Linear and Non-Linear Modelling Methods for a Gas Sensor Array Developed for Process Control Applications
<p>(<b>a</b>) schematic of the gas bench. (<b>b</b>) Cell containing the multi-sensor platform.</p> "> Figure 2
<p>Sensors and the signal treatment chain.</p> "> Figure 3
<p>Example of gas composition sequence and gas sensor response.</p> "> Figure 4
<p>Example architecture of the artificial neural network (ANN) used for H<sub>2</sub> concentration prediction.</p> "> Figure 5
<p>(<b>a</b>) Gas sequence with H<sub>2</sub> concentrations between 100 ppm and 1000 ppm. (<b>b</b>) EC-H<sub>2</sub> sensor signal. (<b>c</b>) EC-CO sensor signal. (<b>d</b>) MOX sensor signal. (<b>e</b>) Catalytic sensor signal. (<b>f</b>) CO<sub>2</sub> sensor signal.</p> "> Figure 6
<p>(<b>a</b>) Gas sequence with CO concentrations between 15 ppm and 300 ppm. (<b>b</b>) EC-H<sub>2</sub> sensor signal. (<b>c</b>) EC-CO sensor signal. (<b>d</b>) MOX sensor signal. (<b>e</b>) Catalytic sensor signal. (<b>f</b>) CO<sub>2</sub> sensor signal.</p> "> Figure 7
<p>(<b>a</b>) Gas sequence with CH<sub>4</sub> concentrations between 800 ppm and 10 000 ppm. (<b>b</b>) EC-H<sub>2</sub> sensor signal. (<b>c</b>) EC-CO sensor signal. (<b>d</b>) MOX sensor signal. (<b>e</b>) Catalytic sensor signal. (<b>f</b>) CO<sub>2</sub> sensor signal.</p> "> Figure 8
<p>(<b>a</b>) Gas sequence with CO<sub>2</sub> concentrations between 1000 ppm and 30,000 ppm. (<b>b</b>) EC-H<sub>2</sub> sensor signal. (<b>c</b>) EC-CO sensor signal. (<b>d</b>) MOX sensor signal. (<b>e</b>) Catalytic sensor signal. (<b>f</b>) CO<sub>2</sub> sensor signal.</p> "> Figure 9
<p>Transfer function of the sensors submitted to different concentrations of: (<b>a</b>) H<sub>2</sub>, (<b>b</b>) CO, (<b>c</b>) CH<sub>4</sub>.</p> "> Figure 10
<p>(<b>a</b>) H<sub>2</sub>, (<b>b</b>) CO, (<b>c</b>) CH<sub>4</sub> concentration predictions based on PLS modelling with training data.</p> "> Figure 11
<p>(<b>a</b>) H<sub>2</sub>, (<b>b</b>) CO, (<b>c</b>) CH<sub>4</sub> concentration predictions based on ANN modelling with training data.</p> "> Figure 12
<p>Sequence used to predict H<sub>2</sub>/CH<sub>4</sub>/CO analyte concentrations alone or binary mixtures.</p> "> Figure 13
<p>Prediction of concentrations of: (<b>a</b>) H<sub>2</sub>, (<b>b</b>) CH<sub>4</sub>, (<b>c</b>) CO by the MLR-PLS method.</p> "> Figure 14
<p>Prediction of concentrations of: (<b>a</b>) H<sub>2</sub>, (<b>b</b>) CH<sub>4</sub>, (<b>c</b>) CO by the ANN method.</p> "> Figure 15
<p>Predictions results before (_Raw) and after (_PT) application of post-treatment algorithm for PLS prediction curves: (<b>a</b>) H<sub>2</sub> predictions results, (b) CH<sub>4</sub> predictions results, (<b>c</b>) CO predictions results.</p> "> Figure 16
<p>Predictions results before (_Raw) and after (_PT) application of post-treatment algorithm for ANN prediction curves: (<b>a</b>) H<sub>2</sub> predictions results, (<b>b</b>) CH<sub>4</sub> predictions results, (<b>c</b>) CO predictions results.</p> "> Figure 17
