Direct Position Determination of Non-Gaussian Sources for Multiple Nested Arrays: Discrete Fourier Transform and Taylor Compensation Algorithm
<p>Geometry of multiple nested arrays localization.</p> "> Figure 2
<p>Comparison of complexity versus <span class="html-italic">L</span>.</p> "> Figure 3
<p>Comparison of complexity versus <span class="html-italic">M</span>.</p> "> Figure 4
<p>Scatter diagrams of the proposed algorithm when <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi mathvariant="normal">T</mi> <mo>=</mo> <mn>300</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="double-struck">D</mi> <mi>x</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="double-struck">D</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>600</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">u</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mfenced separators="" open="[" close="]"> <mo>−</mo> <mn>900</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">m</mi> <mo>,</mo> <mn>1000</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">m</mi> </mfenced> <mi>T</mi> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">u</mi> <mn>2</mn> </msub> <mo>=</mo> <msup> <mfenced separators="" open="[" close="]"> <mo>−</mo> <mn>300</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">m</mi> <mo>,</mo> <mn>500</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">m</mi> </mfenced> <mi>T</mi> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">u</mi> <mn>3</mn> </msub> <mo>=</mo> <msup> <mfenced separators="" open="[" close="]"> <mn>300</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">m</mi> <mo>,</mo> <mo>−</mo> <mn>180</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">m</mi> </mfenced> <mi>T</mi> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">u</mi> <mn>4</mn> </msub> <mo>=</mo> <msup> <mfenced separators="" open="[" close="]"> <mo>−</mo> <mn>800</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">m</mi> <mo>,</mo> <mn>900</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">m</mi> </mfenced> <mi>T</mi> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">p</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mfenced separators="" open="[" close="]"> <mn>100.5</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">m</mi> <mo>,</mo> <mn>900.2</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">m</mi> </mfenced> <mi>T</mi> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">p</mi> <mn>2</mn> </msub> <mo>=</mo> <msup> <mfenced separators="" open="[" close="]"> <mn>900.6</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">m</mi> <mo>,</mo> <mn>200.7</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">m</mi> </mfenced> <mi>T</mi> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>SNR</mi> <mo>=</mo> <mn>5</mn> <mspace width="3.33333pt"/> <mi>dB</mi> </mrow> </semantics></math>. (<b>a</b>) Initial estimation. (<b>b</b>) After Taylor compensation.</p> "> Figure 5
<p>Comparison of RMSE versus SNR.</p> "> Figure 6
<p>Comparison of RMSE versus T.</p> "> Figure 7
<p>Comparison of RMSE versus <span class="html-italic">M</span>.</p> "> Figure 8
<p>Comparison of EER versus SNR.</p> "> Figure 9
<p>Comparison of EER versus T.</p> ">
Abstract
:1. Introduction
- The property of non-Gaussian sources is fully exploited to suppress Gaussian noise and augment the virtual array aperture, which benefits the available degrees of freedom (DOFs).
- We propose a novel low-complexity DPD algorithm of non-Gaussian sources utilizing MNAs. We deploy the Discrete Fourier Transform (DFT) method to construct a computationally efficient DPD cost function to reduce the high computational complexity caused by exhaustive grid search.
- We utilize the Taylor compensation method to improve the localization accuracy at the expense of calculating the position estimation bias. It should be emphasized that even when the source position does not fall on the preset grid, the proposed algorithm can still estimate the position of sources accurately.
- Complexity analysis and extensive numerical results are presented to verify the superiority of the proposed algorithm in terms of location accuracy, resolution capability, and computational complexity.
2. Model Formulation
- is the position vector of K sources;
- is the array manifold of the lth NA, and denotes the array steering vector, where . Array element locations are given by the set
- is the signal vector transmitted from the kth source at time t, where , ;
- denotes the independent additive white Gaussian noise vector of the lth sensor array.
3. Proposed Algorithm
Algorithm 1: Main Steps of the FOC-DFT-Taylor Algorithm | |
Input: , K, , , d, M, , . | |
| |
Output: , |
4. Performance Discussion
4.1. Complexity
4.2. Advantages
- Low Complexity: Compared to the FOC-SS-SDF-DPD and FOC-SS-Capon-DPD algorithms, the proposed algorithm reduces much of the computational complexity thanks to the computationally efficient cost function.
