- Berger, T.; Burmeister, S.; Matthiä, D.; Przybyla, B.; Reitz, G.; Bilski, P.; Hajek, M.; Sihver, L.; Szabo, J.; Ambrozova, I.; et al. DOSIS & DOSIS 3D: Radiation Measurements with the DOSTEL Instruments Onboard the Columbus Laboratory of the ISS in the Years 2009–2016. J. Space Weather Space Clim. 2017, 7, A8. [Google Scholar] [CrossRef]
- Berger, T.; Przybyla, B.; Matthiä, D.; Reitz, G.; Burmeister, S.; Labrenz, J.; Bilski, P.; Horwacik, T.; Twardak, A.; Hajek, M.; et al. DOSIS & DOSIS 3D: Long-Term Dose Monitoring Onboard the Columbus Laboratory of the International Space Station (ISS). J. Space Weather Space Clim. 2016, 6, A39. [Google Scholar] [CrossRef]
- Girard, S.; Morana, A.; Ladaci, A.; Robin, T.; Mescia, L.; Bonnefois, J.-J.; Boutillier, M.; Mekki, J.; Paveau, A.; Cadier, B.; et al. Recent Advances in Radiation-Hardened Fiber-Based Technologies for Space Applications. J. Opt. 2018, 20, 093001. [Google Scholar] [CrossRef]
- Henschel, H.; Kohn, O. Regeneration of Irradiated Optical Fibres by Photobleaching? IEEE Trans. Nucl. Sci. 2000, 47, 699–704. [Google Scholar] [CrossRef]
- Toccafondo, I.; Marin, Y.E.; Guillermain, E.; Kuhnhenn, J.; Mekki, J.; Brugger, M.; Pasquale, F.D. Distributed Optical Fiber Radiation Sensing in a Mixed-Field Radiation Environment at CERN. J. Lightwave Technol. 2017, 35, 3303–3310. [Google Scholar] [CrossRef]
- Friebele, E.J.; Long, K.J.; Askina, C.G.; Gingerich, M.E.; Marrone, M.J.; Griacom, D.L. Overview of Radiation Effects in Fiber Optics. In Radiation Effects on Optical Materials, Proceedings of the 1985 Albuquerque Conferences on Optics, Albuquerque, NM, USA, 4–5 March 1985; SPIE: Bellingham, WA, USA, 1985; Volume 0541, pp. 70–88. [Google Scholar]
- Griscom, D.L. Intrinsic and Extrinsic Point Defects in A-SiO2. In The Physics and Technology of Amorphous SiO2; Devine, R.A.B., Ed.; Springer: Boston, MA, USA, 1988; pp. 125–134. ISBN 978-1-4613-1031-0. [Google Scholar]
- Devine, R.A.B.; Duraud, J.-P.; Dooryhée, E. (Eds.) Structure and Imperfections in Amorphous and Crystalline Silicon Dioxide; Wiley: Chichester, UK, 2000; ISBN 978-0-471-97536-6. [Google Scholar]
- Borgermans, P.; Brichard, B.; Berghmans, F.; Decréton, M.; Golant, K.M.; Thomashuk, A.L.; Nikolin, I.V. Dosimetry with Optical FIbres: Results for Pure Silica, Phosphorous and Erbium Doped Samples. In Fiber Optic Sensor Technology II, Proceedings of the Environmental and Industrial Sensing, Boston, MA, USA, 5–8 November 2020; SPIE: Bellingham, WA, USA; Volume 4204.
