Search for Strange Quark Matter and Nuclearites on Board the International Space Station (SQM-ISS): A Future Detector to Search for Massive, Non-Relativistic Objects in Space
<p>Plot of velocity and mass range for various hypothetical slow moving, massive particles. At the bottom right of the plot, we have cosmic ray nuclei with <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>≃</mo> <mn>1</mn> </mrow> </semantics></math> (lower energy particles would be stopped by the hull of the ISS) and mass <math display="inline"><semantics> <mrow> <mo>≲</mo> <mn>200</mn> </mrow> </semantics></math> GeV. Most of these hypothetical particle types have <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>≃</mo> <mn>7</mn> <mrow> <mo>–</mo> </mrow> <mn>8</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math> since they are usually considered to be bound in our galaxy. However many of these particles can also have lower velocity since they could be bound in the local interstellar medium, in the vicinity of the solar system or even of our planet (e.g., Daemons). The masses range from the relatively light magnetic monopoles and Q-Balls to the heavier Fermi and dark matter balls. SQM and magnetic quark nuggets can reach the mass of a star, but only lighter fragments are expected to reach Earth. The expected ranges for velocities, masses and mass densities of these different candidates remain hypothetical with wide ranges acceptable for these values. This variety and uncertainties are an additional motivation to design an instrument sensitive to a wide range of masses, using complementary means of detection. In light pink, we show the mass–velocity range accessible by the scintillator/SiPM detectors and in light blue, the range of the piezoelectric detectors. The main target are thus very dense particles that would move at typical galactic orbital velocities, in the velocity range between <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> c.</p> "> Figure 2
<p>Current status of upper limits to SQM search as a function of the presumed mass. The particle mass can range from ≃10<sup>2–3</sup> atomic nuclei to several tons. The diagonal black line is a limit posed by the amount of DM in the galaxy assuming that all DM is composed of SQM particles of just one mass. It is, however, possible (and indeed more probable) that (1) only part of DM is composed of SQM; (2) the particles have a very wide range of masses; and (3) speed may be non-galactic but rather solar system bound (<72 km/s) or local interstellar medium bound. Furthermore, the various upper limits shown here were obtained with various means, e.g., lunar soil with mass spectrometer, track presence observing mica and Skylab-Lexan track detector (or rather the lack of them), Apollo seismograph observing earthquakes generated on the moon by falling meteors, etc. Thus, depending on the kind of particle considered (e.g., Daemons [<a href="#B45-sensors-24-05090" class="html-bibr">45</a>,<a href="#B58-sensors-24-05090" class="html-bibr">58</a>]), some upper limits may not apply since the detection method would not have been able to observe them. Also, if the speed is below galactic speed, the interaction energy and the mass would be skewed. The horizontal bars for SQM-ISS refer to an upper limit after about three years of observations and show the different mass range for scintillators and piezoelectric detectors.</p> "> Figure 3
<p>Block scheme of the elements present in SQM-ISS: a stack of plastic scintillators and metal plates are read out by SiPMs and piezoelectric detectors, respectively. The signals are acquired by the front-end electronics (ASIC), and both amplitude (ADC) and time (TDC) signals are saved. This information is used by the trigger FPGA to decide whether to store the event. If it passes the trigger criteria, data are stored by the onboard CPU on USB solid state flash drive and sent via telemetry to ground.</p> "> Figure 4
<p>Picture of the tower of metal and scintillator elements used in the laboratory model of the instrument. The sensitive elements have an overall area of <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>×</mo> <mn>10</mn> </mrow> </semantics></math> cm<sup>2</sup>. Each detector plane is divided into five strips of <math display="inline"><semantics> <mrow> <mn>2</mn> </mrow> </semantics></math> cm <math display="inline"><semantics> <mrow> <mo>×</mo> </mrow> </semantics></math> 10 cm each. Note that this model has one additional piezoelectric plane with respect to the scheme of <a href="#sensors-24-05090-f003" class="html-fig">Figure 3</a>. The white lines show the planned division of the first plane in five strips, read by a piezoelectric detector at each of the two extremities. The same division is present in the scintillator planes.</p> "> Figure 5
<p>Close-up of the Hamamatsu 1663 SiPM (Hamamatsu Photonics K.K., Shizuoka, Japan) module located on the detector tower. In the center of the picture, connected with a kapton flex cable, is the SiPM (3 × 3 mm<sup>2</sup>) and the temperature sensor. The electronic unit, containing the power supply, the temperature compensation circuit, and the pre-amplification stage, is located on the right of the picture. The size of the electronic unit is 36 × 22 mm<sup>2</sup>.</p> "> Figure 6
<p><b>Left</b>: Picture of the piezoelectric detector glued to a copper metal slab. <b>Right</b>: Scheme of the piezoelectric detector unit and its electrical configuration. Vibrations on the metal plate are transmitted to the crystal, producing an electric signal which is pre-amplified inside the unit.</p> ">
Abstract
:1. Introduction
2. Scientific Goals
2.1. Strange Quark Matter
2.2. Previous and Current Searches for Strange Quark Matter
- The balloon experiment HECRO-81 [20], which has reported the observation of two events with . The mass number for these events was estimated to be .