- High DOF: Compared to the FOC-SS-SDF-DPD and FOC-SS-Capon-DPD algorithms, the proposed algorithm does not need SS technology for decoherence, which is caused by vectorizing the FOC matrix. Thus, the proposed algorithm can estimate more sources.
- Suppress Gaussian Noise: The proposed algorithm takes full advantage of the characteristics of non-Gaussian signals, and the Gaussian noise is suppressed during the process of calculating the FOC matrix.
- High Accuracy: When the sources do not fall on the preset grids, i.e., the off-grid error exists, the proposed algorithm can still estimate the position of sources accurately thanks to the Taylor compensation.
- High-Resolution Capability: Compared to FOC-SS-SDF-DPD and FOC-SS-Capon-DPD methods, the proposed method has higher resolution capability.
5. Numerical Analysis
5.1. Effectiveness Analysis
5.2. RMSE Results
5.3. EER Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DPD | Direct Position Determination |
MNA | Multiple Nested Array |
DFT | Discrete Fourier Transform |
AOA | Angle of Arrival |
TDOA | Time Difference of Arrival |
TOA | Time of Arrival |
RSS | Received Signal Strength |
ML | Maximum Likelihood |
SNR | Signal-to-noise Ratio |
SDF | Subspace Data Fusion |
MUSIC | Multiple Signal Classification |
EVD | Eigenvalue Decomposition |
OFDM | Orthogonal Frequency Division Multiplexing |
SOC | Second-order Cumulant |
FOC | Fourth-order Cumulant |
ULA | Uniform Linear Array |
NA | Nested Array |
DOF | Degree of Freedom |
SS | Spatial Smoothing |
RMSE | Root Mean Square Error |
EER | Effective Estimate Rate |
References
- Coluccia, A.; Fascista, A. A review of advanced localization techniques for crowdsensing wireless sensor networks. Sensors 2019, 19, 988. [Google Scholar] [CrossRef]
- Sibanyoni, S.V.; Ramotsoela, D.T.; Silva, B.J.; Hancke, G.P. A 2-D acoustic source localization system for drones in search and rescue missions. IEEE Sens. J. 2018, 19, 332–341. [Google Scholar] [CrossRef]
- Zhao, K.; Zhao, T.; Zheng, Z.; Yu, C.; Ma, D.; Rabie, K.; Kharel, R. Optimization of time synchronization and algorithms with TDOA based indoor positioning technique for Internet of Things. Sensors 2020, 20, 6513. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, L.; Wang, S.; Lou, Y.; Gao, Y.; Wu, W.; Ng, D.W.K. Integrated Sensing and Communication with Massive MIMO: A Unified Tensor Approach for Channel and Target Parameter Estimation. IEEE Trans. Wirel. Commun. 2024; early access. [Google Scholar]
- Ma, Y.; Miao, C.; Long, W.; Zhang, R.; Chen, Q.; Zhang, J.; Wu, W. Time-Modulated Arrays in Scanning Mode Using Wideband Signals for Range-Doppler Estimation with Time-Frequency Filtering and Fusion. IEEE Trans. Aerosp. Electron. Syst. 2023, 60, 980–990. [Google Scholar] [CrossRef]
- Wang, Y.; Ho, K. Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings. IEEE Trans. Wirel. Commun. 2017, 17, 1242–1254. [Google Scholar] [CrossRef]
- Wu, M.; Xiong, N.; Tan, L. Adaptive range-based target localization using diffusion Gauss–Newton method in industrial environments. IEEE Trans. Ind. Inform. 2019, 15, 5919–5930. [Google Scholar] [CrossRef]
- Weiss, A.J.; Amar, A. Direct position determination of multiple radio signals. EURASIP J. Adv. Signal Process. 2005, 2005, 653549. [Google Scholar] [CrossRef]
- Lo, T.K.; Leung, H.; Litva, J. Artificial neural network for AOA estimation in a multipath environment over the sea. IEEE J. Ocean. Eng. 1994, 19, 555–562. [Google Scholar] [CrossRef]
- Yu, K.; Guo, Y.J. Statistical NLOS identification based on AOA, TOA, and signal strength. IEEE Trans. Veh. Technol. 2008, 58, 274–286. [Google Scholar] [CrossRef]
- Wen, F.; Shi, J.; Zhang, Z. Joint 2D-DOD, 2D-DOA, and polarization angles estimation for bistatic EMVS-MIMO radar via PARAFAC analysis. IEEE Trans. Veh. Technol. 2019, 69, 1626–1638. [Google Scholar] [CrossRef]
