Gearbox Fault Diagnosis Method in Noisy Environments Based on Deep Residual Shrinkage Networks
<p>Cross-attention network structure.</p> "> Figure 2
<p>RSBU-CW.</p> "> Figure 3
<p>CA-RSBU.</p> "> Figure 4
<p>Algorithm flow chart.</p> "> Figure 5
<p>SEU experimental device.</p> "> Figure 6
<p>Frequency domain diagrams of the gear vibration signal of different fault types after FFT at different Gaussian noise intensities. (<b>a</b>) Frequency domain diagram with noise at 0.1; (<b>b</b>) frequency domain diagram with noise at 0.15; (<b>c</b>) frequency domain diagram with noise at 0.2; (<b>d</b>) frequency domain diagram with noise at 0.25.</p> "> Figure 7
<p>Comparison of FFT and TD input under two working conditions. (<b>a</b>) Working condition 1—20 Hz-0 V; (<b>b</b>) working condition 2—30 Hz-2 V.</p> "> Figure 8
<p>Accuracy and standard deviation of seven model test sets under different working conditions. (<b>a</b>) Working condition 1—20 Hz-0 V; (<b>b</b>) working condition 2—30 Hz-2 V.</p> "> Figure 9
<p>Confusion matrix for fault detection in the CA-DRSN model under working condition 1: (<b>a</b>) noise level at 0.1; (<b>b</b>) noise level at 0.15; (<b>c</b>) noise level at 0.2; (<b>d</b>) noise level at 0.25.</p> "> Figure 10
<p>Confusion matrix for fault detection in the CA-DRSN model under working condition 2: (<b>a</b>) noise level at 0.1; (<b>b</b>) noise level at 0.15; (<b>c</b>) noise level at 0.2; (<b>d</b>) noise level at 0.25.</p> "> Figure 11
<p>Clustering diagram of CA-DRSN model under working condition 1: (<b>a</b>) noise level at 0.1; (<b>b</b>) noise level at 0.15; (<b>c</b>) noise level at 0.2; (<b>d</b>) noise level at 0.25.</p> "> Figure 12
<p>Clustering diagram of CA-DRSN model under working condition 2: (<b>a</b>) noise level at 0.1; (<b>b</b>) noise level at 0.15; (<b>c</b>) noise level at 0.2; (<b>d</b>) noise level at 0.25.</p> "> Figure 13
<p>PU experimental device.</p> ">
Abstract
:1. Introduction
- This study uses the FFT algorithm to perform frequency domain noise reduction on the signal, which significantly enhances the quality of the fault characteristic signal and improves the model’s noisy-environment fault detection ability.
- This study introduces a cross-attention mechanism at key nodes before the first residual block and after the last residual block, significantly improving feature capture performance.
- This study innovatively combines RSBU-CW and cross-attention mechanisms. The proposed CA-DRSN model achieves effective information interaction and feature fusion between different channels through the cross-attention mechanism, and then performs noise reduction and feature enhancement through the RSBU-CW module.
- Comparative experimental results show that the proposed method exhibits superior diagnostic performance on both datasets and maintains high accuracy even in highly noisy environments.
2. Key Theory and Techniques
2.1. Fast Fourier Transform
2.2. Attention Mechanism
2.3. CA-DRSN Model Design
2.3.1. Residual Shrinkage Module with Adaptive Soft Thresholding
2.3.2. Residual Shrinkage Network Model Based on Cross-Attention Module
3. Compound Detection Method for Gearboxes Based on CA-DRSN Model
4. Experimental Results and Discussion
4.1. Experimental Data Parameters and Settings for the SEU Gear Dataset
4.2. Advantages of the Frequency Domain Analysis Method