- The ARIEL-6 satellite [21], with Cherenkov counters, which presented an analysis of Z ≥ 34 during 427 days of data taking, finding no SQM candidates.
- The HEAO-3 satellite [22] reported abundances of both odd–even element pairs (33 ≤ Z ≤ 60) and element groups (Z > 60) and did not find any candidate. The satellite had a geometrical factor of 413 cm2 sr; if we assume the same data set of [23] (between 17 October 1979 and 12 June 1980), we can estimate a limit of 7.8 × 109 cm2 sr s.
- The SkyLab experiment [24], with 1.2 m2 Lexan track detectors, which did not find any valid candidate in the superheavy (Z > 110) nuclei range.
- The experiment TREK [25], which explored the Z > 50 region, finding no strangelet candidate.
- The BESS balloon spectrometer [26], whose searches yielded no candidates for 5 ≤ Z ≤ 26 and Z/A < 0.2.
- The AMS-01 experiment, which reported the observation of two events: Z = 8, A = 20, 3.93 GV and Z = 4, A = 50, 5.13 GV [16]. This is probably due to background since the following, much longer, AMS-02 mission found no events and lowered the limit on the flux of Z = 2 particles to ≲30 p/m2/s/sr [27].
- The PAMELA magnetic spectrometer, which searched for anomalous ratio (high atomic number A and low charge Z) particles in cosmic rays, using its Time-of-Flight system and permanent magnet spectrometer. The spectrometer explored the rigidity range between 1 and 1000 GV without finding traces of such particles, thereby setting an upper limit on the monochromatic strangelet flux in cosmic rays for particles having charge and baryonic mass [28].
- Pi of the SKY, which searches for fast meteors in the sky [29].
- The DIMS experiment, which uses two cameras for stereoscopic view of meteors and determination of their trajectory [30].
2.3. Primordial Black Holes and Fuzzballs
2.4. Other Forms of Exotic Matter
2.5. SQM as a Dark Matter Candidate
3. Observational Goals
4. Detector Description
4.1. Detectors
4.2. Trigger
- (a)
- Relativistic charged nuclei with . They are expected to hit only one strip in each scintillator plane and provide no detectable signal in the piezoelectric detector. Crossing time is ns. The high-charge threshold is placed in order to exclude random coincidences from protons and helium nuclei.
- (b)
- Slow charged particles with a signal present only in one strip in each plane of the scintillators. With a threshold of km/s, the crossing time is expected to be ns. At this speed, the range of any ordinary nucleus would be lower than the thickness of the hull of the station.
- (c)
- Slow particles providing a signal only in the metal plates. This trigger could occur in the case of neutral SQM or macro-particles that do not ionize the scintillators but excite the nuclei of the metal planes.
- (d)
- Slow charged particles providing a signal in both the scintillator and metal plates. These would be the golden candidates for SQM particles.
