Independent Vector Analysis for Feature Extraction in Motor Imagery Classification
<p>Procedure description to obtain the IVA matrices <math display="inline"><semantics> <msubsup> <mi mathvariant="bold">W</mi> <mrow> <mi>c</mi> </mrow> <mrow> <mo>[</mo> <mi>k</mi> <mo>]</mo> </mrow> </msubsup> </semantics></math> for each class based on the training data.</p> "> Figure 2
<p>Procedure description for the <span class="html-italic">k</span>-th subject used in training and test datasets.</p> "> Figure 3
<p>Performance analysis of IVAS and IVAK concerning IVA initialization based on the KDE for subjects from Dataset4a. (<b>a</b>) Dataset4a with IVAS; (<b>b</b>) Dataset4a with IVAK.</p> "> Figure 4
<p>IVAS and IVAK performance analysis with respect to the number of EEG channels.</p> "> Figure 5
<p>Examples of SCV covariance matrices obtained through IVA for the DS4a considering right hand and right foot movements.</p> ">
Abstract
:1. Introduction
2. Joint Blind Source Separation
2.1. Independent Vector Analysis
2.2. IVA Using Vector Gradient Descent
3. Classification Algorithms
3.1. Autoregressive Model
3.2. Classifiers
4. Experimental Setup
4.1. Dataset Description—BCI Competition III Dataset 4a
4.2. Proposed Method
4.2.1. Training Stage
4.2.2. Test Stage
Algorithm 1 IVAS, IVAK, IVAE or IVAEI |
Initialization parameter algorithm: q, - Training Stage: for each initialization do random initialization; for each class c do Apply IVA - input: ; output: and end for for each subject k do for each class c do and end for and AR model is applied for each channel and subject, according to Equation (7) SVM and KNN classifier-training with , evaluated with -output-movement classification accuracy end for end for - with the highest accuracy - for each subject and class - Test Stage: for each subject k do if SVM or KNN then input: Extract AR parameters from ; output: MI classification end if if EEGNet or EEGInception then input: Apply directly ; output: MI classification end if end for |
5. Results and Discussion
5.1. IVA Initialization
5.2. Number of EEG Channels
5.3. Correlation Cross-Subjects
5.4. Deep Learning Approaches
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AR | Autoregressive |
BCI | Brain–computer interface |
BSS | Blind source separation |
DS4a | BCI Competition III Dataset 4a |
EEG | Electroencephalogram |
ICA | Independent component analysis |
IVA | Independent vector analysis |
JBSS | Joint blind source separation |
KDE | Kernel density estimation |
KNN | K-nearest neighbors |
MI | Motor imagery |
SCV | Source component vectors |
SVM | Support vector machines |
References
- Wolpaw, J.R. Brain-Computer Interfaces as new brain output pathways. J. Physiol. 2007, 579, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Nijholt, A.; Tan, D.; Pfurtscheller, G.; Brunner, C.; Millán, J.d.R.; Allison, B.; Graimann, B.; Popescu, F.; Blankertz, B.; Müller, K.R. Brain-Computer Interfacing for intelligent systems. IEEE Intell. Syst. 2008, 23, 72–79. [Google Scholar] [CrossRef]
- Song, Z.; Fang, T.; Ma, J.; Zhang, Y.; Le, S.; Zhan, G.; Zhang, X.; Wang, S.; Li, H.; Lin, Y.; et al. Evaluation and Diagnosis of Brain Diseases based on Non-invasive BCI. In Proceedings of the 2021 9th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Republic of Korea, 22–24 February 2021; pp. 1–6. [Google Scholar]
- Geronimo, A.; Simmons, Z.; Schiff, S. Performance predictors of brain-computer interfaces in patients with amyotrophic lateral sclerosis. J. Neural Eng. 2016, 13, 026002. [Google Scholar] [CrossRef]
- Grilo, M.; Ribeiro, L.; Moraes, C.; Melo, C.; Fantinato, D.; Sampaio, L.; Neves, A.; Ramos, R. Artifact Removal in EEG based Emotional Signals through Linear and Nonlinear Methods. In Proceedings of the 2019 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 21–23 November 2019; pp. 1–4. [Google Scholar]
