High-Resolution and Large-Dynamic Range Fiber-Optic Sensors Based on Dual-Mode Direct Spectrum Interrogation Method
<p>(<b>a</b>) Schematic of the proposed FPI sensor, the iridescent arrows represent the incident and reflected light, respectively; (<b>b</b>) The simulated reflection spectra of three FPI sensors with CFBG reflection <span class="html-italic">R</span><sub>0</sub> of 0.2, 0.4, and 0.8 (the cavity length <span class="html-italic">L</span><sub>0</sub> is assumed to be 10 mm); (<b>c</b>) The simulated reflection spectra of three FPI sensors with cavity length <span class="html-italic">L</span><sub>0</sub> of 5 mm, 10 mm, and 15 mm (the CFBG reflection <span class="html-italic">R</span><sub>0</sub> is assumed to be 0.2 mm).</p> "> Figure 2
<p>(<b>a</b>) Schematic diagram of the CFBG preparation system, including a UV laser operating at 266 nm, a chirped phase mask, and electronic scanning stages; (<b>b</b>) Reflection (blue line) and transmission (orange line) spectra of the prepared FPI<sub>1</sub> sensor with a cavity length <span class="html-italic">L</span><sub>0</sub> of ~6.9 mm.</p> "> Figure 3
<p>(<b>a</b>) The resonant dip evolution of FPI<sub>1</sub> with temperature increasing from 35 to 40.5 °C in steps of 0.5 °C; (<b>b</b>) The wavelength of the tracked resonant dip versus the temperature.</p> "> Figure 4
<p>(<b>a</b>) The reflection spectrum and (<b>b</b>) spectral envelope evolutions of FPI<sub>1</sub> with temperature increasing from 30 °C to 130 °C; (<b>c</b>) The center wavelength of the reflection spectral envelope versus the temperature; (<b>d</b>) The reflection spectrum and (<b>e</b>) spectral envelope evolutions of FPI<sub>1</sub> with temperature decreasing from 130 °C to 30 °C; (<b>f</b>) The center wavelength of the reflection spectral envelope versus the temperature.</p> "> Figure 5
<p>(<b>a</b>) The resonant dip evolution of FPI<sub>1</sub> with tensile strain increasing from 0 με to 70 με; (<b>b</b>) The wavelength shifts of the tracked resonant dip versus applied strain.</p> "> Figure 6
<p>(<b>a</b>) The reflection spectrum and (<b>b</b>) spectral envelope evolutions of FPI<sub>1</sub> with strain increasing from 0 με to 1000 με; (<b>c</b>) The center wavelength of the reflection spectral envelope shifts versus applied strain; (<b>d</b>) The reflection spectrum and (<b>e</b>) spectral envelope evolutions of FPI<sub>1</sub> with strain decreasing from 1000 με to 0 με; (<b>f</b>) The center wavelength shifts versus applied strain.</p> "> Figure 7
<p>(<b>a</b>) Reflection (blue line) and transmission (orange line) spectra of the FPI<sub>2</sub> with a cavity length of ~15.1 mm, the red lines represent the envelop of the spectrum; (<b>b</b>) Enlarged view of the reflection spectrum, where the bandwidth <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>λ</mi> </mrow> </semantics></math> and FSR are ~0.023 and ~0.055 nm, respectively.</p> "> Figure 8
<p>(<b>a</b>) The resonant dip evolution of FPI<sub>2</sub> with temperature increasing from 36 °C to 37.4 °C (temperature of most living bodies); (<b>b</b>) The wavelength of the tracked resonant dip versus the temperature.</p> ">
Abstract
:1. Introduction
2. Principle and Sensor Design
3. Sensor Fabrication
4. Sensing Performance and Discussion
4.1. High-Resolution and Large-Dynamic Range Temperature Sensing
