Reliable Stenosis Detection Based on Thrill Waveform Analysis Using Non-Contact Arteriovenous Fistula Imaging
<p>An illustration of the AVF waveforms formed from the pulse and Thrill.</p> "> Figure 2
<p>Principle of non-contact imaging.</p> "> Figure 3
<p>AVF imaging area and the kernel size (<math display="inline"><semantics> <mrow> <mi>N</mi> <mo>×</mo> <mi>M</mi> </mrow> </semantics></math>) of the moving-average filter.</p> "> Figure 4
<p>Frequency response of the contact radial artery waveform.</p> "> Figure 5
<p>Determination of radial artery waveform components in the contact method by cross-validation.</p> "> Figure 6
<p>(<b>a</b>) Frequency response of the contact AVF waveform, (<b>b</b>) frequency response of the non-contact radial artery waveform, and (<b>c</b>) frequency response of the non-contact AVF waveform. The blue arrows, the red frames, and the dashed lines indicate the peaks of Thrill components, the estimated frequency range of Thrill components, and the power spectrum level of the 3rd harmonic, respectively.</p> "> Figure 7
<p>Experimental equipment setup.</p> "> Figure 8
<p>Setup and analysis flow of the non-contact Thrill quantification system.</p> "> Figure 9
<p>Procedure for <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 10
<p>Effects of moving average methods on different kernels.</p> "> Figure 11
<p>Determining <math display="inline"><semantics> <msub> <mi>N</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 12
<p>Comparison of normal and stenosis groups by <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>N</mi> <msubsup> <mi>R</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </semantics></math> represented by a box plot in (<b>a</b>). Comparison of the distribution of the same group by <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>N</mi> <msubsup> <mi>R</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </semantics></math> represented by a rain cloud plot in (<b>b</b>).</p> "> Figure 13
<p>Ultrasound echocardiographic stenosis.</p> ">
Abstract
:1. Introduction
2. Principle Theory
2.1. Thrill Mechanism
2.2. Non-Contact Imaging of the AVF
2.3. Moving-Average Filter
3. Preliminary Experiment
3.1. Frequency Response of Arterial Waveforms Using Contact Method
3.2. Frequency Response of AVF Using Contact Method
3.3. Frequency Response of Arterial Waveforms Using Non-Contact Method
3.4. Frequency Response of AVF Using Non-Contact Method
4. Method
4.1. Experiment Procedure
4.2. Quantification
4.3. Determination of and Statistical Determination of Normal and Stenotic AVFs
5. Results
5.1. Effects of the Moving Average Process
5.2. Determining
5.3. Quantitative Assessment of Normal and Stenotic Groups
6. Discussion
6.1. Regularity of the Thrill Waveforms
6.2. Validity of the Proposed Method
6.3. Limitation of the Proposed Method
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AVF | Arteriovenous fistula |
LPF | Low-pass filter |
KRT | Kidney replacement therapy |
PTA | Percutaneous transluminal angioplasty |
QoL | Quality of life |
MGD | Multivariate Gaussian distribution |
BPF | Band-pass filter |
RI | Resistance index |
FL | Flow volume |
WSS | Wall shear stress |
SLF | Spiral laminar flow |
FFT | Fast Fourier transform |
SNR | Signal-to-noise power ratio |
References
- Bello, A.K.; Okpechi, I.G.; Osman, M.A.; Cho, Y.; Htay, H.; Jha, V.; Wainstein, M.; Johnson, D.W. Epidemiology of haemodialysis outcomes. Nat. Rev. Nephrol. 2022, 18, 378–395. [Google Scholar] [CrossRef] [PubMed]