4.3. Model Training and Analysis of Results
4.4. Compound Fault Diagnosis Experiment on PU Dataset
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
FFT | Fast Fourier transform |
TD Input | Time domain input |
AP | Average precision |
AR | Average recall |
RSBU-CW | Residual Shrinkage Building Unit with Channel-Wise Thresholds |
RSBU-CS | Residual Shrinkage Building Unit with Channel-Shared Thresholds |
CA-DRSN | Cross-Attention Deep Residual Shrinkage Network |
DRSN-LSTM | Deep Residual Shrinkage Network with Long Short-Term Memory |
DRSN-ECA | Deep Residual Shrinkage Network with Efficient Channel Attention |
DRSN-CW | Deep Residual Shrinkage Networks with Channel-Wise Thresholds |
ResNet18 | Residual Neural Network 18 |
AlexNet | Alex Network |
BiLSTM | Bidirectional Long Short-Term Memory |
References
- Sun, H.; He, Z.; Zi, Y.; Yuan, J.; Wang, X.; Chen, J.; He, S. Multiwavelet Transform and Its Applications in Mechanical Fault Diag-nosis—A Review. Mech. Syst. Signal Process. 2014, 43, 1–24. [Google Scholar] [CrossRef]
- Li, C.; Zhang, S.; Qin, Y.; Estupinan, E. A Systematic Review of Deep Transfer Learning for Machinery Fault Diagnosis. Neuro-computing 2020, 407, 121–135. [Google Scholar] [CrossRef]
- Frank, P.M.; Ding, S.X.; Marcu, T. Model-Based Fault Diagnosis in Technical Processes. Trans. Inst. Meas. Control 2000, 22, 57–101. [Google Scholar] [CrossRef]
- Jiao, J.; Zhao, M.; Lin, J.; Liang, K. A Comprehensive Review on Convolutional Neural Network in Machine Fault Diagnosis. Neurocomputing 2020, 417, 36–63. [Google Scholar] [CrossRef]
- Lei, Y.; Lin, J.; Zuo, M.J.; He, Z. Condition Monitoring and Fault Diagnosis of Planetary Gearboxes: A Review. Measurement 2014, 48, 292–305. [Google Scholar] [CrossRef]
- Hu, X.; Cao, Y.; Tang, T.; Sun, Y. Data-driven technology of fault diagnosis in railway point machines: Review and challenges. Transp. Saf. Environ. 2022, 4, tdac036. [Google Scholar] [CrossRef]
- Bal, P.R.; Kumar, S. WR-ELM: Weighted Regularization Extreme Learning Machine for Imbalance Learning in Software Fault Prediction. IEEE Trans. Reliab. 2020, 69, 1355–1375. [Google Scholar] [CrossRef]
- Habbouche, H.; Amirat, Y.; Benkedjouh, T.; Benbouzid, M. Bearing Fault Event-Triggered Diagnosis Using a Variational Mode Decomposition-Based Machine Learning Approach. IEEE Trans. Energy Convers. 2021, 37, 466–474. [Google Scholar] [CrossRef]
- Kumar, R.; Swarnkar, M.; Singal, G.; Kumar, N. IoT Network Traffic Classification Using Machine Learning Algorithms: An Experimental Analysis. IEEE Internet Things J. 2022, 9, 989–1008. [Google Scholar] [CrossRef]
- Kumar, A.; Vashishtha, G.; Gandhi, C.P.; Tang, H.; Xiang, J. Tacho-Less Sparse CNN to Detect Defects in Rotor-Bearing Systems at Varying Speed. Eng. Appl. Artif. Intell. 2021, 104, 104401. [Google Scholar] [CrossRef]
- Glowacz, A.; Tadeusiewicz, R.; Legutko, S.; Caesarendra, W.; Irfan, M.; Liu, H.; Brumercik, F.; Gutten, M.; Sulowicz, M.; Antonino Daviu, J.A.; et al. Fault Diagnosis of Angle Grinders and Electric Impact Drills Using Acoustic Signals. Appl. Acoust. 2021, 179, 108070. [Google Scholar] [CrossRef]
- Gilles, J. Empirical Wavelet Transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
- Lupea, I.; Lupea, M.; Coroian, A. Helical Gearbox Defect Detection with Machine Learning Using Regular Mesh Components and Sidebands. Sensors 2024, 24, 3337. [Google Scholar] [CrossRef] [PubMed]