- Zubair, H.T.; Oresegun, A.; Rahman, A.K.M.M.; Ung, N.M.; Mat Sharif, K.A.; Zulkifli, M.I.; Yassin, S.Z.M.; Maah, M.J.; Yusoff, Z.; Abdul-Rashid, H.A.; et al. Real-Time Radiation Dosimetry Using P-Doped Silica Optical Fiber. Measurement 2019, 146, 119–124. [Google Scholar] [CrossRef]
- Girard, S.; Morana, A.; Hoehr, C.; Trinczek, M.; Vidalot, J.; Paillet, P.; Bélanger-Champagne, C.; Mekki, J.; Balcon, N.; Li Vecchi, G.; et al. Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing. Sensors 2020, 20, 4510. [Google Scholar] [CrossRef] [PubMed]
- Borgermans, P.; Brichard, B.; Berghmans, F.; Vos, F.; Decreton, M.; Golant, K.M.; Thomashuk, A.L.; Nikolin, L.V. On-Line Gamma Dosimetry with Phosphorous and Germanium Co-Doped Optical Fibres. In Proceedings of the 1999 Fifth European Conference on Radiation and Its Effects on Components and Systems, RADECS 99 (Cat. No.99TH8471), Fontevraud, France, 13–17 September 1999; pp. 477–482. [Google Scholar]
- Paillet, P.; Girard, S.; Goiffon, V.; Duhamel, O.; Morana, A.; Lambert, D.; De Michele, V.; Campanella, C.; Mélin, G.; Robin, T.; et al. Phosphosilicate Multimode Optical Fiber for Sensing and Diagnostics at Inertial Confinement Fusion Facilities. IEEE Sens. J. 2022, 22, 22700–22706. [Google Scholar] [CrossRef]
- Griscom, D.L.; Friebele, E.J.; Long, K.J.; Fleming, J.W. Fundamental Defect Centers in Glass: Electron Spin Resonance and Optical Absorption Studies of Irradiated Phosphorus-doped Silica Glass and Optical Fibers. J. Appl. Phys. 1983, 54, 3743–3762. [Google Scholar] [CrossRef]
- Girard, S.; Alessi, A.; Richard, N.; Martin-Samos, L.; De Michele, V.; Giacomazzi, L.; Agnello, S.; Francesca, D.D.; Morana, A.; Winkler, B.; et al. Overview of Radiation Induced Point Defects in Silica-Based Optical Fibers. Rev. Phys. 2019, 4, 100032. [Google Scholar] [CrossRef]
- Leone, M.; Agnello, S.; Boscaino, R.; Cannas, M.; Gelardi, F.M. Chapter 1—Optical Absorption, Luminescence, and ESR Spectral Properties of Point Defects in Silica. In Silicon-Based Material and Devices; Nalwa, H.S., Ed.; Academic Press: Burlington, MA, USA, 2001; pp. 1–50. ISBN 978-0-12-513909-0. [Google Scholar]
- Girard, S.; Ouerdane, Y.; Marcandella, C.; Boukenter, A.; Quenard, S.; Authier, N. Feasibility of Radiation Dosimetry with Phosphorus-Doped Optical Fibers in the Ultraviolet and Visible Domain. J. Non-Cryst. Solids 2011, 357, 1871–1874. [Google Scholar] [CrossRef]
- Morana, A.; Campanella, C.; Marin, E.; Melin, G.; Robin, T.; Li Vecchi, G.; Di Francesca, D.; Boukenter, A.; Ouerdane, Y.; Mady, F.; et al. Operating Temperature Range of Phosphorous-Doped Optical Fiber Dosimeters Exploiting Infrared Radiation-Induced Attenuation. IEEE Trans. Nucl. Sci. 2021, 68, 906–912. [Google Scholar] [CrossRef]
- Girard, S.; Marcandella, C.; Morana, A.; Perisse, J.; Di Francesca, D.; Paillet, P.; Mace, J.-R.; Boukenter, A.; Leon, M.; Gaillardin, M.; et al. Combined High Dose and Temperature Radiation Effects on Multimode Silica-Based Optical Fibers. IEEE Trans. Nucl. Sci. 2013, 60, 4305–4313. [Google Scholar] [CrossRef]
- Paul, M.C.; Bohra, D.; Dhar, A.; Sen, R.; Bhatnagar, P.K.; Dasgupta, K. Radiation Response Behavior of High Phosphorous Doped Step-Index Multimode Optical Fibers under Low Dose Gamma Irradiation. J. Non-Cryst. Solids 2009, 355, 1496–1507. [Google Scholar] [CrossRef]
- Tomashuk, A.L.; Grekov, M.V.; Vasiliev, S.A.; Svetukhin, V.V. Fiber-Optic Dosimeter Based on Radiation-Induced Attenuation in P-Doped Fiber: Suppression of Post-Irradiation Fading by Using Two Working Wavelengths in Visible Range. Opt. Express 2014, 22, 16778. [Google Scholar] [CrossRef]
- Friebele, E.J.; Gingerich, M.E. Photobleaching Effects in Optical Fiber Waveguides. Appl. Opt. 1981, 20, 3448. [Google Scholar] [CrossRef]
