Research on In-Plane Thermal Conductivity Detection of Fuel Cell Bipolar Plates Based on Laser Thermography
<p>Schematic for heat conduction of a material in the in-plane direction.</p> "> Figure 2
<p>Surface temperature distribution of the sample under laser excitation.</p> "> Figure 3
<p>Thermal conductivity calculation flowchart via loop integral method.</p> "> Figure 4
<p>Thermal imaging of graphite material simulation model (<b>a</b>) Laser excitation surface. (<b>b</b>) Back surface.</p> "> Figure 5
<p>Schematic diagram of laser and test loop for graphite material.</p> "> Figure 6
<p>Thermal imaging of graphite bipolar plate simulation model (<b>a</b>) Laser excitation surface. (<b>b</b>) Back surface.</p> "> Figure 7
<p>Schematic diagram of laser and test loop for graphite bipolar plate.</p> "> Figure 8
<p>Diagram of the experimental device.</p> "> Figure 9
<p>Experimental test on the in-plane thermal conductivity of bipolar plate.</p> "> Figure 10
<p>Infrared thermal image of aluminum material.</p> "> Figure 11
<p>Photographic of graphite bipolar plate sample.</p> "> Figure 12
<p>Infrared thermal image of graphite bipolar plate.</p> ">
Abstract
:1. Introduction
2. Heat Conduction Model of Materials
2.1. Theoretical Analysis of Measurement Model of In-Plane Thermal Conductivity
- (1)
- The in-plane thermal conductivity of the material, surface heat transfer coefficient (encompassing convection and radiation), and the cross-sectional areas for thermal conduction remain unchanged.
- (2)
- The surface convection thermal resistance significantly surpasses the normal surface resistance, and the material’s temperature is deemed consistent across the section at a certain heat transfer distance from the point heat source.
- (1)
- The heat transferred in the in-plane direction of the sample is denoted as qin;
- (2)
- The heat loss caused by the exchange of heat between the surface of the sample and the surrounding environment is denoted as qsurf.
2.2. Estimation of Heat Loss and Analysis of Loop Radius Selection
2.3. Finite Element Simulation Analysis and Model Verification
3. Experimental Evaluation of In-Plane Thermal Conductivity of Sample
3.1. Experimental Schemes
3.2. Experimental Apparatus
4. Measurement Results and Data Analysis
4.1. Analysis of Experimental Results of Aluminum Materials
4.2. Analysis of Experimental Results of Graphite Bipolar Plate Products
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hua, Z.; Zheng, Z.; Pahon, E.; Péra, M.C.; Gao, F. A review on lifetime prediction of proton exchange membrane fuel cells system. J. Power Sources 2022, 529, 231256. [Google Scholar] [CrossRef]
- Tolj, I.; Penga, E.; Vukievi, D.; Barbir, F. Thermal management of edge-cooled 1 kW portable proton exchange membrane fuel cell stack. Appl. Energy 2019, 257, 114038. [Google Scholar] [CrossRef]
- Zamel, N.; Li, X.; Shen, J.; Becker, J.; Wiegmann, A. Estimating effective thermal conductivity in carbon paper diffusion media. Chem. Eng. Sci. 2010, 65, 3994–4006. [Google Scholar] [CrossRef]
- Burheim, O.; Vie, P.J.S.; Pharoah, J.G.; Kjelstrup, S. Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell. J. Power Sources 2010, 195, 249–256. [Google Scholar] [CrossRef]
- Tang, M.Q.; Luo, L.Y.; Chen, W.; Gan, L.; Kang, F.Y.; Du, H.D. Simulation of bipolar plates thermal conductivity for proton exchange membrane fuel cells. Carbon Tech. 2023, 5, 23–27. [Google Scholar]