- Saucedo-Dorantes, J.J.; Delgado-Prieto, M.; Osornio-Rios, R.A.; Romero-Troncoso, R.d.J. Diagnosis Methodology for Iden-tifying Gearbox Wear Based on Statistical Time Feature Reduction. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 232, 2711–2722. [Google Scholar] [CrossRef]
- Nguyen, C.D.; Kim, C.H.; Kim, J.-M. Gearbox Fault Identification Model Using an Adaptive Noise Canceling Technique, Heterogeneous Feature Extraction, and Distance Ratio Principal Component Analysis. Sensors 2022, 22, 4091. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Guo, Y.; Zhao, W. Long Short-Term Memory Neural Network Based Fault Detection and Isolation for Electro-Mechanical Actuators. Neurocomputing 2019, 360, 85–96. [Google Scholar] [CrossRef]
- Ding, Y.; Ma, L.; Ma, J.; Suo, M.; Tao, L.; Cheng, Y.; Lu, C. Intelligent Fault Diagnosis for Rotating Machinery Using Deep Q-Network Based Health State Classification: A Deep Reinforcement Learning Approach. Adv. Eng. Inform. 2019, 42, 100977. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, D.; Yuan, X. LDA-Based Deep Transfer Learning for Fault Diagnosis in Industrial Chemical Processes. Comput. Chem. Eng. 2020, 140, 106964. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, J.; Wang, J.; Qian, Z. Intelligent Fault Diagnosis of Wind Turbine Gearbox Based on Long Short-Term Memory Networks. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada, 12–14 June 2019. [Google Scholar]
- Liu, G.; Bao, H.; Han, B. A Stacked Autoencoder-Based Deep Neural Network for Achieving Gearbox Fault Diagnosis. Math. Probl. Eng. 2018, 2018, 5105709. [Google Scholar] [CrossRef]
- Shang, Z.; Liao, X.; Geng, R.; Gao, M.; Liu, X. Fault Diagnosis Method of Rolling Bearing Based on Deep Belief Network. J. Mech. Sci. Technol. 2018, 32, 5139–5145. [Google Scholar] [CrossRef]
- Wu, C.; Jiang, P.; Ding, C.; Feng, F.; Chen, T. Intelligent Fault Diagnosis of Rotating Machinery Based on One-Dimensional Convolutional Neural Network. Comput. Ind. 2019, 108, 53–61. [Google Scholar] [CrossRef]
- Chen, X.; Hu, X.; Wen, T.; Cao, Y. Vibration Signal-Based Fault Diagnosis of Railway Point Machines via Double-Scale CNN. Chin. J. Electron. 2023, 32, 972–981. [Google Scholar] [CrossRef]
- He, J.; Li, B.; Sun, Q.; Li, Y.; Lyu, H.; Wang, W.; Xie, Z. The Improved Fault Location Method Based on Natural Frequency in MMC-HVDC Grid by Combining FFT and MUSIC Algorithms. Int. J. Electr. Power Energy Syst. 2022, 137, 107816. [Google Scholar] [CrossRef]
- Zhao, M.; Zhong, S.; Fu, X.; Tang, B.; Pecht, M. Deep Residual Shrinkage Networks for Fault Diagnosis. IEEE Trans. Ind. Inform. 2020, 16, 4681–4690. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Xiao, Q.; Huang, H.; Xiong, G. Performance Degradation Assessment of Railway Axle Box Bearing Based on Combination of Denoising Features and Time Series Information. Sensors 2023, 23, 5910. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bian, Y.; Jiang, P.; Huang, Y.; Liu, Y. Improving Pipeline Magnetic Flux Leakage (MFL) Detection Performance with Mixed Attention Mechanisms (AMs) and Deep Residual Shrinkage Networks (DRSNs). IEEE Sens. J. 2024, 24, 5162–5171. [Google Scholar] [CrossRef]
