Assessing the Aging Effect on Ti/Au Bilayers for Transition-Edge Sensor (TES) Detectors
<p>(<b>a</b>) Picture of patterned Ti/Au bilayer samples. (<b>b</b>) SEM enlargement of a Ti/Au bilayer two-square geometry. (<b>c</b>) 2D cross-section schematic sketch of fabrication steps for a patterned Ti/Au sample: spin coating of PMMA resist on a single crystal silicon substrate ready for EBL exposure (<b>1</b>), PMMA development after EBL exposure followed by Ti/Au e-beam evaporation (<b>2</b>), and lift-off with acetone (<b>3</b>).</p> "> Figure 2
<p>Measurement setup: (<b>a</b>) <sup>3</sup>He/<sup>4</sup>He dilution cryostat by Oxford Instruments, circled in green, and sample holder anchored on the lowest temperature plate of the cryostat (see (<b>b</b>)). (<b>b</b>) Sample holder detail: PCB for 4-wire read out, and two samples enclosed between copper sheets. (<b>c</b>) Complete measurement setup: the LakeShore 370 AC Resistance Bridge connected to the cryostat through shielded cables. All the setup components form a continuous Faraday cage.</p> "> Figure 3
<p>Resistance–temperature curves of the two-square geometry ATV10 (green left curve) and ATV11 (pink right curve) samples. The resistance is normalized with respect to the normal resistance values: for ATV10, <math display="inline"><semantics> <msub> <mi>R</mi> <mi>N</mi> </msub> </semantics></math> is equal to 0.23 <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>; for ATV11, <math display="inline"><semantics> <msub> <mi>R</mi> <mi>N</mi> </msub> </semantics></math> is equal to 0.54 <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>.</p> "> Figure 4
<p>Normalized resistance–temperature curves for Ti/Au 90 nm/120 nm thick bilayer (green dots, Au/Ti ratio equal to 1.33, <math display="inline"><semantics> <msub> <mi>R</mi> <mi>N</mi> </msub> </semantics></math>= 0.11 <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>); Ti/Au 90 nm/60 nm thick bilayer (red dots, Au/Ti ratio equal to 0.57, <math display="inline"><semantics> <msub> <mi>R</mi> <mi>N</mi> </msub> </semantics></math>= 0.63 <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>); Ti/Au 60 nm/90 nm thick bilayer (purple dots, Au/Ti ratio equal to 1.5, <math display="inline"><semantics> <msub> <mi>R</mi> <mi>N</mi> </msub> </semantics></math>= 0.17 <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>); and Ti 90 nm thick monolayer (blue dots, <math display="inline"><semantics> <msub> <mi>R</mi> <mi>N</mi> </msub> </semantics></math>= 9.34 <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>).</p> "> Figure 5
<p>Resistance–temperature curves of Ti/Au bilayers measured after different time intervals: Ti/Au 90 nm/120 nm thick bilayer (<b>a</b>), Ti/Au 90 nm/60 nm thick bilayer (<b>b</b>), Ti/Au 60 nm/90 nm thick bilayer (<b>c</b>), and Ti 90 nm thick monolayer (<b>d</b>). The first test is performed 5 days after fabrication; the second test is performed 11 days after the first test (sample stored in vacuum for 6 days, then stored in air for 5 days); the third test is performed 10 after the second test (sample stored in vacuum for the whole 10 days); the fourth test is carried out 15 days after the third test (sample stored in vacuum for 13 days, then stored in air for 2 days).</p> "> Figure 6
<p>(<b>a</b>) Critical temperature (<math display="inline"><semantics> <msub> <mi>T</mi> <mi>C</mi> </msub> </semantics></math>) measured (colored dots) and evaluated (dashed lines) trends vs. time elapsed since sample fabrication, considering the days of storage in both air and vacuum environments. (<b>b</b>) Plot of the <span class="html-italic">a</span> parameter values obtained using a fitting procedure performed on the data acquired for the different samples. The error bars display the relative fitting errors.</p> "> Figure 7