- Khandelwal, M.; Mench, M.M. Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. J. Power Sources 2006, 161, 1106–1115. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, J.; Tai, S. Effects of repetitive freeze-thaw thermal gycles on the in-plane effective thermal conductivity of a gas diffusion layer in polymer electrolyte membrane fuel cells. J. Electrochem. Soc. 2021, 168, 064522. [Google Scholar] [CrossRef]
- Yablecki, J.; Hinebaugh, J.; Bazylak, A. Lattice Boltzmann modeling of the effective thermal conductivity of an anisotropic gas diffusion layer in a polymer electrolyte membrane fuel cell with residual water. ECS Trans. 2013, 50, 221. [Google Scholar] [CrossRef]
- Erfantalab, S.; Parish, G.; Keating, A. Determination of thermal conductivity, thermal diffusivity and specific heat capacity of porous silicon thin films using the 3ω method. Int. J. Heat Mass Transf. 2022, 184, 122346. [Google Scholar] [CrossRef]
- Andisheh-Tadbir, M.; Kjeang, E.; Bahrami, M. Thermal conductivity of microporous layers: Analytical modeling and experimentavalidation. J. Power Sources 2015, 296, 344–351. [Google Scholar] [CrossRef]
- Bock, R.; Shum, A.; Khoza, T.; Seland, F.; Hussain, N.; Zenyuk, I.V.; Burheim, O.S. Experimental Study of Thermal Conductivity and Compression Measurements of the GDL-MPL Interfacial Composite Region. ECS Trans. 2016, 75, 189–199. [Google Scholar] [CrossRef]
- Chen, L.; Nie, Y.; Wang, S.; Tao, W.Q. The experimental study on thermal conductivity of composite proton exchange membrane. In Proceedings of the 21st International Conference on Composite Materials, Xi’an, China, 20–25 August 2017. [Google Scholar]
- Cifuentes, Á.; Mendioroz, A.; Salazar, A. Simultaneous measurements of the thermal diffusivity and conductivity of thermal insulators using lock-in infrared thermography. Int. J. Therm. Sci. 2017, 121, 305–312. [Google Scholar] [CrossRef]
- Bison, P.; Grinzato, E. Fast estimate of solid materials thermal conductivity by IR thermography. Quant. InfraRed Thermogr. J. 2010, 7, 17–34. [Google Scholar] [CrossRef]
- Dell’Avvocato, G.; Palumbo, D.; Galietti, U. A non-destructive thermographic procedure for the evaluation of heat treatment in Usibor® 1500 through the thermal diffusivity measurement. NDT E Int. 2023, 133, 102748. [Google Scholar] [CrossRef]
- Dell’Avvocato, G.; Palumbo, D.; Palmieri, M.E.; Galietti, U. Evaluation of Effectiveness of Heat Treatments in Boron Steel by Laser Thermography. Eng. Proc. 2021, 8, 8. [Google Scholar] [CrossRef]
- Bison, P.; Cernuschi, F.; Capelli, S. A thermographic technique for the simultaneous estimation of in-plane and in-depth thermal diffusivities of TBCs. Surf. Coat. Technol. 2011, 205, 3128–3133. [Google Scholar] [CrossRef]
- Pech-May, N.W.; Mendioroz, A.; Salazar, A. Simultaneous measurement of the in-plane and in-depth thermal diffusivity of solids using pulsed infrared thermography with focused illumination. NDT E Int. 2016, 77, 28–34. [Google Scholar] [CrossRef]
- Li, Y.; Hu, W.; Zheng, Y.; Zhang, Y.; Zhang, Z.; Huang, B.; Fei, Z.; Xiang, X. Rapid and nondestructive testing for simultaneous measurement of thermal conductivity and thermal diffusivity of flat materials based on thermography. Infrared Phys. Technol. 2023, 135, 104964. [Google Scholar] [CrossRef]
- ASTM C177-04; Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus. ASTM International: West Conshohocken, PA, USA, 2010.
