PMUT-Based System for Continuous Monitoring of Bolted Joints Preload
<p>Description of the PMUT microfabrication process: creation of the silicon plate (<b>a</b>); deposition and patterning of the piezoelectric stack (<b>b</b>), isolation layer (<b>c</b>), and routing metal (<b>d</b>); device passivation and interconnection pads opening (<b>e</b>); substrate thinning and etching of the cavities (<b>f</b>).</p> "> Figure 2
<p>Layout of the 12-element 2D PMUT array (<b>a</b>) and fabricated die (<b>b</b>).</p> "> Figure 3
<p>Schematic diagram of the PMUT packaging approach (<b>a</b>). PMUT array bonded to the rigid flex PCB (<b>b</b>). PMUT assembly permanently attached (<b>c</b>) and magnetically pressed (<b>d</b>) onto a steel block.</p> "> Figure 4
<p>(<b>a</b>,<b>b</b>) Electrical impedance measurements of the 3 central array elements connected in parallel. The first 3 thickness modes resonance frequencies of the front encapsulation layer are 0.91 MHz, 1.56 MHz, and 2.20 MHz.</p> "> Figure 5
<p>Mesh applied to the model and frames of the propagation of acoustic waves inside the bolt: (<b>a</b>) mesh of the unthreaded case, (<b>b</b>) mesh of the threaded case, (<b>c</b>) velocity map at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>3.20</mn> </mrow> </semantics></math> µs, and (<b>d</b>) velocity map at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>11.0</mn> </mrow> </semantics></math> µs.</p> "> Figure 6
<p>(<b>a</b>) Experimental setup comprising Control board, PMUT board, reference load cell, and bolted joint; (<b>b</b>) TX-RX connection of PMUT elements.</p> "> Figure 7
<p>Transducer positioned on the head of the bolt with low-reflecting boundary around the shank: (<b>a</b>) velocity map a <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>6.7</mn> </mrow> </semantics></math> µs; (<b>b</b>) time-domain velocity signal at the receiver.</p> "> Figure 8
<p>Transducer positioned on the tip of the bolt with low-reflecting boundary around the shank: (<b>a</b>) velocity map a <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>6.7</mn> </mrow> </semantics></math> µs; (<b>b</b>) time-domain velocity signal at the receiver.</p> "> Figure 9
<p>Transducer positioned on the bolt tip with reflecting boundary around the shank: (<b>a</b>) velocity map a <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>3.1</mn> </mrow> </semantics></math> µs; (<b>b</b>) velocity map a <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>8.4</mn> </mrow> </semantics></math> µs; (<b>c</b>) time-domain velocity signal at the receiver.</p> "> Figure 10
<p>Transducer positioned on the tip and of the bolt, with reflecting boundary around the shank and narrow transducer bandwidth: (<b>a</b>) velocity map a <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>6.7</mn> </mrow> </semantics></math> µs; (<b>b</b>) time-domain velocity signal at the receiver.</p> "> Figure 11
<p>Transducer positioned on the tip and of the bolt, with threads: (<b>a</b>) velocity map a <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>6.7</mn> </mrow> </semantics></math> µs; (<b>b</b>) time-domain velocity signal at the receiver.</p> "> Figure 12
<p>High -frequency transducer positioned on the tip of the bolt: (<b>a</b>) velocity map a <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>6.7</mn> </mrow> </semantics></math> µs; (<b>b</b>) time-domain velocity signal at the receiver.</p> "> Figure 13
<p>Experimental measurements; bars represent the standard deviation of repeated measurements. (<b>a</b>) Raw data: measured TOF vs. reference force measured with the load cell. (<b>b</b>) Conversion of raw data to CTOF vs. stress, and comparison with theoretical values. (<b>c</b>) Derived change in speed of sound due to acousto-elastic effect.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. PMUT Design and Microfabrication
2.2. PMUT Assembly Process
2.3. Simulation of the Propagation of Acoustic Waves in the Bolt
- The transducer was moved from head to tip of the bolt to support the design of the measurement setup by choosing the best transducer’s position in terms of output signal quality;
- The shank boundary was then set to reflective to investigate the different types of waves propagating inside the bolt;
- The transducer bandwidth was narrowed to better represent the physical device and evaluate the effect on the propagating waves;
- The threads were introduced in the bolt model to evaluate to what extent their presence affects the output signal;
- The operating frequency was increased from 1.6 MHz to 7 MHz to investigate whether increasing the frequency could yield appreciable improvements in signal reading and processing.