- Kulas, L. RSS-based DOA estimation using ESPAR antennas and interpolated radiation patterns. IEEE Antennas Wirel. Propag. Lett. 2017, 17, 25–28. [Google Scholar] [CrossRef]
- Zeng, H.; Shi, S.; Yue, H.; Li, J. Coherent signal localization with multiple arrays: A successive perspective. Multidimens. Syst. Signal Process. 2023, 34, 321–340. [Google Scholar] [CrossRef]
- Weiss, A.J. Direct position determination of narrowband radio frequency transmitters. IEEE Signal Process. Lett. 2004, 11, 513–516. [Google Scholar] [CrossRef]
- Tirer, T.; Weiss, A.J. High resolution direct position determination of radio frequency sources. IEEE Signal Process. Lett. 2015, 23, 192–196. [Google Scholar] [CrossRef]
- Yin, J.; Wu, Y.; Wang, D. Direct position determination of multiple noncircular sources with a moving array. Circuits Syst. Signal Process. 2017, 36, 4050–4076. [Google Scholar] [CrossRef]
- Vallet, P.; Mestre, X.; Loubaton, P. Performance analysis of an improved MUSIC DOA estimator. IEEE Trans. Signal Process. 2015, 63, 6407–6422. [Google Scholar] [CrossRef]
- Tzafri, L.; Weiss, A.J. Application of capon method to direct position determination. ICT Express 2016, 2, 5–9. [Google Scholar] [CrossRef]
- Shu, T.; Li, L.; He, J. Near-field localization for non-circular sources in the presence of sensor phase uncertainties. IEEE Wirel. Commun. Lett. 2020, 10, 562–566. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Chen, H.; Zhu, X.; Liu, W.; Yan, W.; Wang, L. An effective localization method for mixed far-field and near-field strictly non-circular sources. Digit. Signal Process. 2019, 94, 125–136. [Google Scholar] [CrossRef]
- Lin, Y.; Jin, S.; Matthaiou, M.; You, X. Channel estimation and user localization for IRS-assisted MIMO-OFDM systems. IEEE Trans. Wirel. Commun. 2021, 21, 2320–2335. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Ba, B.; Wang, D. A novel direct position determination algorithm for orthogonal frequency division multiplexing signals based on the time and angle of arrival. IEEE Access 2017, 5, 25312–25321. [Google Scholar] [CrossRef]
- Xie, J.; Tao, H.; Rao, X.; Su, J. Efficient method of passive localization for near-field noncircular sources. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1223–1226. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Xu, H.Y.; Ba, B.; Wang, D.M.; Geng, W. Direct position determination of non-circular sources based on a Doppler-extended aperture with a moving coprime array. IEEE Access 2018, 6, 61014–61021. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, X.; Qian, Y.; Ahmad, M. Closed-form rectilinear emitters localization with multiple sensor arrays: Phase alignment and optimal weighted least-square method. IEEE Sens. J. 2023, 23, 7266–7278. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, J.; Qian, L. A study based on fourth-second order normalized cumulant in TDOA estimation. In Proceedings of the IEEE 10th International Conference on Signal Processing Proceedings, Beijing, China, 24–28 October 2010; pp. 215–218. [Google Scholar]
- Hou, C.; Wang, D. The Fourth Order Cumulant-Based MUSIC Algorithm for Harmonic Retrieval in Colored Noise. In Proceedings of the 2009 WRI International Conference on Communications and Mobile Computing, Kunming, China, 6–8 January 2009; Volume 2, pp. 564–567. [Google Scholar]
- He, Q.; Cheng, Z.; Wang, Z.; He, Z. Mixed far-field and near-field source separation and localization based on FOC matrix differencing. Digit. Signal Process. 2022, 131, 103753. [Google Scholar] [CrossRef]
- Liu, C.; Ye, Z.; Zhang, Y. DOA estimation based on fourth-order cumulants with unknown mutual coupling. Signal Process. 2009, 89, 1839–1843. [Google Scholar] [CrossRef]