- Sadeghifar, H.; Djilali, N.; Bahrami, M. Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: Effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load. J. Power Sources 2015, 273, 96–104. [Google Scholar] [CrossRef]
- Forte, G.; Ronca, S. Laser-flash in-plane thermal analysis: The case of oriented UHMWPE. In Proceedings of the International Conference on Times of Polymers TOP and Composites, Naples, Italy, 19–23 June 2016. [Google Scholar]
- Sun, J.P.; Liu, J.Q. Investigation on the influence of sample thickness on the measurement result of thermal diffusivity. Acta Metrol. Sin. 2007, 28, 86–89. [Google Scholar]
- Cai, A.; Yang, L.-P.; Chen, J.-P. Thermal conductivity of anodic alumina Film at (220 to 480) K by laser flash technique. J. Chem. Eng. Data 2010, 55, 4840–4843. [Google Scholar] [CrossRef]
- Ruoho, M.; Valset, K.; Finstad, T.; Tittonen, I. Measurement of thin film thermal conductivity using the laser flash method. Nanotechnology 2015, 26, 195706. [Google Scholar] [CrossRef]
- Forte, G.; Ronca, S. Laser-flash in-plane thermal analysis: The case of oriented UHMWPE. In Proceedings of the American Institute of Physics Conference Series; AIP Publishing LLC.: Honolulu, HI, USA, 2017; Volume 1736, p. 020171. [Google Scholar]
- Sadeghi, E.; Djilali, N.; Bahrami, M. A novel approach to determine the in-plane thermal conductivity of gas diffusion layers in proton exchange membrane fuel cells. J. Power Sources 2011, 196, 3565–3571. [Google Scholar] [CrossRef]
- Hou, D.X.; Chen, Y.; Ye, S.L. Measurement of in-plane thermal conductivity of glued graphite film based on thermal imaging. CIESC J. 2019, 70, 76–84. [Google Scholar]
- Malinari, S.; Elkholy, A. Comparison of the new plane source method to the step wise transient method for thermal conductivity and diffusivity measurement. Int. J. Therm. Sci. 2021, 164, 106901. [Google Scholar] [CrossRef]
- Koniorczyk, P.; Zmywaczyk, J.; Wielgosz, M. Step-wise transient method for analysis of thermal properties of materials Part 1. Theoretical considerations. Thermochim. Acta 2009, 682, 178429. [Google Scholar] [CrossRef]
- Ferreira-Oliveira, J.R.; da Silva, P.C.S.; de Lucena, L.R.R.; dos Reis, R.P.B.; de Araújo, C.J.; Filho, C.R.B. Thermal diffusivity measurement of a NiTi shape memory alloy using a periodic temperature field. Int. J. Thermophys. 2021, 42, 147. [Google Scholar] [CrossRef]
- Yang, S.M.; Tao, W.Q. Heat Transfer; Higher Education Press: Beijing, China, 2019. [Google Scholar]
- Mathew, K.J. Guide to Expression of Uncertainty in Measurements; Los Alamos National Laboratory (LANL): Los Alamos, NM, USA, 2017. [CrossRef]
Description | Graphite Material | Graphite Bipolar Plate |
---|---|---|
In-thermal conductivity | 330 W/(m·K) | |
Thermal diffusivity | 2.1 × 10−4 m2/s | |
Density | 2026 kg/m3 | |
Specific heat | 775 J/(kg·K) |
Material | Simulation Value W/(m °C) | Reference Value W/(m·°C) | Deviation % |
---|---|---|---|
Graphite material | 335.8 | 330.0 | 1.8 |
Graphite bipolar plate | 334.8 | 330.0 | 1.5 |
Parameter | Data |
---|---|
Power stability | 5% |
Center wavelength | 915 ± 10 nm |
Beam divergence angle | 440 mrad |
Beam diameter of light outlet | 5 mm ± 1 mm |
Parameter | Data |