- Pisoni, R.L.; Zepel, L.; Fluck, R.; Lok, C.E.; Kawanishi, H.; Süleymanlar, G.; Wasse, H.; Tentori, F.; Zee, J.; Li, Y.; et al. International differences in the location and use of arteriovenous accesses created for hemodialysis: Results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 2018, 71, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Santoro, D.; Benedetto, F.; Mondello, P.; Pipitò, N.; Barillà, D.; Spinelli, F.; Ricciardi, C.A.; Cernaro, V.; Buemi, M. Vascular access for hemodialysis: Current perspectives. Int. J. Nephrol. Renov. Dis. 2014, 7, 281. [Google Scholar] [CrossRef] [PubMed]
- Dinwiddie, L.C. Overview of the role of a vascular access nurse coordinator in the optimization of access care for patients requiring hemodialysis. Hong Kong J. Nephrol. 2007, 9, 99–103. [Google Scholar] [CrossRef]
- Allon, M.; Robbin, M.L. Increasing arteriovenous fistulas in hemodialysis patients: Problems and solutions. Kidney Int. 2002, 62, 1109–1124. [Google Scholar] [CrossRef] [PubMed]
- Malovrh, M. Vascular access for hemodialysis: Arteriovenous fistula. Ther. Apher. Dial. 2005, 9, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Konner, K.; Nonnast-Daniel, B.; Ritz, E. The arteriovenous fistula. J. Am. Soc. Nephrol. 2003, 14, 1669–1680. [Google Scholar] [CrossRef]
- Moist, L.M.; Lee, T.C.; Lok, C.E.; Al-Jaishi, A.; Xi, W.; Campbell, V.; Graham, J.; Wilson, B.; Vachharajani, T.J. Education in vascular access. Semin. Dial. 2013, 26, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.K.; Imrey, P.B.; Alpers, C.E.; Robbin, M.L.; Radeva, M.; Larive, B.; Shiu, Y.T.; Allon, M.; Dember, L.M.; Greene, T.; et al. Intimal hyperplasia, stenosis, and arteriovenous fistula maturation failure in the hemodialysis fistula maturation study. J. Am. Soc. Nephrol. 2017, 28, 3005–3013. [Google Scholar] [CrossRef]
- MacRae, J.M.; Dipchand, C.; Oliver, M.; Moist, L.; Lok, C.; Clark, E.; Hiremath, S.; Kappel, J.; Kiaii, M.; Luscombe, R.; et al. Arteriovenous access failure, stenosis, and thrombosis. Can. J. Kidney Health Dis. 2016, 3, 2054358116669126. [Google Scholar] [CrossRef]
- Gao, M.; Wang, J. Risk factors of arteriovenous fistula stenosis of patients with maintenance hemodialysis. Evid.-Based Complement. Altern. Med. 2022, 2022, 2968122. [Google Scholar] [CrossRef] [PubMed]
- Tessitore, N.; Mansueto, G.; Bedogna, V.; Lipari, G.; Poli, A.; Gammaro, L.; Baggio, E.; Morana, G.; Loschiavo, C.; Laudon, A.; et al. A prospective controlled trial on effect of percutaneous transluminal angioplasty on functioning arteriovenous fistulae survival. J. Am. Soc. Nephrol. 2003, 14, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Christidou, F.P.; Kalpakidis, V.I.; Iatrou, K.D.; Zervidis, I.A.; Bamichas, G.I.; Gionanlis, L.C.; Natse, T.A.; Sombolos, K.J. Percutaneous transluminal angioplasty (PTA) and venous stenting in hemodialysis patients with vascular access-related venous stenosis or occlusion. Radiography 2006, 12, 127–133. [Google Scholar] [CrossRef]
- Haage, P.; Vorwerk, D.; Piroth, W.; Schuermann, K.; Guenther, R.W. Treatment of hemodialysis-related central venous stenosis or occlusion: Results of primary Wallstent placement and follow-up in 50 patients. Radiology 1999, 212, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Meola, M.; Marciello, A.; Di Salle, G.; Petrucci, I. Ultrasound evaluation of access complications: Thrombosis, aneurysms, pseudoaneurysms and infections. J. Vasc. Access 2021, 22, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Carrilho, P.; Germano, A. Clinical and ultrasound evaluation for hemodialysis access creation. Nefrologia 2022, 42, 1–7. [Google Scholar] [CrossRef]
- Zamboli, P.; Fiorini, F.; D’Amelio, A.; Fatuzzo, P.; Granata, A. Color Doppler ultrasound and arteriovenous fistulas for hemodialysis. J. Ultrasound 2014, 17, 253–263. [Google Scholar] [CrossRef]