- Shao, S.; McAleer, S.; Yan, R.; Baldi, P. Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning. IEEE Trans. Ind. Inform. 2019, 15, 2446–2455. [Google Scholar] [CrossRef]
- Lessmeier, C.; Kimotho, J.K.; Zimmer, D.; Sextro, W. Condition Monitoring of Bearing Damage in Electromechanical Drive Systems by Using Motor Current Signals of Electric Motors: A Benchmark Data Set for Data-Driven Classification. In Proceedings of the PHM Society European Conference 2016, Bilbao, Spain, 5–8 July 2016. [Google Scholar] [CrossRef]
- Sikder, N.; Bhakta, K.; Al Nahid, A.; Islam, M.M.M. Fault Diagnosis of Motor Bearing Using Ensemble Learning Algorithm with FFT-Based Preprocessing. In Proceedings of the 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 10–12 January 2019. [Google Scholar] [CrossRef]
- Gou, B.; Xu, Y.; Xia, Y.; Deng, Q.; Ge, X. An Online Data-Driven Method for Simultaneous Diagnosis of IGBT and Current Sensor Fault of Three-Phase PWM Inverter in Induction Motor Drives. IEEE Trans. Power Electron. 2020, 35, 13281–13294. [Google Scholar] [CrossRef]
- Zhu, Y.; Peng, H. Multiple Random Forests Based Intelligent Location of Single-Phase Grounding Fault in Power Lines of DFIG-Based Wind Farm. J. Mod. Power Syst. Clean Energy 2022, 10, 1152–1163. [Google Scholar] [CrossRef]
- Zhai, S.; Talbott, W.; Srivastava, N.; Huang, C.; Goh, H.; Zhang, R.; Susskind, J. An Attention Free Transformer. arXiv 2021, arXiv:2105.14103. [Google Scholar]
- Li, J.; Bao, Y.; Liu, W.; Ji, P.; Wang, L.; Wang, Z. Twins transformer: Cross-attention based two-branch transformer network for rotating bearing fault diagnosis. Measurement 2023, 223, 113687. [Google Scholar] [CrossRef]
- Peng, Y.H. De-noising by modified soft-thresholding. In Proceedings of the 2000 IEEE Asia-Pacific Conference on Circuits and Systems, Electronic Communication Systems, Tianjin, China, 4–6 December 2000. [Google Scholar] [CrossRef]
- Fränti, P.; Mariescu-Istodor, R. Soft Precision and Recall. Pattern Recognit. Lett. 2023, 167, 115–121. [Google Scholar] [CrossRef]
Type | Health | Chipped | Miss | Root | Surface | Total | Working Conditions | |
---|---|---|---|---|---|---|---|---|
Dataset 1 | Training | 408 | 408 | 408 | 412 | 408 | 2555 | 20 Hz-0 V |
Validation | 102 | 102 | 102 | 103 | 102 | |||
Dataset 2 | Training | 408 | 408 | 408 | 412 | 408 | 2555 | 30 Hz-2 V |
Validation | 102 | 102 | 102 | 103 | 102 |
Parameter | Value |
---|---|
Epochs | 100 |
Batch size | 32 |
Learning rate | 0.001 |
Learning rate decay | 0.1 |
Optimizer | Adam |
Model | Noise Level | AP (Condition 1) | AP (Condition 2) | AR (Condition 1) | AR (Condition 2) |
---|---|---|---|---|---|
CA-DRSN | 0.1 | 1.0 | 1.0 | 1.0 | 1.0 |
0.15 | 0.9942 | 0.9981 | 0.9941 | 0.9980 | |
0.2 | 0.9846 | 0.9868 | 0.9844 | 0.9863 | |
0.25 | 0.9789 | 0.9792 | 0.9785 | 0.9786 | |
DRSN-LSTM | 0.1 | 0.9976 | 0.9962 | 0.9975 | 0.9961 |
0.15 | 0.9845 | 0.9818 | 0.9842 | 0.9804 | |
0.2 | 0.9338 | 0.9473 | 0.9256 | 0.9392 | |
0.25 | 0.9324 | 0.9010 | 0.9197 | 0.8628 | |
DRSN-ECA | 0.1 | 0.9974 | 0.9925 | 0.9973 | 0.9922 |
0.15 | 0.9802 | 0.9797 | 0.9784 | 0.9785 | |
0.2 | 0.9722 | 0.9790 | 0.9716 | 0.9782 | |
0.25 | 0.9472 | 0.9693 | 0.9373 | 0.9682 | |
DRSN-CW | 0.1 | 0.9925 | 0.9832 | 0.9922 | 0.9824 |
0.15 | 0.9847 | 0.9815 | 0.9841 | 0.9804 | |
0.2 | 0.9771 | 0.9781 | 0.9765 | 0.9765 | |
0.25 | 0.9608 | 0.9584 | 0.9589 | 0.9571 | |
ResNet18 | 0.1 | 0.9868 | 0.9863 | 0.9962 | 0.9961 |