- An, L.; Shu, W. Propagator method for DOA estimation using fourth-order cumulant. In Proceedings of the 2011 7th International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, 23–25 September 2011; pp. 1–4. [Google Scholar]
- Alinezhad, P.; Seydnejad, S.R.; Abbasi-Moghadam, D. DOA estimation in conformal arrays based on the nested array principles. Digit. Signal Process. 2016, 50, 191–202. [Google Scholar] [CrossRef]
- Peng, Z.; Ding, Y.; Ren, S.; Wu, H.; Wang, W. Coprime nested arrays for DOA estimation: Exploiting the nesting property of coprime array. IEEE Signal Process. Lett. 2021, 29, 444–448. [Google Scholar] [CrossRef]
- Qin, G.; Zhang, Y.D.; Amin, M.G. DOA estimation exploiting moving dilated nested arrays. IEEE Signal Process. Lett. 2019, 26, 490–494. [Google Scholar] [CrossRef]
- Han, K.; Nehorai, A. Improved source number detection and direction estimation with nested arrays and ULAs using jackknifing. IEEE Trans. Signal Process. 2013, 61, 6118–6128. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, W.; Wang, Z.; Xia, B. A source counting method using acoustic vector sensor based on sparse modeling of DOA histogram. IEEE Signal Process. Lett. 2018, 26, 69–73. [Google Scholar] [CrossRef]
- Li, J.; He, Y.; Zhang, X.; Wu, Q. Simultaneous localization of multiple unknown emitters based on UAV monitoring big data. IEEE Trans. Ind. Inform. 2021, 17, 6303–6313. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, Y. DOA estimation for non-Gaussian signals using fourth-order cumulants. IET Microwaves Antennas Propag. 2009, 3, 1069–1078. [Google Scholar] [CrossRef]
- Dogan, M.C.; Mendel, J.M. Applications of cumulants to array processing. I. Aperture extension and array calibration. IEEE Trans. Signal Process. 1995, 43, 1200–1216. [Google Scholar] [CrossRef]
- Yuen, N.; Friedlander, B. DOA estimation in multipath: An approach using fourth-order cumulants. IEEE Trans. Signal Process. 1997, 45, 1253–1263. [Google Scholar] [CrossRef]
- Ye, C.; Chen, W.; Zhu, B.; Tang, L. Direction of arrival estimation of non-Gaussian signals for nested arrays: Applying fourth-order difference co-array and the successive method. ETRI J. 2021, 43, 869–880. [Google Scholar] [CrossRef]
- Pal, P.; Vaidyanathan, P.P. Coprime sampling and the MUSIC algorithm. In Proceedings of the 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), Sedona, AZ, USA, 4–7 January 2011; pp. 289–294. [Google Scholar]
- Pannert, W. Spatial smoothing for localized correlated sources–Its effect on different localization methods in the nearfield. Appl. Acoust. 2011, 72, 873–883. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Yang, M.; Yuan, Q.; You, M.; Shi, X.; Sun, Y. Direct Position Determination of Non-Gaussian Sources for Multiple Nested Arrays: Discrete Fourier Transform and Taylor Compensation Algorithm. Sensors 2024, 24, 3801. https://doi.org/10.3390/s24123801
Hu H, Yang M, Yuan Q, You M, Shi X, Sun Y. Direct Position Determination of Non-Gaussian Sources for Multiple Nested Arrays: Discrete Fourier Transform and Taylor Compensation Algorithm. Sensors. 2024; 24(12):3801. https://doi.org/10.3390/s24123801
Chicago/Turabian StyleHu, Hao, Meng Yang, Qi Yuan, Mingyi You, Xinlei Shi, and Yuxin Sun. 2024. "Direct Position Determination of Non-Gaussian Sources for Multiple Nested Arrays: Discrete Fourier Transform and Taylor Compensation Algorithm" Sensors 24, no. 12: 3801. https://doi.org/10.3390/s24123801
APA StyleHu, H., Yang, M., Yuan, Q., You, M., Shi, X., & Sun, Y. (2024). Direct Position Determination of Non-Gaussian Sources for Multiple Nested Arrays: Discrete Fourier Transform and Taylor Compensation Algorithm. Sensors, 24(12), 3801. https://doi.org/10.3390/s24123801