- López-Larraz, E.; Antelis, J.M.; Montesano, L.; Gil-Agudo, A.; Minguez, J. Continuous decoding of motor attempt and motor imagery from EEG activity in spinal cord injury patients. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 1798–1801. [Google Scholar]
- Padfield, N.; Zabalza, J.; Zhao, H.; Masero, V.; Ren, J. EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges. Sensors 2019, 19, 1423. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Neuper, C.; Flotzinger, D.; Pregenzer, M. EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 642–651. [Google Scholar] [CrossRef]
- Jackson, P.L.; Lafleur, M.F.; Malouin, F.; Richards, C.; Doyon, J. Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch. Phys. Med. Rehabil. 2001, 82, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Kappes, H.B.; Morewedge, C.K. Mental simulation as substitute for experience. Soc. Personal. Psychol. Compass 2016, 10, 405–420. [Google Scholar] [CrossRef]
- Debarnot, U.; Guillot, A. When music tempo affects the temporal congruence between physical practice and motor imagery. Acta Psychol. 2014, 149, 40–44. [Google Scholar] [CrossRef]
- Lu, N.; Li, T.; Pan, J.; Ren, X.; Feng, Z.; Miao, H. Structure constrained semi-nonnegative matrix factorization for EEG-based motor imagery classification. Comput. Biol. Med. 2015, 60, 32–39. [Google Scholar] [CrossRef]
- Ameri, R.; Pouyan, A.; Abolghasemi, V. Projective dictionary pair learning for EEG signal classification in brain computer interface applications. Neurocomputing 2016, 218, 382–389. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, T.; Lun, X.; Wang, F. A novel method for classification of multi-class motor imagery tasks based on feature fusion. Neurosci. Res. 2022, 176, 40–48. [Google Scholar] [CrossRef]
- Kevric, J.; Subasi, A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed. Signal Process. Control 2017, 31, 398–406. [Google Scholar] [CrossRef]
- Kim, T.; Eltoft, T.; Lee, T.W. Independent vector analysis: An extension of ICA to multivariate components. In International Conference on Independent Component Analysis and Signal Separation; Springer: Berlin/Heidelberg, Germany, 2006; pp. 165–172. [Google Scholar]
- Anderson, M.; Adali, T.; Li, X.L. Joint blind source separation with multivariate Gaussian model: Algorithms and performance analysis. IEEE Trans. Signal Process. 2011, 60, 1672–1683. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, T.W.; Jolesz, F.A.; Yoo, S.S. Independent vector analysis (IVA): Multivariate approach for fMRI group study. Neuroimage 2008, 40, 86–109. [Google Scholar] [CrossRef] [PubMed]
- Adali, T.; Anderson, M.; Fu, G.S. Diversity in independent component and vector analyses: Identifiability, algorithms, and applications in medical imaging. IEEE Signal Process. Mag. 2014, 31, 18–33. [Google Scholar] [CrossRef]
- Wang, K.; Chen, X.; Wu, L.; Zhang, X.; Chen, X.; Wang, Z.J. High-density surface EMG denoising using independent vector analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1271–1281. [Google Scholar] [CrossRef]
- Adali, T.; Levin-Schwartz, Y.; Calhoun, V.D. Multimodal data fusion using source separation: Two effective models based on ICA and IVA and their properties. Proc. IEEE 2015, 103, 1478–1493. [Google Scholar] [CrossRef]
- Chen, X.; Peng, H.; Yu, F.; Wang, K. Independent vector analysis applied to remove muscle artifacts in EEG data. IEEE Trans. Instrum. Meas. 2017, 66, 1770–1779. [Google Scholar] [CrossRef]
- Du, Y.; Fu, Z.; Calhoun, V.D. Classification and prediction of brain disorders using functional connectivity: Promising but challenging. Front. Neurosci. 2018, 12, 525. [Google Scholar] [CrossRef]
- Allen, E.A.; Erhardt, E.B.; Wei, Y.; Eichele, T.; Calhoun, V.D. Capturing inter-subject variability with group independent component analysis of fMRI data: A simulation study. Neuroimage 2012, 59, 4141–4159. [Google Scholar] [CrossRef]