- (e)
- Shower events at relativistic speed, leaving a signal with equivalent charge in one or more strips of each plane of the detector.
4.3. Time of Flight System
4.4. ISS Interfaces
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Witten, E. Cosmic separation of phases. Phys. Rev. D 1984, 30, 272–285. [Google Scholar] [CrossRef]
- Farhi, E.; Jaffe, R.L. Strange matter. Phys. Rev. D 1984, 30, 2379–2390. [Google Scholar] [CrossRef]
- Chodos, A.; Jaffe, R.L.; Johnson, K.; Thorn, C.B.; Weisskopf, V.F. New extended model of hadrons. Phys. Rev. D 1974, 9, 3471–3495. [Google Scholar] [CrossRef]
- Haensel, P.; Zdunik, J.L.; Schaeffer, R. Strange quark stars. Astron. Astrophys. 1986, 160, 121–128. [Google Scholar]
- Madsen, J. Strangelet propagation and cosmic ray flux. Phys. Rev. D 2005, 71, 014026. [Google Scholar] [CrossRef]
- Atreya, A.; Sarkar, A.; Srivastava, A.M. Reviving quark nuggets as a candidate for dark matter. Phys. Rev. D 2014, 90, 045010. [Google Scholar] [CrossRef]
- Alcock, C.; Farhi, E.; Olinto, A. Strange Stars. Astrophys. J. 1986, 310, 261. [Google Scholar] [CrossRef]
- Drago, A.; Lavagno, A.; Pagliara, G.; Pigato, D. The scenario of two families of compact stars: 1. Equations of state, mass-radius relations and binary systems. Eur. Phys. J. A 2016, 52, 40. [Google Scholar] [CrossRef]
- Drago, A.; Pagliara, G. The scenario of two families of compact stars: 2. Transition from hadronic to quark matter and explosive phenomena. Eur. Phys. J. A 2016, 52, 41. [Google Scholar] [CrossRef]
- Drago, A.; Lavagno, A.; Pagliara, G. Can very compact and very massive neutron stars both exist? Phys. Rev. D 2014, 89, 043014. [Google Scholar] [CrossRef]
- Bianchi, M.; Casolino, M.; Rizzo, G. Accelerating strangelets via Penrose process in non-BPS fuzz-balls. Nucl. Phys. B 2020, 954, 115010. [Google Scholar] [CrossRef]
- Bucciantini, N.; Drago, A.; Pagliara, G.; Traversi, S. Formation and evaporation of strangelets during the merger of two compact stars. Phys. Rev. D 2019, 106, 103032. [Google Scholar] [CrossRef]
- Drago, A.; Pagliara, G. Merger of two neutron stars: Predictions from the two-families scenario. Astrophys. J. Lett. 2018, 852, L32. [Google Scholar] [CrossRef]
- Wiktorowicz, G.; Drago, A.; Pagliara, G.; Popov, S.B. Strange quark stars in binaries: Formation rates, mergers and explosive phenomena. Astrophys. J. 2017, 846, 163. [Google Scholar] [CrossRef]
- De Rújula, A.; Glashow, S.L. Nuclearites—A novel form of cosmic radiation. Nature 1984, 312, 734–737. [Google Scholar] [CrossRef]
- Finch, E. Strangelets: Who is looking and how? J. Phys. G Nucl. Part. Phys. 2006, 32, S251–S258. [Google Scholar] [CrossRef]
- Weber, M.; NA52 Collaboration; Arsenescu, R.; Baglin, C.; Beck, H.P.; Borer, K.; Bussière, A.; Elsener, K.; Gorodetzky, P.; Guillaud, J.P.; et al. The NA52 strangelet and particle search in Pb+Pb collisions at 158 A GeV/c. J. Phys. G Nucl. Part. Phys. 2002, 28, 1921. [Google Scholar] [CrossRef]
- Appelquist, G.; Baglin, C.; Beringer, J.; Bohm, C.; Borer, K.; Bussière, A.; Dittus, F.; Elsener, K.; Frei, D.; Gorodetzky, P.; et al. Strangelet Search in Pb-Pb Interactions at 158 GeV/c per Nucleon. Phys. Rev. Lett. 1996, 76, 3907–3910. [Google Scholar] [CrossRef]