2.4. System Architecture
2.5. Experimental Setup
2.6. Measurement Process
3. Results
3.1. Simulations
Figure 7 | Figure 8 | Figure 9 | Figure 10 | Figure 11 | Figure 12 | |
---|---|---|---|---|---|---|
Positioning | HEAD | TIP | TIP | TIP | TIP | TIP |
Shank boundary | Low-reflecting | Low-reflecting | Free | Free | Free | Free |
Transducer bandwidth | Wide | Wide | Wide | Narrow | Wide | Wide |
Threads | NO | NO | NO | NO | YES | NO |
Frequency | 1.6 MHz | 1.6 MHz | 1.6 MHz | 1.6 MHz | 1.6 MHz | 7 MHz |
3.1.1. Position of the Transducer
3.1.2. Analysis of Wave Propagation
3.1.3. Transducer Bandwidth
3.1.4. Presence of Threads in the Bolt
3.1.5. High Frequency Transducers
3.2. Experimental Measurements
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Analog-to-Digital Converter |
ASIC | Application-Specific Integrated Circuit |
AFE | Analog Front-End |
CMOS | Complementary Metal-Oxide-Semiconductor |
CTOF | Change in Time-of-Flight |
FEM | Finite Element Method |
MCU | Microcontroller Unit |
MEMS | Micro-Electro-Mechanical Systems |
NDT | Non-Destructive Testing |
PMUT | Piezoelectric Micromachined Ultrasonic Transducer |
RX | Receiver |
SNR | Signal-to-Noise Ratio |
TF | Transfer Function |
TOF | Time of Flight |
TX | Transmitter |
UT | Ultrasonic Testing |
References
- Barrett, R. Fastener Design Manual; University Press of the Pacific: Forest Grove, OR, USA, 2005. [Google Scholar]
- Bickford, J. An Introduction to the Design and Behavior of Bolted Joints, 3rd ed.; Revised and Expanded; Mechanical Engineering; Taylor & Francis: Abingdon, UK, 1995. [Google Scholar]
- Oberg, E.; Jones, F.; Horton, H.; Ryffel, H. Machinery’s Handbook; Industrial Press, Inc.: New York, NY, USA, 2004. [Google Scholar]
- Lyndon, B.; Center, J.S. Criteria for Preloaded Bolts; Technical Report; NASA: Washington, DC, USA, 1998. [Google Scholar]
- Fukuoka, T.; Takaki, T. Mechanical behaviors of bolted joint during tightening using torque control. JSME Int. J. Ser. Solid Mech. Mater. Eng. 1998, 41, 185–191. [Google Scholar] [CrossRef]
- Nikravesh, S.M.Y.; Goudarzi, M. A review paper on looseness detection methods in bolted structures. Lat. Am. J. Solids Struct. 2017, 14, 2153–2176. [Google Scholar] [CrossRef]
- Jhang, K.Y.; Quan, H.H.; Ha, J.; Kim, N.Y. Estimation of clamping force in high-tension bolts through ultrasonic velocity measurement. Ultrasonics 2006, 44, e1339–e1342. [Google Scholar] [CrossRef] [PubMed]
- Koshti, A.M. Ultrasonic measurement and monitoring of loads in bolts used in structural joints. In Proceedings of the Structural Health Monitoring and Inspection of Advanced Materials, Aerospace, and Civil Infrastructure 2015, San Diego, CA, USA, 9–12 March 2015; Shull, P.J., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2015; Volume 9437, p. 94370T. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, E.; Chen, Y.; Wang, X.; Sun, C.; Tan, J. Measurement of fastening force using dry-coupled ultrasonic waves. Ultrasonics 2020, 108, 106178. [Google Scholar] [CrossRef] [PubMed]
- Villa, M.; Ornaghi, D.; Boniolo, I.E. A Sensorized Clamping Element. Patent Application WO2022/084813A1, 22 October 2021. [Google Scholar]
- Tokbo. Tokbo S.r.l. Website. Available online: https://tokbo.it (accessed on 2 May 2024).
