Muscle Network Connectivity Study in Diabetic Peripheral Neuropathy Patients
<p>Temporal representation of the raw sEMG signal from a participant (CT group). From top to bottom, medial gastrocnemius (GM), tibialis anterior (TA), extensor digitorum brevis (ED), and flexor digitorum brevis (FD) muscles are divided into three 6 s windows (W1, W2, W3) during an 18 s segment of a dynamic exercise.</p> "> Figure 2
<p>Flowchart illustrating the process of estimating transfer entropy (TE) detailing the steps of the D-V algorithm.</p> "> Figure 3
<p>Box and Whisker plots of the CC parameter of TA-GM and TA-ED muscle pairs from the CT, LW, and MH populations. Statistically significant differences (<span class="html-italic">p</span> < 0.05) between the LSD test groups are shown in the black brackets. Outlier values are shown as ‘+’.</p> "> Figure 4
<p>Box and Whisker plots for NMI of TA-ED and GM-FD muscle pairs from the CT, LW, and MH muscle groups. Statistically significant differences (<span class="html-italic">p</span> < 0.05) between groups from the LSD test are given in black brackets. Outlier values are shown as ‘+’.</p> "> Figure 5
<p>Box and Whisker plots depicting the CG-Causality distribution across TA-ED and GM-FD muscle pairs for CT, LW, and MH population groups in bidirectional comparison. Whiskers in black denote one directionality, while grey indicates the opposite. Statistically significant differences (<span class="html-italic">p</span> < 0.05) between groups, as determined by the LSD test, are denoted by brackets in both black and grey. Statistically significant differences (<span class="html-italic">p</span> < 0.05) between directionalities, as determined by the <span class="html-italic">t</span>-test, are denoted by a red background. Outlier values are shown as ‘+’.</p> "> Figure 6
<p>Box and Whisker plots depicting the TE parameter across TA-GM, TA-ED, GM-ED, GM-FD, and ED-FD muscle pairs for three CT, LW, and MH groups in bidirectional comparison. Whiskers in black denote one directionality, while grey indicates the opposite. Statistically significant differences (<span class="html-italic">p</span> < 0.05) between groups, as determined by the LSD test, are denoted by both black and grey brackets. Statistically significant differences (<span class="html-italic">p</span> < 0.05) between directionalities, as determined by the <span class="html-italic">t</span>-test, are denoted by a red background. Outlier values are shown as ‘+’.</p> "> Figure 7
<p>Visual representation of significant muscle interactions between the muscles medial gastrocnemius (GM), tibialis anterior (TA), extensor digitorum brevis (ED), and flexor digitorum brevis (FD) observed from the (<b>A</b>) CC, (<b>B</b>) NMI, (<b>C</b>) CG-Causality, and (<b>D</b>) TE parameters when comparing the CT-LW, CT-MH, and LW-MH populations. The color of the lines represents the mean parameter of each group in that specific muscle pair, while the arrow represents its statistically predominant directionality. The bidirectional arrow represents non-significant directionality.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol and Data Acquisition
2.3. Information Theory Parameters
2.3.1. Cross-Correlation
2.3.2. Normalized Mutual Information
2.3.3. Conditional Granger Causality
2.3.4. Transfer Entropy
2.3.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, R.; Kishore, L.; Kaur, N. Diabetic Peripheral Neuropathy: Current Perspective and Future Directions. Pharmacol. Res. 2014, 80, 21–35. [Google Scholar] [CrossRef]
- Hossain, P.; Kawar, B.; El Nahas, M. Obesity and Diabetes in the Developing World-A Growing Challenge. N. Engl. J. Med. 2007, 356, 213–215. [Google Scholar] [CrossRef]