- Han, K.; Ashenfelter, J.; Chikanian, A.; Emmet, W.; Finch, L.E.; Heinz, A.; Madsen, J.; Majka, R.D.; Monreal, B.; Sandweiss, J. Search for Stable Strange Quark Matter in Lunar Soil. Phys. Rev. Lett. 2009, 103, 092302. [Google Scholar] [CrossRef]
- Saito, T.; Hatano, Y.; Fukada, Y.; Oda, H. Is there strange-quark matter in galactic cosmic rays? Phys. Rev. Lett. 1990, 65, 2094–2097. [Google Scholar] [CrossRef]
- Fowler, P.H.; Walker, R.N.F.; Masheder, M.R.W.; Moses, R.T.; Worley, A.; Gay, A.M. Ariel 6 Measurements of the Fluxes of Ultra-heavy Cosmic Rays. Astrophys. J. 1987, 314, 739. [Google Scholar] [CrossRef]
- Binns, W.R.; Garrard, T.L.; Gibner, P.S.; Israel, M.H.; Kertzman, M.P.; Klarmann, J.; Newport, B.J.; Stone, E.C.; Waddington, C.J. Abundances of Ultraheavy Elements in the Cosmic Radiation: Results from HEAO 3. Astrophys. J. 1989, 346, 997. [Google Scholar] [CrossRef]
- Engelmann, J.J.; Ferrando, P.; Soutoul, A.; Goret, P.; Juliusson, E.; Koch-Miramond, L.; Lund, N.; Masse, P.; Peters, B.; Petrou, N.; et al. Charge composition and energy spectra of cosmic-ray nuclei for elements from Be to Ni - Results from HEAO-3-C2. Astron. Astrophys. 1990, 233, 96–111. [Google Scholar]
- Shirk, E.K.; Price, P.B. Charge and energy spectra of cosmic rays with Z ≥ 60: The Skylab experiment. Astrophys. J. 1978, 220, 719–733. [Google Scholar] [CrossRef]
- Price, P.B.; Lowder, D.M.; Westphal, A.J.; Wilkes, R.D.; Brennen, R.A.; Afanasyev, V.G.; Akimov, V.V.; Rodin, V.G.; Baryshnikov, G.K.; Gorshkov, L.A.; et al. TREK: A cosmic-ray experiment on the Russian space station MIR. Astrophys. Space Sci. 1992, 197, 121–143. [Google Scholar] [CrossRef]
- Ichimura, M.; Kamioka, E.; Kitazawa, M.; Kobayashi, T.; Shibata, T.; Somemiya, S.; Kogawa, M.; Kuramata, S.; Matsutani, H.; Murabayashi, T.; et al. Unusually penetrating particle detected by balloon-borne emulsion chamber. Il Nuovo Cimento A (1965–1970) 1993, 106, 843–852. [Google Scholar] [CrossRef]
- Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Barao, F.; Barrin, L.; Bartoloni, A.; Başeğmez-du Pree, S.; Bates, J.; et al. The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II—Results from the first seven years. Phys. Rep. 2021, 894, 1–116. [Google Scholar] [CrossRef]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; et al. New Upper Limit on Strange Quark Matter Abundance in Cosmic Rays with the PAMELA Space Experiment. Phys. Rev. Lett. 2015, 115, 111101. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, L.W.; Małek, K.; Mankiewicz, L.; Sokołowski, M.; Wrochna, G.; Zadrożny, A.; Żarnecki, A.F. Limits on the Flux of Nuclearites and Other Heavy Compact Objects from the Pi of the Sky Project. Phys. Rev. Lett. 2020, 125, 091101. [Google Scholar] [CrossRef]
- Abe, S.; Arahori, M.; Barghini, D.; Bertaina, M.E.; Casolino, M.; Cellino, A.; Covault, C.; Ebisuzaki, T.; Endo, M.; Fujioka, M.; et al. DIMS Experiment for Dark Matter and Interstellar Meteoroid Study. In Proceedings of the 37th International Cosmic Ray Conference (ICRC2021); 2021; p. 554. Available online: https://pos.sissa.it/395/554 (accessed on 5 June 2024). [CrossRef]