<p><math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi>T</mi> <mi>C</mi> </msub> </mrow> </semantics></math> plot (colored dots) and evaluated trend (dashed lines) vs. time elapsed since sample fabrication. The error bars display the total error, taking into account the experimental error and the fitting error on <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mi>C</mi> <mn>0</mn> </mrow> </msub> </semantics></math>.</p> "> Figure 8
<p>Normalized resistance–temperature curves measured for non-annealed (blue and light blue, <math display="inline"><semantics> <msub> <mi>R</mi> <mi>N</mi> </msub> </semantics></math> = 0.15 <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>) and annealed (red and orange, <math display="inline"><semantics> <msub> <mi>R</mi> <mi>N</mi> </msub> </semantics></math> = 0.15 <math display="inline"><semantics> <mo>Ω</mo> </semantics></math>) Ti/Au 40 nm/100 nm thick bilayers. The second test is performed 7 days after the first test (sample stored in air for 3 days and in vacuum for 4 days).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patterned Bilayer Samples
2.2. Non-Patterned Samples
3. Characterization
3.1. Cryogenic Tests on Patterned Ti/Au Bilayer Samples
3.2. Cryogenic Tests on Non-Patterned Ti/Au Bilayer Samples
4. Assessing Aging Effects
4.1. Critical Temperature Shift
4.2. Critical Temperature Degradation Model
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gottardi, L.; Nagayashi, K. A Review of X-ray Microcalorimeters Based on Superconducting Transition Edge Sensors for Astrophysics and Particle Physics. Appl. Sci. 2021, 11, 3793. [Google Scholar] [CrossRef]
- Lotti, S.; D’Andrea, M.; Macculi, C.; Lotti, S.; Piro, L.; Argan, A.; Minervini, G.; Torrioli, G.; Chiarello, F.; Barusso Ferrari, L.; et al. Volpe, The TES-based Cryogenic AntiCoincidence Detector (CryoAC) of ATHENA X-IFU: A Large Area Silicon Microcalorimeter for Background Particles Detection. A. Review of the Particle Background of Athena X-IFU Instrument. J. Low Temp. Phys. 2024, 214, 164–172. [Google Scholar]
- Lotti, S.; D’Andrea, M.; Molendi, S.; Macculi, C.; Minervini, G.; Fioretti, V.; Laurenza, M.; Jacquey, C.; Piro, L. Review of the Particle Background of Athena X-IFU Instrument. Astrophys. J. 2021, 909, 111. [Google Scholar] [CrossRef]
- Irwin, K.D.; Hilton, G.C. Transition-Edge Sensors. In Cryogenic Particle Detection; Enss, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 63–150. [Google Scholar]
- Martinis, J.M.; Hilton, G.C.; Irwin, K.D.; Wollman, D.A. Calculation of TC in a normal-superconductor-bilayer using the microscopic-based Usadel theory. Nucl. Instrum. Methods Phys. Res. A 2000, 444, 23–27. [Google Scholar] [CrossRef]
- Smith, S.J.; Adams, J.S.; Bandler, S.R.; Borrelli, R.B.; Chervenak, J.A.; Cumbee, S.R.; Figueroa-Feliciano, E.; Finkbeiner, F.M.; Furhman, J.; Hull, S.V.; et al. Development of the microcalorimeter and anticoincidence detector for the Line Emission Mapper X-ray probe. J. Astron. Telesc. Instrum. Syst. 2023, 9, 2633785. [Google Scholar] [CrossRef]
- Finkbeiner, F.M.; Adams, J.S.; Bandler, S.R.; Betancourt-Martinez, G.L.; Brown, A.D.; Chang, M.P.; Chervenak, J.A.; Chiao, M.P.; Datesman, A.M.; Eckart, M.E.; et al. Electron-Beam Deposition of Superconducting Molybdenum Thin Films for the Development of Mo/Au TES X-ray Microcalorimeter. IEEE Trans. Appl. Supercond. 2017, 27, 041005-2–041005-19. [Google Scholar] [CrossRef]