- Sadosky, A.; Mardekian, J.; Parsons, B.; Hopps, M.; Bienen, E.J.; Markman, J. Healthcare Utilization and Costs in Diabetes Relative to the Clinical Spectrum of Painful Diabetic Peripheral Neuropathy. J. Diabetes Complicat. 2015, 29, 212–217. [Google Scholar] [CrossRef]
- Juster-Switlyk, K.; Smith, A.G. Updates in Diabetic Peripheral Neuropathy. F1000Research 2016, 5, F1000. [Google Scholar] [CrossRef]
- Tesfaye, S.; Boulton, A.J.M.; Dyck, P.J.; Freeman, R.; Horowitz, M.; Kempler, P.; Lauria, G.; Malik, R.A.; Spallone, V.; Vinik, A.; et al. Diabetic Neuropathies: Update on Definitions, Diagnostic Criteria, Estimation of Severity, and Treatments. Diabetes Care 2010, 33, 2285–2293. [Google Scholar] [CrossRef]
- Parasoglou, P.; Rao, S.; Slade, J.M. Declining Skeletal Muscle Function in Diabetic Peripheral Neuropathy. Clin. Ther. 2017, 39, 1085–1103. [Google Scholar] [CrossRef]
- Alleman, C.J.M.; Westerhout, K.Y.; Hensen, M.; Chambers, C.; Stoker, M.; Long, S.; van Nooten, F.E. Humanistic and Economic Burden of Painful Diabetic Peripheral Neuropathy in Europe: A Review of the Literature. Diabetes Res. Clin. Pract. 2015, 109, 215–225. [Google Scholar] [CrossRef]
- Khdour, M.R. Treatment of Diabetic Peripheral Neuropathy: A Review. J. Pharm. Pharmacol. 2020, 72, 863–872. [Google Scholar] [CrossRef]
- Reeves, N.D.; Orlando, G.; Brown, S.J. Sensory-Motor Mechanisms Increasing Falls Risk in Diabetic Peripheral Neuropathy. Medicina 2021, 57, 457. [Google Scholar] [CrossRef]
- Orlando, G.; Balducci, S.; Boulton, A.J.M.; Degens, H.; Reeves, N.D. Neuromuscular Dysfunction and Exercise Training in People with Diabetic Peripheral Neuropathy: A Narrative Review. Diabetes Res. Clin. Pract. 2022, 183, 109183. [Google Scholar] [CrossRef]
- Sacco, I.C.N.; Amadio, A.C. Influence of the Diabetic Neuropathy on the Behavior of Electromyographic and Sensorial Responses in Treadmill Gait. Clin. Biomech. 2003, 18, 426–434. [Google Scholar] [CrossRef]
- Allen, M.D.; Major, B.; Kimpinski, K.; Doherty, T.J.; Rice, C.L. Skeletal Muscle Morphology and Contractile Function in Relation to Muscle Denervation in Diabetic Neuropathy. J. Appl. Physiol. 2014, 116, 545–552. [Google Scholar] [CrossRef]
- Sawacha, Z.; Spolaor, F.; Guarneri, G.; Contessa, P.; Carraro, E.; Venturin, A.; Avogaro, A.; Cobelli, C. Abnormal Muscle Activation during Gait in Diabetes Patients with and without Neuropathy. Gait Posture 2012, 35, 101–105. [Google Scholar] [CrossRef]
- Criswell, E.; Cram, J.R. Cram’s Introduction to Surface Electromyography; Jones and Bartlett: Burlington, MA, USA, 2011; ISBN 9780763732745. [Google Scholar]
- Spolaor, F.; Sawacha, Z.; Guarneri, G.; Del Din, S.; Avogaro, A.; Cobelli, C. Altered EMG Patterns in Diabetic Neuropathic and Not Neuropathic Patients during Step Ascending and Descending. J. Electromyogr. Kinesiol. 2016, 31, 32–39. [Google Scholar] [CrossRef]
- Maranesi, E.; Di Nardo, F.; Rabini, R.A.; Ghetti, G.G.; Burattini, L.; Mercante, O.; Fioretti, S. Muscle Activation Patterns Related to Diabetic Neuropathy in Elderly Subjects: A Functional Reach Test Study. Clin. Biomech. 2016, 32, 236–240. [Google Scholar] [CrossRef]
- Bingham, A.; Arjunan, S.P.; Jelfs, B.; Kumar, D.K. Normalised Mutual Information of High-Density Surface Electromyography during Muscle Fatigue. Entropy 2017, 19, 697. [Google Scholar] [CrossRef]
- Lee, J.; Nemati, S.; Silva, I.; Edwards, B.A.; Butler, J.P.; Malhotra, A. Transfer Entropy Estimation and Directional Coupling Change Detection in Biomedical Time Series. Biomed. Eng. Online 2012, 11, 19. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica 1969, 37, 424. [Google Scholar] [CrossRef]