0.15 | 0.9606 | 0.9510 | 0.9734 | 0.9727 | |
0.2 | 0.9128 | 0.8804 | 0.9281 | 0.9103 | |
0.25 | 0.8655 | 0.8039 | 0.8851 | 0.8026 | |
AlexNet | 0.1 | 0.9750 | 0.9746 | 0.9885 | 0.9883 |
0.15 | 0.9721 | 0.9707 | 0.9690 | 0.9669 | |
0.2 | 0.9575 | 0.9550 | 0.9389 | 0.9337 | |
0.25 | 0.8432 | 0.8139 | 0.8787 | 0.8595 | |
BiLSTM | 0.1 | 0.9730 | 0.9706 | 0.9905 | 0.9902 |
0.15 | 0.9604 | 0.9589 | 0.9698 | 0.9687 | |
0.2 | 0.9534 | 0.9512 | 0.9375 | 0.9318 | |
0.25 | 0.7045 | 0.6812 | 0.8394 | 0.8068 |
Bearing Code | Location of Damage | Characteristic of Damage | Extent of Damage | Sample Size |
---|---|---|---|---|
KA04 | Outer | single point | 1 | 250 |
KA15 | Outer | single point | 1 | 250 |
KA16 | Outer | single point | 2 | 250 |
KA22 | Outer | single point | 1 | 250 |
KA30 | Outer | distributed | 1 | 250 |
KB23 | Outer and inner | single point | 2 | 250 |
KB24 | Outer and inner | distributed | 3 | 250 |
KB27 | Outer and inner | distributed | 1 | 250 |
KI14 | Inner | single point | 1 | 250 |
KI16 | Inner | single point | 3 | 250 |
KI17 | Inner | single point | 1 | 250 |
KI18 | Inner | single point | 2 | 250 |
KI21 | Inner | single point | 1 | 250 |
Model | Noise Level | Average Precision | Average Recall | Diagnosis Accuracy |
---|---|---|---|---|
CA-DRSN | 0.1 | 0.9766 | 0.9759 | 97.8 ± 0.35 |
0.15 | 0.9665 | 0.9632 | 96.7 ± 0.52 | |
0.2 | 0.9481 | 0.9454 | 95.0 ± 0.86 | |
0.25 | 0.8995 | 0.8374 | 90.1 ± 1.06 | |
DRSN-LSTM | 0.1 | 0.9512 | 0.9463 | 90.9 ± 2.20 |
0.15 | 0.8962 | 0.8740 | 87.4 ± 1.90 | |
0.2 | 0.8804 | 0.8463 | 84.6 ± 2.69 | |
0.25 | 0.8410 | 0.7863 | 78.0 ± 5.80 | |
DRSN-ECA | 0.1 | 0.9649 | 0.9602 | 96.5 ± 0.53 |
0.15 | 0.9509 | 0.9417 | 93.9 ± 0.93 | |
0.2 | 0.9154 | 0.9094 | 90.7 ± 1.24 | |
0.25 | 0.8656 | 0.8192 | 88.5 ± 1.58 | |
DRSN-CW | 0.1 | 0.9354 | 0.9247 | 93.3 ± 1.63 |
0.15 | 0.8994 | 0.8773 | 89.7 ± 2.20 | |
0.2 | 0.8498 | 0.8235 | 85.9 ± 2.90 | |
0.25 | 0.8105 | 0.7067 | 78.9 ± 4.08 | |
ResNet18 | 0.1 | 0.9670 | 0.9602 | 95.5 ± 0.92 |
0.15 | 0.8985 | 0.8682 | 82.0 ± 6.54 | |
0.2 | 0.8291 | 0.7451 | 72.3 ± 8.26 | |
0.25 | 0.7815 | 0.6515 | 58.0 ± 6.44 | |
AlexNet | 0.1 | 0.7956 | 0.7789 | 77.7 ± 1.61 |
0.15 | 0.7293 | 0.6870 | 65.7 ± 1.76 | |
0.2 | - | - | - | |
0.25 | - | - | - | |
BiLSTM | 0.1 | 0.9279 | 0.9265 | 91.1 ± 0.53 |
0.15 | 0.6107 | 0.5411 | 62.7 ± 1.51 | |
0.2 | 0.5928 | 0.5742 | 57.0 ± 2.15 | |
0.25 | 0.5925 | 0.3856 | 43.2 ± 2.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Zhang, J.; Jiao, X.; Yu, P.; Zhang, B. Gearbox Fault Diagnosis Method in Noisy Environments Based on Deep Residual Shrinkage Networks. Sensors 2024, 24, 4633. https://doi.org/10.3390/s24144633
Cao J, Zhang J, Jiao X, Yu P, Zhang B. Gearbox Fault Diagnosis Method in Noisy Environments Based on Deep Residual Shrinkage Networks. Sensors. 2024; 24(14):4633. https://doi.org/10.3390/s24144633
Chicago/Turabian StyleCao, Jianhui, Jianjie Zhang, Xinze Jiao, Peibo Yu, and Baobao Zhang. 2024. "Gearbox Fault Diagnosis Method in Noisy Environments Based on Deep Residual Shrinkage Networks" Sensors 24, no. 14: 4633. https://doi.org/10.3390/s24144633
APA StyleCao, J., Zhang, J., Jiao, X., Yu, P., & Zhang, B. (2024). Gearbox Fault Diagnosis Method in Noisy Environments Based on Deep Residual Shrinkage Networks. Sensors, 24(14), 4633. https://doi.org/10.3390/s24144633