- Adams, J.H.; Ahmad, S.; Albert, J.N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; et al. JEM-EUSO: Meteor and nuclearite observations. Exp. Astron. 2015, 40, 253–279. [Google Scholar] [CrossRef]
- Bacholle, S.; Barrillon, P.; Battisti, M.; Belov, A.; Bertaina, M.; Bisconti, F.; Blaksley, C.; Blin-Bondil, S.; Cafagna, F.; Cambiè, G.; et al. Mini-EUSO Mission to Study Earth UV Emissions on board the ISS. Astrophys. J. Suppl. Ser. 2021, 253, 36. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B.; Novikov, I.D. The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model. Astron. Zhurnal 1967, 10, 602. [Google Scholar]
- Adler, R.J.; Chen, P.; Santiago, D.I. The Generalized Uncertainty Principle and Black Hole Remnants. Gen. Relativ. Gravit. 2001, 33, 2101–2108. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Carr, B.J.; Hawking, S.W. Black holes in the early Universe. Mon. Not. R. Astron. Soc. 1974, 168, 399–416. [Google Scholar] [CrossRef]
- Escrivà, A.; Kuhnel, F.; Tada, Y. Primordial Black Holes. Res. Astron. Astrophys. 2022, 10, 495. [Google Scholar] [CrossRef]
- Chapline, G.F. Cosmological effects of primordial black holes. Nature 1975, 253, 251–252. [Google Scholar] [CrossRef]
- Carr, B.; Kühnel, F.; Sandstad, M. Primordial black holes as dark matter. Phys. Rev. D 2016, 94, 083504. [Google Scholar] [CrossRef]
- Dvali, G.; Kühnel, F.; Zantedeschi, M. Primordial black holes from confinement. Phys. Rev. D 2021, 104, 123507. [Google Scholar] [CrossRef]
- Ivanov, P.; Naselsky, P.; Novikov, I. Inflation and primordial black holes as dark matter. Phys. Rev. D 1994, 50, 7173–7178. [Google Scholar] [CrossRef]
- Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Baker, P.T.; Bécsy, B.; Blecha, L.; Bonilla, A.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background. Astrophys. J. Lett. 2023, 952, L37. [Google Scholar] [CrossRef]
- Holzhey, C.F.; Wilczek, F. Black holes as elementary particles. Nucl. Phys. B 1992, 380, 447–477. [Google Scholar] [CrossRef]
- Barrow, J.D.; Copeland, E.J.; Liddle, A.R. The cosmology of black hole relics. Phys. Rev. D 1992, 46, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Bernabei, R.; Belli, P.; Cappella, F.; Cerulli, R.; D’Angelo, A.; Emiliani, F.; Incicchitti, A. Search for deamons with Nemesis. Mod. Phys. Lett. A 2012, 27, 1250031. [Google Scholar] [CrossRef]
- Drobyshevski, E.M. DArk Electric Matter Objects (DAEMONs) and some possibilities of their detection. In Proceedings of the First International Workshop on Particle Physics and the Early Universe; 1997; pp. 266–268. Available online: https://www.worldscientific.com/doi/abs/10.1142/9789814447263_0030 (accessed on 5 June 2024). [CrossRef]
- Kusenko, A.; Kuzmin, V.; Shaposhnikov, M.; Tinyakov, P.G. Experimental Signatures of Supersymmetric Dark-Matter Q-Balls. Phys. Rev. Lett. 1998, 80, 3185–3188. [Google Scholar] [CrossRef]
- Price, P.B.; Guo, S.L.; Ahlen, S.P.; Fleischer, R.L. Search for Grand-Unified-Theory Magnetic Monopoles at a Flux Level below the Parker Limit. Phys. Rev. Lett. 1984, 52, 1265–1268. [Google Scholar] [CrossRef]