- Favretto, M.A.; Cossul, S.; Andreis, F.R.; Nakamura, L.R.; Ronsoni, M.F.; Tesfaye, S.; Selvarajah, D.; Marques, J.L.B. Alterations of Tibialis Anterior Muscle Activation Pattern in Subjects with Type 2 Diabetes and Diabetic Peripheral Neuropathy. Biomed. Phys. Eng. Express 2022, 8, 025001. [Google Scholar] [CrossRef] [PubMed]
- Suda, E.Y.; Sacco, I.C.N.; Hirata, R.P.; Samani, A.; Kawamura, T.T.; Madeleine, P. Later Stages of Diabetic Neuropathy Affect the Complexity of the Neuromuscular System at the Knee during Low-Level Isometric Contractions. Muscle Nerve 2018, 57, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, T.W.; Faes, L.; Kerkman, J.N.; Marinazzo, D. Information Decomposition of Multichannel EMG to Map Functional Interactions in the Distributed Motor System. Neuroimage 2019, 202, 116093. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lyu, Y.; Song, R. Phase-Dependent Modulation of Muscle Activity and Intermuscular Coupling during Walking in Patients after Stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Flood, M.W.; Jensen, B.R.; Malling, A.S.; Lowery, M.M. Increased EMG Intermuscular Coherence and Reduced Signal Complexity in Parkinson’s Disease. Clin. Neurophysiol. 2019, 130, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Iranzo, S.; Belda-Lois, J.M.; Martinez-de-Juan, J.L.; Prats-Boluda, G. Assessment of Muscle Coordination Changes Caused by the Use of an Occupational Passive Lumbar Exoskeleton in Laboratory Conditions. Sensors 2023, 23, 9631. [Google Scholar] [CrossRef]
- Schaper, N.C.; van Netten, J.J.; Apelqvist, J.; Bus, S.A.; Hinchliffe, R.J.; Lipsky, B.A. Practical Guidelines on the Prevention and Management of Diabetic Foot Disease (IWGDF 2019 Update). Diabetes Metab. Res. Rev. 2020, 36, e3266. [Google Scholar] [CrossRef] [PubMed]
- Stegeman, D.F. Standards for Suface Electromyography: The European Project Surface EMG for Non-Invasive Assessment of Muscles (SENIAM); Roessingh Research and Development: Enschede, The Netherlands, 2007. [Google Scholar]
- Stoica, P.; Moses, R.L. Spectral Analysis of Signals; Pearson/Prentice Hall: London, UK, 2005; ISBN 0131139568. [Google Scholar]
- Hamilton, J.D.; Susmel, R. Autoregressive Conditional Heteroskedasticity and Changes in Regime. J. Econom. 1994, 64, 307–333. [Google Scholar] [CrossRef]
- Barnett, L.; Seth, A.K. The MVGC Multivariate Granger Causality Toolbox: A New Approach to Granger-Causal Inference. J. Neurosci. Methods 2014, 223, 50–68. [Google Scholar] [CrossRef] [PubMed]
- Darbellay, G.A.; Vajda, I.; Member, S. Estimation of the Information by an Adaptive Partitioning of the Observation Space. IEEE Trans. Inf. Theory 1999, 45, 1315–1321. [Google Scholar] [CrossRef]
- Ullah, S.; Iqbal, K. A Preliminary Review on EMG Signals for Assessment of Diabetic Peripheral Neuropathy Disorder. In Proceedings of the 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE 2020), Antalya, Turkey, 14–16 April 2020; ISBN 9781728167886. [Google Scholar]
- Weiderpass, H.A.; Pachi, C.G.F.; Yamamoto, J.F.; Hamamoto, A.; Onodera, A.N.; Sacco, I.C.N. Time-Frequency Analysis Methods for Detecting Effects of Diabetic Neuropathy. Int. J. Numer. Methods Biomed. Eng. 2013, 29, 1000–1010. [Google Scholar] [CrossRef]
- Zhu, S.; Zhao, J.; Wu, Y.; She, Q. Intermuscular Coupling Network Analysis of Upper Limbs Based on R-Vine Copula Transfer Entropy. Math. Biosci. Eng. 2022, 19, 9437–9456. [Google Scholar] [CrossRef]
- Palastanga, N.; Soames, R. Anatomy and Human Movement, Structure and Function with PAGEBURST Access; Elsevier Health Sciences: Amsterdam, The Netherlands, 2011; ISBN 978-0-7020-4053-5. [Google Scholar]