- Jung, J.; Lee, W.; Kang, W.; Shin, E.; Ryu, J.; Choi, H. Review of piezoelectric micromachined ultrasonic transducers and their applications. J. Micromech. Microeng. 2017, 27, 113001. [Google Scholar] [CrossRef]
- Przybyla, R.J.; Shelton, S.E.; Lee, C.; Eovino, B.E.; Chau, Q.; Kline, M.H.; Izyumin, O.I.; Horsley, D.A. Mass Produced Micromachined Ultrasonic Time-Of-Flight Sensors Operating in Different Frequency Bands. In Proceedings of the 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS), Munich, Germany, 15–19 January 2023; pp. 961–964. [Google Scholar] [CrossRef]
- Gan, T.; Hutchins, D.; Billson, D.; Schindel, D. The use of broadband acoustic transducers and pulse-compression techniques for air-coupled ultrasonic imaging. Ultrasonics 2001, 39, 181–194. [Google Scholar] [CrossRef]
- Savoia, A.S.; Matera, R.; Quaglia, F.; Ricci, S. A feasibility study of a PMUT-based wearable sensor for the automatic monitoring of carotid artery parameters. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 1–16 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Ji, W.; Liu, L.; Xing, Z.; Zhang, D.; Wang, Y.; Chen, L.; Chen, Y.; Sun, X.; Du, Y. Total-Focus Ultrasonic Imaging of Defects in Solids Using a PZT Piezoelectric Micromachined Ultrasonic Transducer Array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 1380–1386. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, O.M.O.; Massimino, G.; Savoia, A.S.; Quaglia, F.; Corigliano, A. Efficient Modeling and Simulation of PMUT Arrays in Various Ambients. Micromachines 2022, 13, 962. [Google Scholar] [CrossRef]
- Abdalla, O.M.O.; Massimino, G.; Quaglia, F.; Passoni, M.; Corigliano, A. Pmuts arrays for structural health monitoring of bolted-joints. Micromachines 2023, 14, 311. [Google Scholar] [CrossRef] [PubMed]
- Savoia, A.S.; Giusti, D.; Prelini, C.; Chang, P.; Leotti, A.; Lee, J.; Koh, Y.; Ferrera, M. Performance Analysis of Wideband PMUTs: A Comparative Study Between Sol-Gel PZT, PVD PZT, and 15% ScAlN-Based Arrays Through Experimental Evaluation. In Proceedings of the 2023 IEEE International Ultrasonics Symposium (IUS), Montreal, QC, Canada, 3–8 September 2023; pp. 1–4. [Google Scholar]
- Picco, A.; Ferrarini, P.; Pedrini, C.; Cimmino, A.; Vinciguerra, L.; Vimercati, M.; Barulli, A.; Lazzari, C.M. Piezoelectric Materials for MEMS. In Silicon Sensors and Actuators: The Feynman Roadmap; Vigna, B., Ferrari, P., Villa, F.F., Lasalandra, E., Zerbini, S., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 293–344. [Google Scholar] [CrossRef]
- Savoia, A.S.; Giusti, D.; Prelini, C.; Saccher, M.; Rashidi, A.; Leotti, A.; Giagka, V.; Ferrera, M. Evaluating the Influence of PMUT Mechanical Support Properties on Power Conversion Efficiency in Ultrasonically Powered Implants. In Proceedings of the 2023 IEEE International Ultrasonics Symposium (IUS), Montreal, QC, Canada, 3–8 September 2023; pp. 1–4. [Google Scholar]
- COMSOL. Introduction to the Elastic Waves, Time Explicit Interface. Available online: https://www.comsol.com/blogs/introduction-to-the-elastic-waves-time-explicit-interface (accessed on 21 June 2024).