---|---|
FOV (Angle of view)/Focal length | 15° × 11.5°/25 mm |
Spatial resolution (IFOV) | 0.68 mrad |
Detector pixel spacing | 17 μm |
Measuring range | −20 to 150 °C |
Thermal sensitivity | <60 mK |
Group | Measured Value of Thermal Conductivity/W(m·K)−1 |
---|---|
1 | 176.12 |
2 | 168.37 |
3 | 165.64 |
4 | 166.97 |
5 | 171.30 |
6 | 172.64 |
7 | 170.04 |
8 | 169.00 |
9 | 168.71 |
10 | 166.68 |
Average value | 169.55 |
Deviation | 0.3% |
Standard deviation | 3.14 |
Relative standard deviation | 1.9% |
Group | Measured Value of Thermal Conductivity/W(m·K)−1 |
---|---|
1 | 226.43 |
2 | 227.27 |
3 | 217.43 |
4 | 228.00 |
5 | 224.17 |
6 | 218.93 |
7 | 227.21 |
8 | 235.67 |
9 | 229.19 |
10 | 224.58 |
Average value | 225.89 |
Deviation | 4.3% |
Standard deviation | 5.16 |
Relative standard deviation | 2.3% |
Group | Measured Value of Thermal Conductivity/W(m·K)−1 |
---|---|
1 | 240.05 |
2 | 222.52 |
3 | 226.18 |
4 | 235.20 |
5 | 233.95 |
6 | 237.24 |
7 | 236.05 |
8 | 227.02 |
9 | 223.89 |
10 | 227.65 |
Average value | 230.98 |
Deviation | 2.1% |
Standard deviation | 6.20 |
Relative standard deviation | 2.7% |
Group | Measured Value of Thermal Conductivity/W(m·K)−1 |
---|---|
1 | 309.39 |
2 | 312.68 |
3 | 305.03 |
4 | 313.79 |
5 | 313.99 |
6 | 312.18 |
7 | 313.91 |
8 | 313.36 |
9 | 311.45 |
10 | 314.02 |
Average value | 311.98 |
Standard deviation | 2.85 |
Relative standard deviation | 0.9% |
Group | Measured Value of Thermal Conductivity/W(m·K)−1 |
---|---|
1 | 327.11 |
2 | 323.72 |
3 | 310.07 |
4 | 303.42 |
5 | 306.53 |
6 | 301.43 |
7 | 317.26 |
8 | 311.09 |
9 | 316.23 |
10 | 327.25 |
Average value | 314.41 |
Standard deviation | 9.46 |
Relative standard deviation | 3.0% |
Group | Measured Value of Thermal Conductivity/W(m·K)−1 |
---|---|
1 | 327.63 |
2 | 323.74 |
3 | 316.77 |
4 | 330.06 |
5 | 321.42 |
6 | 329.40 |
7 | 318.09 |
8 | 314.39 |
9 | 333.42 |
10 | 319.88 |
Average value | 323.48 |
Standard deviation | 6.40 |
Relative standard deviation | 2.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Hou, D.; Li, F.; Huang, L.; Huang, Z.; Zhang, Y.; Zheng, Y.; Song, L.; Huang, B.; Fei, Z.; et al. Research on In-Plane Thermal Conductivity Detection of Fuel Cell Bipolar Plates Based on Laser Thermography. Sensors 2024, 24, 4206. https://doi.org/10.3390/s24134206
Li Y, Hou D, Li F, Huang L, Huang Z, Zhang Y, Zheng Y, Song L, Huang B, Fei Z, et al. Research on In-Plane Thermal Conductivity Detection of Fuel Cell Bipolar Plates Based on Laser Thermography. Sensors. 2024; 24(13):4206. https://doi.org/10.3390/s24134206
Chicago/Turabian StyleLi, Yang, Dexin Hou, Feng Li, Lianghui Huang, Zhihua Huang, Yuehuan Zhang, Yongping Zheng, Leipeng Song, Bingqiang Huang, Zhengshun Fei, and et al. 2024. "Research on In-Plane Thermal Conductivity Detection of Fuel Cell Bipolar Plates Based on Laser Thermography" Sensors 24, no. 13: 4206. https://doi.org/10.3390/s24134206
APA StyleLi, Y., Hou, D., Li, F., Huang, L., Huang, Z., Zhang, Y., Zheng, Y., Song, L., Huang, B., Fei, Z., & Xiang, X. (2024). Research on In-Plane Thermal Conductivity Detection of Fuel Cell Bipolar Plates Based on Laser Thermography. Sensors, 24(13), 4206. https://doi.org/10.3390/s24134206