- Hansen, S.; Ballantyne, J.P. Axonal Dysfunction in the Neuropathy of Diabetes Mellitus: A Quantitative Electrophysiological Study. J. Neurol. Neurosurg. Psychiatry 1977, 40, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yuan, X.; Liu, J.; Yuan, G.; Sun, Y.; Zhang, D.; Qi, X.; Li, H.; Zhang, J.; Wen, B.; et al. Risk Factors for Diabetic Peripheral Neuropathy, Peripheral Artery Disease, and Foot Deformity Among the Population With Diabetes in Beijing, China: A Multicenter, Cross-Sectional Study. Front. Endocrinol. 2022, 13, 824215. [Google Scholar] [CrossRef] [PubMed]
- Akalu, Y.; Birhan, A. Peripheral Arterial Disease and Its Associated Factors among Type 2 Diabetes Mellitus Patients at Debre Tabor General Hospital, Northwest Ethiopia. J. Diabetes Res. 2020, 2020, 9419413. [Google Scholar] [CrossRef] [PubMed]
Pair | CC | NMI | CG-Causality → | CG-Causality ← | TE → | TE ← |
---|---|---|---|---|---|---|
TA-GM | 0.19 | 0.40 | 0.56 | 0.85 | 0.13 | 0.22 |
TA-ED | 0.00 * | 0.00 * | 0.01 * | 0.00 * | 0.00 * | 0.00 * |
TA-FD | 0.99 | 0.25 | 0.46 | 0.77 | 0.34 | 0.59 |
GM-ED | 0.60 | 0.59 | 0.08 | 0.09 | 0.00 * | 0.16 |
GM-FD | 0.55 | 0.01 * | 0.06 | 0.10 | 0.02 * | 0.07 |
ED-FD | 0.76 | 0.27 | 0.25 | 0.20 | 0.51 | 0.15 |
CC | NMI | |||||
---|---|---|---|---|---|---|
Pair | CT-LW | CT-MH | LW-MH | CT-LW | CT-MH | LW-MH |
TA-GM | 0.07 | 0.01 * | 0.83 | 0.17 | 0.82 | 0.61 |
TA-ED | 0.11 | 0.04 * | 0.00 * | 0.71 | 0.00 * | 0.00 * |
TA-FD | 0.93 | 0.20 | 0.29 | 0.33 | 0.20 | 0.92 |
GM-ED | 0.41 | 0.71 | 0.31 | 0.40 | 0.30 | 0.12 |
GM-FD | 0.18 | 0.75 | 0.15 | 0.00 * | 0.43 | 0.07 |
ED-FD | 0.76 | 0.22 | 0.23 | 0.37 | 0.10 | 0.66 |
CC | NMI | |||||
---|---|---|---|---|---|---|
Pair | CT-LW | CT-MH | LW-MH | CT-LW | CT-MH | LW-MH |
TA → GM | 0.08 | 0.12 | 0.70 | 0.11 | 0.54 | 0.05 * |
TA ← GM | 0.32 | 0.11 | 0.75 | 0.57 | 0.30 | 0.20 |
TA → ED | 0.61 | 0.01 * | 0.01 * | 0.67 | 0.00 * | 0.00 * |
TA ← ED | 0.35 | 0.00 * | 0.00 * | 0.63 | 0.00 * | 0.05 * |
TA → FD | 0.86 | 0.60 | 0.81 | 0.20 | 0.80 | 0.18 |
TA ← FD | 0.89 | 0.39 | 0.59 | 0.90 | 0.39 | 0.44 |
GM → ED | 0.65 | 0.07 | 0.34 | 0.01 * | 0.19 | 0.00 * |
GM ← ED | 0.62 | 0.09 | 0.40 | 0.59 | 0.15 | 0.11 |
GM → FD | 0.74 | 0.04 * | 0.07 | 0.01 * | 0.64 | 0.07 |
GM ← FD | 0.55 | 0.05 * | 0.04 * | 0.03 * | 0.65 | 0.10 |
ED → FD | 0.87 | 0.15 | 0.22 | 0.57 | 0.36 | 0.23 |
ED ← FD | 0.10 | 0.28 | 0.50 | 0.04 * | 0.94 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junquera-Godoy, I.; Martinez-De-Juan, J.L.; González-Lorente, G.; Carot-Sierra, J.M.; Gomis-Tena, J.; Saiz, J.; García-Blasco, S.; Pertusa-Mazón, I.; Soler-Climent, E.; Prats-Boluda, G. Muscle Network Connectivity Study in Diabetic Peripheral Neuropathy Patients. Sensors 2024, 24, 4954. https://doi.org/10.3390/s24154954
Junquera-Godoy I, Martinez-De-Juan JL, González-Lorente G, Carot-Sierra JM, Gomis-Tena J, Saiz J, García-Blasco S, Pertusa-Mazón I, Soler-Climent E, Prats-Boluda G. Muscle Network Connectivity Study in Diabetic Peripheral Neuropathy Patients. Sensors. 2024; 24(15):4954. https://doi.org/10.3390/s24154954
Chicago/Turabian StyleJunquera-Godoy, Isabel, José Luís Martinez-De-Juan, Gemma González-Lorente, José Miguel Carot-Sierra, Julio Gomis-Tena, Javier Saiz, Silvia García-Blasco, Isabel Pertusa-Mazón, Esther Soler-Climent, and Gema Prats-Boluda. 2024. "Muscle Network Connectivity Study in Diabetic Peripheral Neuropathy Patients" Sensors 24, no. 15: 4954. https://doi.org/10.3390/s24154954
APA StyleJunquera-Godoy, I., Martinez-De-Juan, J. L., González-Lorente, G., Carot-Sierra, J. M., Gomis-Tena, J., Saiz, J., García-Blasco, S., Pertusa-Mazón, I., Soler-Climent, E., & Prats-Boluda, G. (2024). Muscle Network Connectivity Study in Diabetic Peripheral Neuropathy Patients. Sensors, 24(15), 4954. https://doi.org/10.3390/s24154954