4.2. High Resolution and Large Dynamic Range Strain Sensing
4.3. Performance Improvement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rao, Y.J.; Deng, M.; Zhu, T.; Li, H. In-line Fabry–Perot etalons based on hollow-core photonic bandgap fibers for high-temperature applications. J. Lightwave Technol. 2009, 27, 4360–4365. [Google Scholar]
- Bae, H.; Yu, M. Miniature Fabry–Perot pressure sensor created by using UV-molding process with an optical fiber-based mold. Opt. Express 2012, 20, 14573–14583. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.L.; Wang, M.; Yang, C.D.; Wang, T.T. Miniature fiber Fabry-Perot sensors based on fusion splicing. Optoelectron. Lett. 2013, 9, 85–88. [Google Scholar] [CrossRef]
- Fu, X.H.; Xie, H.Y.; Wang, F.; Jiang, P.; Fu, G.W.; Bi, W.H. Miniature Fabry-Perot interferometric sensor for temperature measurement based on photonic crystal fiber. Optoelectron. Lett. 2015, 11, 382–385. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.Y.; Zhou, M.; He, J.; Liao, C.R.; Wang, Y.P. Recent advance in hollow-core fiber high-temperature and high-pressure sensing technology [Invited]. Chin. Opt. Lett. 2021, 19, 070601. [Google Scholar] [CrossRef]
- White, I.M.; Fan, X.D. On the performance quantification of resonant refractive index sensors. Opt. Express 2008, 16, 1020–1028. [Google Scholar] [CrossRef]
- Zhang, Z.; He, J.; Dong, Q.; Bai, Z.Y.; Liao, C.R.; Wang, Y.; Liu, S.; Guo, K.K.; Wang, Y.P. Diaphragm-free gas-pressure sensor probe based on hollow-core photonic bandgap fiber. Opt. Lett. 2018, 43, 3017–3020. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.J. In-fibre Bragg grating sensors. Meas. Sci. Technol. 1997, 8, 355–375. [Google Scholar] [CrossRef]
- Zhang, B.W.; Kahrizi, M. High-temperature resistance fiber Bragg grating temperature sensor fabrication. IEEE Sensors J. 2007, 7, 586–591. [Google Scholar] [CrossRef]
- Guo, K.K.; He, J.; Cao, S.Q.; Hou, M.X.; Zhang, Z.; Xu, G.X.; Wang, Y.P. Beat frequency tuning in dual-polarization distributed feedback fiber laser using side polishing technique. Opt. Express 2018, 26, 34699–34710. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.C.; Zhang, C.Z.; He, J.; Lin, Y.C.; Jin, W.; Liao, C.R.; Wang, Y.; Wang, Y.P. Bragg gratings in suspended-core photonic microcells for high-temperature applications. J. Lightwave Technol. 2018, 36, 2920–2924. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, Z.; Liao, C.R.; Wang, Y.; Xu, L.; He, J.; Wang, C.; Li, Z.Y.; Yang, T.H.; Wang, Y.P. Taper embedded phase-shifted fiber Bragg grating fabricated by femtosecond laser line-by-line inscription. IEEE Photon. J. 2017, 9, 7500208. [Google Scholar] [CrossRef]
- Yulianti, I.; Supa At, A.S.M.; Idrus, S.M.; Anwar, M.R.S. Design of fiber Bragg grating-based Fabry–Perot sensor for simultaneous measurement of humidity and temperature. Optik 2013, 124, 3919–3923. [Google Scholar] [CrossRef]
- Wang, K.; Wang, B.; Yan, B.; Sang, X.Z.; Yuan, J.H.; Peng, G.D. Simultaneous measurement of absolute strain and differential strain based on fiber Bragg grating Fabry-Perot sensor. Opt. Commun. 2013, 307, 101–105. [Google Scholar] [CrossRef]
- Ismail, N.; Hafizi, Z.M.; Ooi, C.W.; Zaini, M.K.A.B.; Nizwan, C.K.E.; Lim, K.S.; Ahmad, H. Fiber Bragg grating-based Fabry-Perot interferometer sensor for damage detection on thin aluminum plate. IEEE Sensors J. 2020, 20, 3564–3571. [Google Scholar] [CrossRef]