- Sato, T.; Tsuji, K.; Kawashima, N.; Agishi, T.; Toma, H. Evaluation of blood access dysfunction based on a wavelet transform analysis of shunt murmurs. J. Artif. Organs 2006, 9, 97–104. [Google Scholar] [CrossRef]
- Wang, Y.N.; Chan, C.Y.; Chou, S.J. The detection of arteriovenous fistula stenosis for hemodialysis based on wavelet transform. Int. J. Adv. Comput. Sci. 2011, 1, 16–22. [Google Scholar]
- Chen, W.L.; Lin, C.H.; Chen, T.; Chen, P.J.; Kan, C.D. Stenosis detection using burg method with autoregressive model for hemodialysis patients. J. Med. Biomed. Eng. 2013, 33, 356–362. [Google Scholar]
- Sung, P.H.; Kan, C.D.; Chen, W.L.; Jang, L.S.; Wang, J.F. Hemodialysis vascular access stenosis detection using auditory spectro-temporal features of phonoangiography. Med. Biol. Eng. Comput. 2015, 53, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Grochowina, M.; Leniowska, L.; Dulkiewicz, P. Application of Artificial Neural Networks for the Diagnosis of the Condition of the Arterio-venous Fistula on the Basis of Acoustic Signals. In Proceedings of the Brain Informatics and Health: International Conference, BIH 2014, Warsaw, Poland, 11–14 August 2014; Springer International Publishing: Cham, Switzerland, 2014; pp. 400–411. [Google Scholar]
- Du, Y.C.; Stephanus, A. Levenberg-Marquardt neural network algorithm for degree of arteriovenous fistula stenosis classification using a dual optical photoplethysmography sensor. Sensors 2018, 18, 2322. [Google Scholar] [CrossRef]
- Iwai, R.; Shimazaki, T.; Kawakubo, Y.; Fukami, K.; Ata, S.; Yokoyama, T.; Hitosugi, T.; Otsuka, A.; Hayashi, H.; Tsurumoto, M.; et al. Quantification and Visualization of Reliable Hemodynamics Evaluation Based on Non-Contact Arteriovenous Fistula Measurement. Sensors 2022, 22, 2745. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, T.; Kawakubo, Y.; Iwai, R.; Fukuhara, M.; Aono, H.; Mitsudo, J.; Hayashi, Y.; Ata, S.; Yokoyama, T.; Anzai, D. A Study on Stenosis Detection Based on Non-contact Thrill Wave Imaging and Gradient-Boosting Decision Tree. In Proceedings of the 2023 IEEE 17th International Symposium on Medical Information and Communication Technology (ISMICT), Lincoln, NE, USA, 10–12 May 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Martini, F. Anatomy and Physiology, 2007 ed.; Rex Bookstore, Inc.: Quezon City, Philippines, 2006; pp. 533–534. [Google Scholar]
- Gilpin, V.; Nichols, W.K. Vascular access for hemodialysis: Thrills and thrombosis. J. Vasc. Nurs. 2010, 28, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Asif, A.; Roy-Chaudhury, P.; Beathard, G.A. Early Arteriovenous Fistula Failure: A Logical Proposal for When and How to Intervene. Clin. J. Am. Soc. Nephrol. 2006, 1, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Rafael, C.G.; Richard, E.W. Digital Image Processing; Prentice Hall: Hoboken, NJ, USA, 2002; pp. 116–124. [Google Scholar]
- Kyriacou, P.A.; Allen, J. Photoplethysmography: Technology, Signal Analysis, and Applications; Academic Press: Cambridge, MA, USA, 2021; p. 105. [Google Scholar]
- Ogawa, T.; Matsumura, O.; Matsuda, A.; Hasegawa, H.; Mitarai, T. Brachial artery blood flow measurement: A simple and noninvasive method to evaluate the need for arteriovenous fistula repair. Dial. Transplant. 2011, 40, 206–210. [Google Scholar] [CrossRef]
- Matsuura, K.; Gotoh, Y.; Sadaoka, S.; Takase, K.; Narimatsu, Y. Guidelines for basic techniques in vascular access intervention therapy (VAIVT). Interv. Radiol. 2018, 3, 28–43. [Google Scholar] [CrossRef]
- Malovrh, M. Native arteriovenous fistula: Preoperative evaluation. Am. J. Kidney Dis. 2002, 39, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.O.; Yang, C.W.; Yoon, S.A.; Chun, K.A.; Kim, N.I.; Park, J.S.; Kim, B.S.; Kim, Y.S.; Chang, Y.S.; Bang, B.K. Access blood flow as a predictor of early failures of native arteriovenous fistulas in hemodialysis patients. Am. J. Nephrol. 2001, 21, 221–225. [Google Scholar] [CrossRef]