- Ma, S.; Phlypo, R.; Calhoun, V.D.; Adalı, T. Capturing group variability using IVA: A simulation study and graph-theoretical analysis. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3128–3132. [Google Scholar]
- Michael, A.M.; Anderson, M.; Miller, R.L.; Adalı, T.; Calhoun, V.D. Preserving subject variability in group fMRI analysis: Performance evaluation of GICA vs. IVA. Front. Syst. Neurosci. 2014, 8, 106. [Google Scholar] [CrossRef]
- Laney, J.; Westlake, K.P.; Ma, S.; Woytowicz, E.; Calhoun, V.D.; Adalı, T. Capturing subject variability in fMRI data: A graph-theoretical analysis of GICA vs. IVA. J. Neurosci. Methods 2015, 247, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Akhonda, M.A.; Ghayem, F.; Long, Q.; Calhoun, V.D.; Adali, T. Independent vector analysis based subgroup identification from multisubject fMRI data. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 1471–1475. [Google Scholar]
- Li, X.L.; Zhang, X.D. Nonorthogonal joint diagonalization free of degenerate solution. IEEE Trans. Signal Process. 2007, 55, 1803–1814. [Google Scholar] [CrossRef]
- Brüggemann, R. Model Reduction Methods for Vector Autoregressive Processes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 536. [Google Scholar]
- Kargin, V.; Onatski, A. Curve forecasting by functional autoregression. J. Multivar. Anal. 2008, 99, 2508–2526. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Neuper, C.; Schlogl, A.; Lugger, K. Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans. Rehabil. Eng. 1998, 6, 316–325. [Google Scholar] [CrossRef]
- Stoica, P.; Friedlander, B.; Söderström, T. A high-order Yule-Walker method for estimation of the AR parameters of an ARMA model. Syst. Control Lett. 1988, 11, 99–105. [Google Scholar] [CrossRef]
- Vapnik, V. Statistical Learning Theory; Wiley New York: New York, NY, USA, 1998. [Google Scholar]
- Fix, E.; Hodges, J.L. Discriminatory analysis. Nonparametric discrimination: Consistency properties. Int. Stat. Rev. Int. Stat. 1989, 57, 238–247. [Google Scholar] [CrossRef]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef]
- Santamaria-Vazquez, E.; Martinez-Cagigal, V.; Vaquerizo-Villar, F.; Hornero, R. EEG-inception: A novel deep convolutional neural network for assistive ERP-based brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2773–2782. [Google Scholar] [CrossRef]
- Blankertz, B.; Muller, K.R.; Curio, G.; Vaughan, T.M.; Schalk, G.; Wolpaw, J.R.; Schlogl, A.; Neuper, C.; Pfurtscheller, G.; Hinterberger, T.; et al. The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans. Biomed. Eng. 2004, 51, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Moraes, C.P.A.; Aristimunha, B.; Dos Santos, L.H.; Pinaya, W.H.L.; de Camargo, R.Y.; Fantinato, D.G.; Neves, A. Applying Independent Vector Analysis on EEG-Based Motor Imagery Classification. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Tiwari, A.; Chaturvedi, A. A novel channel selection method for BCI classification using dynamic channel relevance. IEEE Access 2021, 9, 126698–126716. [Google Scholar] [CrossRef]
- Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef] [PubMed]
- Rommel, C.; Paillard, J.; Moreau, T.; Gramfort, A. Data augmentation for learning predictive models on EEG: A systematic comparison. J. Neural Eng. 2022, 19, 066020. [Google Scholar] [CrossRef] [PubMed]
- Gabrielson, B.; Sun, M.; Akhonda, M.A.; Calhoun, V.D.; Adali, T. Independent vector analysis with multivariate Gaussian model: A scalable method by multilinear regression. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Vu, T.; Yang, H.; Laport, F.; Gabrielson, B.; Calhoun, V.D.; Adalı, T. A Robust and Scalable Method with an Analytic Solution for Multi-Subject FMRI Data Analysis. In Proceedings of the ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 1831–1835. [Google Scholar]