- Amar, A.B.; Cao, H.; Kouki, A.B. Modeling and process design optimization of a piezoelectric micromachined ultrasonic transducers (PMUT) using lumped elements parameters. Microsyst. Technol. 2017, 23, 4659–4669. [Google Scholar] [CrossRef]
- Savoia, A.S.; Mazzanti, A.; Ottaviani, S.; Novaresi, L.; Malcovati, P.; Ghisu, D.U.; Bonizzoni, E.; Terenzi, M.; Quaglia, F. A 4-channel Fully Integrated Ultrasound Imaging Front-End Transceiver for 1-D PMUT Arrays. In Proceedings of the 2022 IEEE International Ultrasonics Symposium (IUS), Venice, Italy, 10–13 October 2022; pp. 1–4. [Google Scholar]
- Novaresi, L.; Malcovati, P.; Mazzanti, A.; Bonizzoni, E.; Terenzi, M.; Ottaviani, S.; Ghisu, D.U.; Quaglia, F.; Savoia, A.S. A PMUT Transceiver Front-End with 100-V TX Driver and Low-Noise Voltage Amplifier in BCD-SOI Technology. In Proceedings of the ESSCIRC 2022—IEEE 48th European Solid State Circuits Conference (ESSCIRC), Milan, Italy, 19–22 September 2022; pp. 221–224. [Google Scholar]
- Chen, C.; Pertijs, M.A.P. Integrated Transceivers for Emerging Medical Ultrasound Imaging Devices: A Review. IEEE Open J. Solid-State Circuits Soc. 2021, 1, 104–114. [Google Scholar] [CrossRef]
- Pärlstrand, A. Ultrasonic measurement and analysis of screw elongation. MSc. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2018. [Google Scholar]
- Oralkan, O.; Ergun, A.S.; Cheng, C.H.; Johnson, J.A.; Karaman, M.; Lee, T.H.; Khuri-Yakub, B.T. Volumetric ultrasound imaging using 2-D CMUT arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 1581–1594. [Google Scholar] [CrossRef] [PubMed]
- Oud, T. Elastic Wave Simulation for Buffer Rod Tapering. Bachelor’s Thesis, University of Technology Delft, Delft, The Netherlands, 2017. [Google Scholar]
- Froeling, H.A.J. Causes of Spurious Echoes by Ultrasonic Wave Simulation. BSc. Thesis, University of Technology Delft, Delft, The Netherlands, 2017. [Google Scholar]
- Ono, Y.; Jen, C.K.; Moisan, J.F.; Su, C.Y. Aluminum buffer rods for ultrasonic monitoring at elevated temperatures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 1044–1049. [Google Scholar] [CrossRef]
- Walton, K.; Skliar, M. Echogenic Segmentation for Ultrasonic Measurements of Spatially Distributed Properties in Solids. In Proceedings of the 2023 IEEE International Ultrasonics Symposium (IUS), Montreal, QC, Canada, 3–8 September 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Savioja, L.; Svensson, U.P. Overview of geometrical room acoustic modeling techniques. J. Acoust. Soc. Am. 2015, 138, 708–730. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fei, C.; Lin, D.; Gao, P.; Zhang, J.; Quan, Y.; Chen, D.; Li, D.; Yang, Y. A review of ultrahigh frequency ultrasonic transducers. Front. Mater. 2022, 8, 733358. [Google Scholar] [CrossRef]
- Singh, R. 6—Ultrasonic testing. In Applied Welding Engineering, 3rd ed.; Singh, R., Ed.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 347–358. [Google Scholar] [CrossRef]
- Kim, Y.H.; Choi, J.W. Radiation, Scattering, and Diffraction. In Sound Visualization and Manipulation; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; Chapter 2; pp. 49–97. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanvito, S.; Passoni, M.; Giusti, D.; Terenzi, M.; Prelini, C.; La Mura, M.; Savoia, A.S. PMUT-Based System for Continuous Monitoring of Bolted Joints Preload. Sensors 2024, 24, 4150. https://doi.org/10.3390/s24134150
Sanvito S, Passoni M, Giusti D, Terenzi M, Prelini C, La Mura M, Savoia AS. PMUT-Based System for Continuous Monitoring of Bolted Joints Preload. Sensors. 2024; 24(13):4150. https://doi.org/10.3390/s24134150
Chicago/Turabian StyleSanvito, Stefano, Marco Passoni, Domenico Giusti, Marco Terenzi, Carlo Prelini, Monica La Mura, and Alessandro Stuart Savoia. 2024. "PMUT-Based System for Continuous Monitoring of Bolted Joints Preload" Sensors 24, no. 13: 4150. https://doi.org/10.3390/s24134150
APA StyleSanvito, S., Passoni, M., Giusti, D., Terenzi, M., Prelini, C., La Mura, M., & Savoia, A. S. (2024). PMUT-Based System for Continuous Monitoring of Bolted Joints Preload. Sensors, 24(13), 4150. https://doi.org/10.3390/s24134150