- Narain, G.; Schaffner-Bielich, J.; Mishustin, I.N. Compact stars made of fermionic dark matter. Phys. Rev. D 2006, 74, 063003. [Google Scholar] [CrossRef]
- Foot, R.; Gninenko, S. Can the mirror world explain the ortho-positronium lifetime puzzle? Phys. Lett. B 2000, 480, 171–175. [Google Scholar] [CrossRef]
- Macpherson, A.L.; Pinfold, J.L. Fermi Ball Detection. arXiv 1994. [Google Scholar] [CrossRef]
- Pontón, E.; Bai, Y.; Jain, B. Electroweak symmetric dark matter balls. J. High Energy Phys. 2019, 2019, 11. [Google Scholar] [CrossRef]
- Gorham, P.W. Antiquark nuggets as dark matter: New constraints and detection prospects. Phys. Rev. D 2012, 86, 123005. [Google Scholar] [CrossRef]
- Lawson, K.; Zhitnitsky, A. The 21 cm absorption line and the axion quark nugget dark matter model. Phys. Dark Universe 2019, 24, 100295. [Google Scholar] [CrossRef]
- Bai, Y.; Long, A.J. Six flavor quark matter. J. High Energy Phys. 2018, 2018, 72. [Google Scholar] [CrossRef]
- Holdom, B.; Ren, J.; Zhang, C. Quark Matter May Not Be Strange. Phys. Rev. Lett. 2018, 120, 222001. [Google Scholar] [CrossRef] [PubMed]
- Clemente, F.D.; Casolino, M.; Drago, A.; Lattanzi, M.; Ratti, C. Strange quark matter as dark matter: 40 years later, a reappraisal. arXiv 2024. [Google Scholar] [CrossRef]
- Drobyshevski, E.M. The daemon kernel of the sun. Astronom. Astrophys. Trans. 2004, 23, 173–183. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchi, M.; Bisconti, F.; Blaksley, C.; Bocci, V.; Casolino, M.; Di Clemente, F.; Drago, A.; Fuglesang, C.; Iacoangeli, F.; Lattanzi, M.; et al. Search for Strange Quark Matter and Nuclearites on Board the International Space Station (SQM-ISS): A Future Detector to Search for Massive, Non-Relativistic Objects in Space. Sensors 2024, 24, 5090. https://doi.org/10.3390/s24165090
Bianchi M, Bisconti F, Blaksley C, Bocci V, Casolino M, Di Clemente F, Drago A, Fuglesang C, Iacoangeli F, Lattanzi M, et al. Search for Strange Quark Matter and Nuclearites on Board the International Space Station (SQM-ISS): A Future Detector to Search for Massive, Non-Relativistic Objects in Space. Sensors. 2024; 24(16):5090. https://doi.org/10.3390/s24165090
Chicago/Turabian StyleBianchi, Massimo, Francesca Bisconti, Carl Blaksley, Valerio Bocci, Marco Casolino, Francesco Di Clemente, Alessandro Drago, Christer Fuglesang, Francesco Iacoangeli, Massimiliano Lattanzi, and et al. 2024. "Search for Strange Quark Matter and Nuclearites on Board the International Space Station (SQM-ISS): A Future Detector to Search for Massive, Non-Relativistic Objects in Space" Sensors 24, no. 16: 5090. https://doi.org/10.3390/s24165090
APA StyleBianchi, M., Bisconti, F., Blaksley, C., Bocci, V., Casolino, M., Di Clemente, F., Drago, A., Fuglesang, C., Iacoangeli, F., Lattanzi, M., Marcelli, A., Marcelli, L., Natoli, P., Parizot, E., Picozza, P., Piotrowski, L. W., Plebaniak, Z., Reali, E., Ricci, M., ... Szabelski, J. (2024). Search for Strange Quark Matter and Nuclearites on Board the International Space Station (SQM-ISS): A Future Detector to Search for Massive, Non-Relativistic Objects in Space. Sensors, 24(16), 5090. https://doi.org/10.3390/s24165090