- Parra-Borderias, M.; Fernandez-Martinez, I.; Fabrega, L.; Camon, A.; Gil, O.; Costa-Kramer, J.L.; Gonzalez-Arrabal, R.; Sese, J.; Bueno, J.; Briones, F. Characterization of a Mo/Au Thermometer for ATHENA. IEEE Trans. Appl. Supercond. 2013, 23, 2300405. [Google Scholar] [CrossRef]
- Fabrega, L.; Fernandez-Martinez, I.; Gil, O.; Parra-Borderias, M.; Camon, A.; Costa-Kramer, J.; Gonzalez-Arrabal, R.; Sese, J.; Briones, F.; Santiso, J.; et al. Mo-Based Proximity Bilayers for TES: Microstructure and Properties. IEEE Trans. Appl. Supercond. 2009, 19, 460–464. [Google Scholar] [CrossRef]
- Nagayoshi, K.; Ridder, M.L.; Bruijn, M.P.; Gottardi, L.; Taralli, E.; Khosropanah, P.; Akamatsu, H.; Visser, S.; Gao, J.R. Development of a Ti/Au TES Microcalorimeter Array as a Backup Sensor for the Athena/X-IFU Instrument. J. Low Temp. Phys. 2020, 199, 943–948. [Google Scholar] [CrossRef]
- Monticone, E.; Castellino, M.; Rocci, R.; Rajteri, M. Ti/Au Ultrathin Films For TES Application. IEEE Trans. Appl. Supercond. 2021, 31, 1–5. [Google Scholar] [CrossRef]
- Ferrari Barusso, L.; Celasco, E.; Gallucci, G.; Grosso, D.; Repetto, L.; Rigano, M.; D’Andrea, M.; Macculi, C.; Torrioli, G.; Gatti, F. Current-Dependent Resistance in TES Wiring Superimposed Nb Striplines. J. Low Temp. Phys. 2024. [Google Scholar] [CrossRef]
- Ren, R.; Bathurst, C.; Chang, Y.Y.; Chen, R.; Fink, C.W.; Hong, Z.; Kurinsky, N.A.; Mast, N.; Mishra, N.; Novati, V.; et al. Design and characterization of a phonon-mediated cryogenic particle detector with an eV-scale threshold and 100 keV-scale dynamic range. Phys. Rev. D 2021, 104, 032010-1–032010-17. [Google Scholar]
- Celasco, E.; Ferrari Barusso, L.; De Gerone, M.; Gallucci, D.; Grosso, D.; Manfrinetti, P.; Repetto, L.; Schott, M.; Gatti, F. Development of a TES for Antenna-Coupled Bolometer for Cosmic Microwave Background Detection. IEEE Trans. Appl. Supercond. 2023, 33, 2100105. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Z.; Li, P.Z.; Zhong, J.Q.; Ma, Q.X.; Feng, Z.F.; Zhou, K.M.; Miao, W.; Ren, Y.; Yao, Q.J.; et al. Tuning of Critical Temperature and Aging Effect of Ti Films For Superconducting Transition-Edge Sensors. J. Low Temp. Phys. 2023, 214, 106–112. [Google Scholar] [CrossRef]
- Van der Heijden, N.J.; Khosropanah, P.; van der Kuur, J.; Ridder, M.L. Diffusion Behaviour in Superconducting Ti/Au bilayers for SAFARI TES Detectors. J. Low Temp. Phys. 2014, 176, 370–375. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Z.; Zhong, J.Q.; Li, P.Z.; Geng, Y.; Miao, W.; Ren, Y.; Zhou, K.M.; Yao, Q.J.; Shi, S.C. Evidence for Controllable Reduction of Critical Temperature in Titanium TESs by Baking in Air. IEEE Trans. Appl. Supercond. 2021, 31, 2101205. [Google Scholar] [CrossRef]
- Luukanen, A.; Sipila, H.; Kinnunen, K.; Nuottajarvi, A.; Pekola, J. Transition-edge microcalorimeters for X-ray space applications. Phys. B 2000, 284–288, 2133–2134. [Google Scholar] [CrossRef]
- Xu, X.; Sun, X.; He, J.; Li, J.; Rajteri, M.; Garrone, H.; Pepe, C.; Gao, H.; Li, X.; Ouyang, Y. Investigation of Superconducting Ti/Ti-Au/Au Tri-Layer Films With a Co-Sputtering Process for Transition-Edge Sensors. IEEE Trans. Appl. Supercond. 2023, 33, 1102005. [Google Scholar] [CrossRef]
- Xiaolong, X.; Rajteri, M.; Li, J.; Zhang, S.; Monticone, E.; Chen, J.; Pepe, C.; Gao, H.; Li, W.; Li, Q.; et al. Investigation of the Superconducting Ti/PdAu Bilayer Films for Transition Edge Sensors. IEEE Trans. Appl. Supercond. 2022, 32, 1–4. [Google Scholar]
- Kay, D. Using Titanium “Getters” in Vacuum Brazing, Kay and Associates Brazing Consultants. Available online: https://kaybrazing.com/brazing-articles/1000908-using-titanium-getters-in-vacuum-brazing/ (accessed on 8 May 2024).