- Henschel, H.; Kohn, O.; Schmidt, H.U. Radiation Hardening of Optical Fibre Links by Photobleaching with Light of Shorter Wavelength. IEEE Trans. Nucl. Sci. 1996, 43, 1050–1056. [Google Scholar] [CrossRef]
- Di Francesca, D.; Balcon, N.; Cheiney, P.; Chesta, E.; Clement, F.; Girard, S.; Mekki, J.; Melin, G.; Morana, A.; Roche, M.; et al. Low Radiation Dose Calibration and Theoretical Model of an Optical Fiber Dosimeter for the International Space Station. Appl. Opt. 2023, 62, E43. [Google Scholar] [CrossRef]
- Clément, F.; Cheiney, P.; Girard, S.; Francesca, D.D.; Balcon, N.; Roche, M.; Jean-Christophe, M.; Marot, L.O.; Ricci, D.; Mekki, J. LUMINA, A Fiber Optic Dosimeter Aboard the ISS since Alpha Mission. In Proceedings of the 73rd International Astronautical Congress, Paris, France, 18–22 September 2022. [Google Scholar]
- Roche, M.; Marot, O.; Ricci, D.; Mekki, J.; Canton, R.; Marin, E.; Mélin, G.; Robin, T. Solar Particle Event Detection with the LUMINA Optical Fiber Dosimeter Aboard the International Space Station. IEEE Trans. Nucl. Sci. 2024, 71, 1580–1588. [Google Scholar] [CrossRef]
- Weninger, L.; Campanella, C.; Morana, A.; Fricano, F.; Marin, E.; Ouerdane, Y.; Boukenter, A.; Alía, R.G.; Girard, S. Calibration in the Visible and Infrared Domains of Multimode Phosphosilicate Optical Fibers for Dosimetry Applications. IEEE Trans. Nucl. Sci. 2023, 70, 1908–1916. [Google Scholar] [CrossRef]
- Exail. Available online: https://www.exail.com/ (accessed on 30 August 2023).
- COMSOL—Software for Multiphysics Simulation. Available online: https://www.comsol.com/ (accessed on 22 March 2024).
- Meyer, A.; Lambert, D.; Morana, A.; Paillet, P.; Boukenter, A.; Girard, S. Simulation and Optimization of Optical Fiber Irradiation with X-rays at Different Energies. Radiation 2023, 3, 58–74. [Google Scholar] [CrossRef]
Fiber Parameter | Value |
---|---|
Numerical Aperture | 0.17 ± 0.1 |
Cut-off Wavelength | ~<600 nm |
Core Diameter | 6.6 µm |
Cladding Diameter | 80 ± 1 µm |
Coating Diameter | 128 ± 3 µm |
Losses @600 nm | <12 dB/km |
Injected Power (µW) | Sensitivity (dB km−1 Gy−1) ON | R2 | Sensitivity (dB km−1 Gy−1) ON–OFF | R2 |
---|---|---|---|---|
0.5 | 141 | 0.993 | 136 | 0.993 |
1 | 137 | 0.997 | 134 | 0.995 |
10 | 129 | 0.998 | 135 | 0.991 |
50 | 114 | 0.999 | 133 | 0.988 |
100 | 104 | 0.999 | 119 | 0.979 |
500 | 96 | 0.998 | 110 | 0.992 |
1000 | 85 | 0.999 | 109 | 0.995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fricano, F.; Morana, A.; Roche, M.; Facchini, A.; Mélin, G.; Clément, F.; Balcon, N.; Mekki, J.; Marin, E.; Ouerdane, Y.; et al. Photobleaching Effect on the Sensitivity Calibration at 638 nm of a Phosphorus-Doped Single-Mode Optical Fiber Dosimeter. Sensors 2024, 24, 5547. https://doi.org/10.3390/s24175547
Fricano F, Morana A, Roche M, Facchini A, Mélin G, Clément F, Balcon N, Mekki J, Marin E, Ouerdane Y, et al. Photobleaching Effect on the Sensitivity Calibration at 638 nm of a Phosphorus-Doped Single-Mode Optical Fiber Dosimeter. Sensors. 2024; 24(17):5547. https://doi.org/10.3390/s24175547
Chicago/Turabian StyleFricano, Fiammetta, Adriana Morana, Martin Roche, Alberto Facchini, Gilles Mélin, Florence Clément, Nicolas Balcon, Julien Mekki, Emmanuel Marin, Youcef Ouerdane, and et al. 2024. "Photobleaching Effect on the Sensitivity Calibration at 638 nm of a Phosphorus-Doped Single-Mode Optical Fiber Dosimeter" Sensors 24, no. 17: 5547. https://doi.org/10.3390/s24175547
APA StyleFricano, F., Morana, A., Roche, M., Facchini, A., Mélin, G., Clément, F., Balcon, N., Mekki, J., Marin, E., Ouerdane, Y., Boukenter, A., Robin, T., & Girard, S. (2024). Photobleaching Effect on the Sensitivity Calibration at 638 nm of a Phosphorus-Doped Single-Mode Optical Fiber Dosimeter. Sensors, 24(17), 5547. https://doi.org/10.3390/s24175547