- Stonebridge, P.; Hoskins, P.; Allan, P.; Belch, J. Spiral laminar flow in vivo. Clin. Sci. 1996, 91, 17–21. [Google Scholar] [CrossRef]
- Lu, D.; Kassab, G.S. Role of shear stress and stretch in vascular mechanobiology. J. R. Soc. Interface 2011, 8, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- Ku, D.N. Blood flow in arteries. Annu. Rev. Fluid Mech. 1997, 29, 399–434. [Google Scholar] [CrossRef]
- Malek, A.M.; Alper, S.L.; Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999, 282, 2035–2042. [Google Scholar] [CrossRef] [PubMed]
- De Nisco, G.; Hoogendoorn, A.; Chiastra, C.; Gallo, D.; Kok, A.M.; Morbiducci, U.; Wentzel, J.J. The impact of helical flow on coronary atherosclerotic plaque development. Atherosclerosis 2020, 300, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Fan, Y.; Deng, X.; Zhan, F.; Kang, H. Effect of swirling flow on the uptakes of native and oxidized LDLs in a straight segment of the rabbit thoracic aorta. Exp. Biol. Med. 2010, 235, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Houston, J.G.; Gandy, S.J.; Milne, W.; Dick, J.B.; Belch, J.J.; Stonebridge, P.A. Spiral laminar flow in the abdominal aorta: A predictor of renal impairment deterioration in patients with renal artery stenosis? Nephrol. Dial. Transplant. 2004, 19, 1786–1791. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Mittal, V.; Lal, H.; Javali, T.; Patidar, N.; Sureka, S.; Aggarwal, S. Spiral laminar flow, the earliest predictor for maturation of arteriovenous fistula for hemodialysis access. Indian J. Urol. IJU J. Urol. Soc. India 2015, 31, 240. [Google Scholar] [CrossRef] [PubMed]
- Cunnane, C.V.; Houston, J.G.; Moran, D.T.; Broderick, S.P.; Ross, R.A.; Walsh, M.T. Spiral Laminar Flow is Associated with a Reduction in Disturbed Shear in Patient-Specific Models of an Arteriovenous Fistula. Cardiovasc. Eng. Technol. 2022, 14, 152–165. [Google Scholar] [CrossRef]
- Marie, Y.; Guy, A.; Tullett, K.; Krishnan, H.; Jones, R.G.; Inston, N.G. Patterns of blood flow as a predictor of maturation of arteriovenous fistula for haemodialysis. J. Vasc. Access 2014, 15, 169–174. [Google Scholar] [CrossRef]
Number of patients | 92 (normal AVF: 75, AVF with treatable stenosis: 17) |
Number of data | 313 (normal AVF: 206, AVF with treatable stenosis: 107) |
Position | Sitting |
Exposure time | 10 s |
Light source color | Blue |
Frame rate | 40 fps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwai, R.; Shimazaki, T.; Hyry, J.; Kawakubo, Y.; Fukuhara, M.; Aono, H.; Ata, S.; Yokoyama, T.; Anzai, D. Reliable Stenosis Detection Based on Thrill Waveform Analysis Using Non-Contact Arteriovenous Fistula Imaging. Sensors 2024, 24, 5068. https://doi.org/10.3390/s24155068
Iwai R, Shimazaki T, Hyry J, Kawakubo Y, Fukuhara M, Aono H, Ata S, Yokoyama T, Anzai D. Reliable Stenosis Detection Based on Thrill Waveform Analysis Using Non-Contact Arteriovenous Fistula Imaging. Sensors. 2024; 24(15):5068. https://doi.org/10.3390/s24155068
Chicago/Turabian StyleIwai, Rumi, Takunori Shimazaki, Jaakko Hyry, Yoshifumi Kawakubo, Masashi Fukuhara, Hiroki Aono, Shingo Ata, Takeshi Yokoyama, and Daisuke Anzai. 2024. "Reliable Stenosis Detection Based on Thrill Waveform Analysis Using Non-Contact Arteriovenous Fistula Imaging" Sensors 24, no. 15: 5068. https://doi.org/10.3390/s24155068
APA StyleIwai, R., Shimazaki, T., Hyry, J., Kawakubo, Y., Fukuhara, M., Aono, H., Ata, S., Yokoyama, T., & Anzai, D. (2024). Reliable Stenosis Detection Based on Thrill Waveform Analysis Using Non-Contact Arteriovenous Fistula Imaging. Sensors, 24(15), 5068. https://doi.org/10.3390/s24155068