- D’Andrea, M.; Torrioli, G.; Macculi, C.; Kiviranta, M. Thermalization of a SQUID Chip at Cryogenic Temperature: Thermal Conductance Measurement for GE 7031 Varnish Glue, Apiezon N Grease and Rubber Cement Between 20 and 200 mK. J. Low Temp. Phys. 2024, 214, 190–199. [Google Scholar] [CrossRef]
- Fabrega, L.; Camon, A.; Gil, O.; Strichovanec, P.; Pobes, C. Exploring the Proximity Effect in Mo/Au Bilayers. IEEE Trans. Appl. Supercond. 2019, 29, 2100405. [Google Scholar] [CrossRef]
- Beaumont, S.; Adams, J.S.; Bandler, S.R.; Borrelli, R.; Chervenak, J.A.; Cumbee, R.; Finkbeiner, F.M.; Hull, S.V.; Kelley, R.L.; Kilbourne, C.A.; et al. Long Term Performance Stability of Transition-Edge Sensor Detectors. IEEE Trans. Appl. Supercond. 2023, 33, 2101405. [Google Scholar] [CrossRef]
- Todeschini, M.; Bastos da Silva Fanta, A.; Jensen, F.; Birkedal Wagner, J.; Han, A. Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films. ACS Appl. Mater. Interfaces 2017, 9, 37374–37385. [Google Scholar] [CrossRef] [PubMed]
Sample | Total Days in Between | Days in Vacuum | Days in Air | ||
---|---|---|---|---|---|
Ti/Au 90 nm/60 nm thick | 578 mK | 563 mK | 11 | 6 | 5 |
Ti/Au 90 nm/120 nm thick | 475 mK | 462 mK | 11 | 6 | 5 |
Ti/Au 60 nm/90 nm thick | 352 mK | 340 mK | 11 | 6 | 5 |
Ti 90 nm thick | 594 mK | 580 mK | 11 | 6 | 5 |
Sample | Total Days in Between | Days in Vacuum | Days in Air | ||
Ti/Au 90 nm/60 nm thick | 563 mK | 559.5 mK | 10 | 10 | 0 |
Ti/Au 90 nm/120 nm thick | 462 mK | 459 mK | 10 | 10 | 0 |
Ti/Au 60 nm/90 nm thick | 340 mK | 338 mK | 10 | 10 | 0 |
Ti 90 nm thick | 580 mK | 577.5 mK | 10 | 10 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambelli, M.; D’Andrea, M.; Asquini, R.; Buzzin, A.; Macculi, C.; Torrioli, G.; Cibella, S. Assessing the Aging Effect on Ti/Au Bilayers for Transition-Edge Sensor (TES) Detectors. Sensors 2024, 24, 3995. https://doi.org/10.3390/s24123995
Gambelli M, D’Andrea M, Asquini R, Buzzin A, Macculi C, Torrioli G, Cibella S. Assessing the Aging Effect on Ti/Au Bilayers for Transition-Edge Sensor (TES) Detectors. Sensors. 2024; 24(12):3995. https://doi.org/10.3390/s24123995
Chicago/Turabian StyleGambelli, Maria, Matteo D’Andrea, Rita Asquini, Alessio Buzzin, Claudio Macculi, Guido Torrioli, and Sara Cibella. 2024. "Assessing the Aging Effect on Ti/Au Bilayers for Transition-Edge Sensor (TES) Detectors" Sensors 24, no. 12: 3995. https://doi.org/10.3390/s24123995
APA StyleGambelli, M., D’Andrea, M., Asquini, R., Buzzin, A., Macculi, C., Torrioli, G., & Cibella, S. (2024). Assessing the Aging Effect on Ti/Au Bilayers for Transition-Edge Sensor (TES) Detectors. Sensors, 24(12), 3995. https://doi.org/10.3390/s24123995