<p>Comparison between the sensor responses before ageing and after one year of ageing: (<b>a</b>) Gas sequence used for the test, (<b>b</b>) Electrochemical EC-H<sub>2</sub> sensor, (<b>c</b>) Electrochemical EC-CO sensor, (<b>d</b>) Catalytic CATA sensor, (<b>e</b>) Metal-Oxyde MOx sensor.</p> "> Figure 18
<p>Gas concentration predictions (<span class="html-italic">_Pred</span> in the legend) on aged sensor platform for: (<b>a</b>) H<sub>2</sub>, (<b>b</b>) CH<sub>4</sub>, (<b>c</b>) CO using the previously developed ANN model—comparison to experimental used concentrations (<span class="html-italic">_Exp</span> in the legend).</p> "> Figure 19
<p>Gas concentration predictions (<span class="html-italic">_Pred</span> in the legend) on aged sensor platform for: (<b>a</b>) H<sub>2</sub>, (<b>b</b>) CH<sub>4</sub>, (<b>c</b>) CO using the previously developed MLR-PLS model—comparison to experimental concentrations (<span class="html-italic">_Exp</span> in the legend).</p> "> Figure 20
<p>Offset-corrected gas concentration predictions (<span class="html-italic">_offset shift</span> in the legend) on aged sensor platform for: (<b>a</b>) H<sub>2</sub>, (<b>b</b>) CH<sub>4</sub>, (<b>c</b>) CO using the previously developed MLR-PLS model–comparison to experimental concentrations (<span class="html-italic">_Exp</span> in the legend).</p> "> Figure A1
<p>Gas sequences used during the training tests.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Choice
2.2. Experimental Setup
2.3. Test Procedure
2.3.1. Role of Mono-Analyte Tests
- -
- to verify the reproducibility of the sensor responses,
- -
- to check that the sensor drift is limited and close to zero,
- -
- to analyze the transfer function linking the gas concentration of the analyte and the sensor responses (linear or not),
- -
- to check that the sensor responses to the introduced analytes are sufficiently uncorrelated to have enough variability in the information collected. If two sensors respond the same way to all the analytes, they finally bring “collinear” information, which would be prejudicial for the models. Indeed, it can lead to overfitting so that the model will almost perfectly learn to match the training data but will be unable to capture the validation data.
2.3.2. Sensor Network Exposure to Both Mono-Analyte and Binary Mixtures
- -
- first sequence under “base gas”: 12% O2/1% absolute humidity/N2,
- -
- several sequences including introduction of analytes alone or in binary analyte mixtures,
- -
- last sequence under “base gas”: 12% O2/1% absolute humidity/N2 to verify the return of the sensor signals to the base line, i.e., verify that the signal corresponding to the first sequence is the same as the signal at this last sequence (no drift of the sensor signals).
2.3.3. Modelling Step: Behavior Model Construction
3. Results & Discussions
3.1. Mono-Analyte Tests
- -
- induce a response in only one sensor;
- -
- this last sensor should only respond to this analyte.