- Liu, G.; Han, M.; Hou, W. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity. Opt. Express 2015, 23, 7237–7247. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ji, L.T.; Li, G.Q.; Su, J.; Wu, C. High-resolution and large-dynamic-range temperature sensor using fiber Bragg grating Fabry-Pérot cavity. Opt. Express 2021, 29, 18523–18529. [Google Scholar] [CrossRef]
- Erdogan, T. Fiber grating spectra. J. Lightwave Technol. 1997, 15, 1277–1294. [Google Scholar] [CrossRef]
- Amnon Yariv, P.Y. Photonics: Optical Electronics in Modern Communications, 6th ed.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Zhou, J.T.; Guo, K.K.; He, J.; Hou, M.X.; Zhang, Z.; Liao, C.R.; Wang, Y.; Xu, G.X.; Wang, Y.P. Novel fabrication technique for phase-shifted fiber Bragg gratings using a variable-velocity scanning beam and a shielded phase mask. Opt. Express 2018, 26, 13311–13321. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, M.; Wang, C.; Wang, Y.Y.; Guo, X.Y.; Zhou, C.T.; Ruan, S.C. Temperature-immune Fabry-Perot cavity sensor based on an opened hollow-core anti-resonant fiber. Opt. Express 2023, 31, 5483–5491. [Google Scholar] [CrossRef]
- Yin, G.L.; Wang, Y.P.; Liao, C.R.; Liu, Y.J.; Liu, S.; Wang, Q.; Yang, K.M.; Tang, J.; Zhong, X.Y. Simultaneous refractive index and temperature measurement with LPFG and liquid-filled PCF. IEEE Photonic. Tech. Lett. 2015, 27, 375–378. [Google Scholar] [CrossRef]
- Zhang, Z.; He, J.; Du, B.; Zhang, F.C.; Guo, K.K.; Wang, Y.P. Measurement of high pressure and high temperature using a dual-cavity Fabry-Perot interferometer created in cascade hollow-core fibers. Opt. Lett. 2018, 43, 6009–6012. [Google Scholar] [CrossRef] [PubMed]
- Bian, Q.; Podhrazsky, A.; Bauer, C.; Stadler, A.; Buchfellner, F.; Kuttler, R.; Jakobi, M.; Volk, W.; Koch, A.W.; Roths, J. Temperature and external strain sensing with metal-embedded optical fiber sensors for structural health monitoring. Opt. Express 2022, 30, 33449–33464. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.Q.; Yu, Y.; Bian, Q.; Xu, W.J.; Wang, Z.C.; Zhang, S.M.; Weng, J.J.; Zhu, J.J.; Chen, Y.; Hu, X.Y.; et al. Metal-coated high-temperature strain optical fiber sensor based on cascaded air-bubble FPI-FBG structure. Opt. Express 2023, 31, 16795–16811. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Zhang, Z.; Cui, Q.; Lin, Q.; Yu, J.; Guo, X.; Zhou, C.; Ruan, S. High-Resolution and Large-Dynamic Range Fiber-Optic Sensors Based on Dual-Mode Direct Spectrum Interrogation Method. Sensors 2024, 24, 3996. https://doi.org/10.3390/s24123996
Zhou M, Zhang Z, Cui Q, Lin Q, Yu J, Guo X, Zhou C, Ruan S. High-Resolution and Large-Dynamic Range Fiber-Optic Sensors Based on Dual-Mode Direct Spectrum Interrogation Method. Sensors. 2024; 24(12):3996. https://doi.org/10.3390/s24123996
Chicago/Turabian StyleZhou, Min, Zhe Zhang, Qingyue Cui, Qingdian Lin, Jun Yu, Xiaoyang Guo, Cangtao Zhou, and Shuangchen Ruan. 2024. "High-Resolution and Large-Dynamic Range Fiber-Optic Sensors Based on Dual-Mode Direct Spectrum Interrogation Method" Sensors 24, no. 12: 3996. https://doi.org/10.3390/s24123996
APA StyleZhou, M., Zhang, Z., Cui, Q., Lin, Q., Yu, J., Guo, X., Zhou, C., & Ruan, S. (2024). High-Resolution and Large-Dynamic Range Fiber-Optic Sensors Based on Dual-Mode Direct Spectrum Interrogation Method. Sensors, 24(12), 3996. https://doi.org/10.3390/s24123996