- Adali, T.; Akhonda, M.; Calhoun, V.D. ICA and IVA for data fusion: An overview and a new approach based on disjoint subspaces. IEEE Sens. Lett. 2018, 3, 7100404. [Google Scholar] [CrossRef]
- Belyaeva, I.; Gabrielson, B.; Wang, Y.P.; Wilson, T.W.; Calhoun, V.D.; Stephen, J.M.; Adali, T. Learning Spatiotemporal Brain Dynamics in Adolescents via Multimodal MEG and fMRI Data Fusion Using Joint Tensor/Matrix Decomposition. IEEE Trans. Biomed. Eng. 2024, 71, 2189–2200. [Google Scholar] [CrossRef] [PubMed]
Right Hand | ||||||
---|---|---|---|---|---|---|
IVA Cp. | Cp. 9 | Cp. 21 | Cp. 18 | Cp. 13 | Cp. 17 | |
“aa” | Cross-Subj. | “av” | “al” | “ay” | “av” | “ay” |
Correlation | 0.493 | 0.463 | 0.450 | 0.435 | 0.432 | |
IVA Cp. | Cp. 21 | Cp. 30 | Cp. 21 | Cp. 8 | Cp. 23 | |
“al” | Cross-Subj. | “aa” | “av” | “av” | “aa” | “aa” |
Correlation | 0.463 | 0.458 | 0.431 | 0.430 | 0.422 | |
IVA Cp. | Cp. 9 | Cp. 30 | Cp. 13 | Cp. 9 | Cp. 21 | |
“av” | Cross-Subj. | “aa” | “al” | “aa” | “ay” | “al” |
Correlation | 0.493 | 0.458 | 0.435 | 0.434 | 0.431 | |
IVA Cp. | Cp. 9 | Cp. 30 | Cp. 23 | Cp. 26 | Cp. 23 | |
“aw” | Cross-Subj. | “ay” | “aa” | “al” | “aa” | “aa” |
Correlation | 0.418 | 0.418 | 0.414 | 0.407 | 0.398 | |
IVA Cp. | Cp. 18 | Cp. 9 | Cp. 17 | Cp. 2 | Cp. 9 | |
“ay” | Cross-Subj. | “aa” | “av” | “aa” | “aa” | “aw” |
Correlation | 0.450 | 0.434 | 0.432 | 0.429 | 0.418 |
Right Foot | ||||||
---|---|---|---|---|---|---|
IVA Cp. | Cp. 16 | Cp. 2 | Cp. 24 | Cp. 6 | Cp. 3 | |
“aa” | Cross-Subj. | “al” | “al” | “av” | “ay” | “av” |
Correlation | 0.535 | 0.470 | 0.465 | 0.450 | 0.444 | |
IVA Cp. | Cp. 16 | Cp. 16 | Cp. 2 | Cp. 2 | Cp. 16 | |
“al” | Cross-Subj. | “aw” | “aa” | “aa” | “ay” | “av” |
Correlation | 0.540 | 0.535 | 0.470 | 0.463 | 0.448 | |
IVA Cp. | Cp. 24 | Cp. 16 | Cp. 3 | Cp. 11 | Cp. 8 | |
“av” | Cross-Subj. | “aa” | “al” | “aa” | “aa” | “aa” |
Correlation | 0.465 | 0.448 | 0.444 | 0.437 | 0.426 | |
IVA Cp. | Cp. 16 | Cp. 2 | Cp. 16 | Cp. 16 | Cp. 11 | |
“aw” | Cross-Subj. | “al” | “ay” | “av” | “aa” | “al” |
Correlation | 0.540 | 0.449 | 0.420 | 0.420 | 0.410 | |
IVA Cp. | Cp. 2 | Cp. 6 | Cp. 2 | Cp. 7 | Cp. 27 | |
“ay” | Cross-Subj. | “al” | “aa” | “aw” | “aa” | “aa” |
Correlation | 0.463 | 0.450 | 0.449 | 0.438 | 0.436 |
Subjects | ||||||
---|---|---|---|---|---|---|
Methods | “aa” | “al” | “av” | “aw” | “ay” | Average ± Sd |
SCS-NMF | 64.2 | 92.67 | 60.0 | 72.6 | 55.3 | 68.9 ± 14.7 |
DPL | 81.5 | 100 | 60.2 | 83.0 | 79.4 | 80.8 ± 14.1 |
BECSP | 77.7 | 100 | 73.9 | 84.8 | 88.1 | 84.9 ± 10.1 |
WPD | 96 | 92.3 | 88.9 | 95.4 | 91.4 | 92.8 ± 2.9 |
IVAS | 71.8 | 96.1 | 70.0 | 84.3 | 85.0 | 81.4 ± 10.7 |
IVAK | 59.6 | 93.6 | 61.1 | 72.1 | 68.6 | 71.0 ± 12.2 |
IVAEN | 87.8 | 98.5 | 66.4 | 68.6 | 82.6 | 80.8 ± 13.4 |
IVAEI | 84.3 | 96.4 | 69.3 | 92.1 | 91.4 | 86.7 ± 9.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraes, C.P.A.; dos Santos, L.H.; Fantinato, D.G.; Neves, A.; Adali, T. Independent Vector Analysis for Feature Extraction in Motor Imagery Classification. Sensors 2024, 24, 5428. https://doi.org/10.3390/s24165428
Moraes CPA, dos Santos LH, Fantinato DG, Neves A, Adali T. Independent Vector Analysis for Feature Extraction in Motor Imagery Classification. Sensors. 2024; 24(16):5428. https://doi.org/10.3390/s24165428
Chicago/Turabian StyleMoraes, Caroline Pires Alavez, Lucas Heck dos Santos, Denis Gustavo Fantinato, Aline Neves, and Tülay Adali. 2024. "Independent Vector Analysis for Feature Extraction in Motor Imagery Classification" Sensors 24, no. 16: 5428. https://doi.org/10.3390/s24165428
APA StyleMoraes, C. P. A., dos Santos, L. H., Fantinato, D. G., Neves, A., & Adali, T. (2024). Independent Vector Analysis for Feature Extraction in Motor Imagery Classification. Sensors, 24(16), 5428. https://doi.org/10.3390/s24165428