3.2. Sensor Transfer Function
3.3. Building up Models from Training Data
3.4. Validation Tests and Comparison of Models
3.5. Data Post-Treatment
3.6. Ageing of Sensors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Gas Sequences Used during Training
Appendix B. Results of the Neural Networks
Regressors | hnn | rmset | r2t | rmsev | r2v |
---|---|---|---|---|---|
H2(V) | 0 | 173.50 | 0.92 | 246.00 | 0.77 |
H2(V) | 1 | 154.21 | 0.94 | 237.45 | 0.78 |
H2(V) | 2 | 153.31 | 0.94 | 238.42 | 0.78 |
H2(V) | 3 | 152.48 | 0.94 | 239.18 | 0.78 |
H2(V) | 4 | 153.24 | 0.94 | 237.92 | 0.78 |
H2 (V), CATA (V), MOX (V) | 0 | 174.12 | 0.92 | 246.97 | 0.76 |
H2 (V), CATA (V), MOX (V) | 1 | 149.66 | 0.94 | 228.62 | 0.80 |
H2 (V), CATA (V), MOX (V) | 2 | 134.30 | 0.95 | 218.96 | 0.81 |
H2 (V), CATA (V), MOX (V) | 3 | 127.45 | 0.96 | 217.53 | 0.82 |
H2 (V), CATA (V), MOX (V) | 4 | 115.21 | 0.97 | 210.05 | 0.83 |
H2 (V), CATA (V), MOX (V), CO (V) | 0 | 120.76 | 0.96 | 230.07 | 0.80 |
H2 (V), CATA (V), MOX (V), CO (V) | 1 | 105.49 | 0.97 | 226.49 | 0.80 |
H2 (V), CATA (V), MOX (V), CO (V) | 2 | 102.05 | 0.97 | 223.08 | 0.81 |
H2 (V), CATA (V), MOX (V), CO (V) | 3 | 102.50 | 0.97 | 227.69 | 0.80 |
H2 (V), CATA (V), MOX (V), CO (V) | 4 | 102.25 | 0.97 | 224.73 | 0.80 |
H2 2 (V) | 0 | 420.11 | 0.54 | 205.20 | 0.84 |
H2 2 (V) | 1 | 400.72 | 0.58 | 208.63 | 0.83 |
H2 2 (V) | 2 | 395.83 | 0.59 | 214.47 | 0.82 |
H2 2 (V) | 3 | 396.50 | 0.59 | 216.22 | 0.82 |
H2 2 (V) | 4 | 394.87 | 0.60 | 211.07 | 0.83 |
H2 2 (V), CATA 2 (V), MOX 2 (V) | 0 | 283.06 | 0.79 | 213.99 | 0.82 |
H2 2 (V), CATA 2 (V), MOX 2 (V) | 1 | 281.79 | 0.79 | 226.30 | 0.80 |
H2 2 (V), CATA 2 (V), MOX 2 (V) | 2 | 247.85 | 0.84 | 264.74 | 0.73 |
H2 2 (V), CATA 2 (V), MOX 2 (V) | 3 | 176.59 | 0.92 | 206.41 | 0.84 |
H2 2 (V), CATA 2 (V), MOX 2 (V) | 4 | 162.69 | 0.93 | 231.02 | 0.79 |
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 0 | 248.21 | 0.84 | 262.64 | 0.73 |
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 1 | 244.35 | 0.85 | 248.91 | 0.76 |
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 2 | 239.22 | 0.85 | 253.51 | 0.75 |
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 3 | 158.88 | 0.93 | 228.72 | 0.80 |
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 4 | 155.62 | 0.94 | 253.60 | 0.75 |
H2 (V), H2 2 (V) | 0 | 172.93 | 0.92 | 242.12 | 0.77 |
H2 (V), H2 2 (V) | 1 | 153.97 | 0.94 | 237.42 | 0.78 |
H2 (V), H2 2 (V) | 2 | 148.86 | 0.94 | 243.59 | 0.77 |
H2 (V), H2 2 (V) | 3 | 148.91 | 0.94 | 243.34 | 0.77 |
H2 (V), H2 2 (V) | 4 | 149.08 | 0.94 | 240.26 | 0.78 |
H2 (V), CATA (V), MOX (V), H2 2 (V), CATA 2 (V), MOX 2 (V) | 0 | 152.32 | 0.94 | 219.50 | 0.81 |
H2 (V), CATA (V), MOX (V), H2 2 (V), CATA 2 (V), MOX 2 (V) | 1 | 134.75 | 0.95 | 206.36 | 0.84 |
H2 (V), CATA (V), MOX (V), H2 2 (V), CATA 2 (V), MOX 2 (V) | 2 | 126.60 | 0.96 | 224.33 | 0.81 |
H2 (V), CATA (V), MOX (V), H2 2 (V), CATA 2 (V), MOX 2 (V) | 3 | 125.43 | 0.96 | 219.67 | 0.81 |
H2 (V), CATA (V), MOX (V), H2 2 (V), CATA 2 (V), MOX 2 (V) | 4 | 108.90 | 0.97 | 208.77 | 0.83 |
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 0 | 119.35 | 0.96 | 222.67 | 0.81 |
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 1 | 102.79 | 0.97 | 207.34 | 0.83 |
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 2 | 100.22 | 0.97 | 216.92 | 0.82 |
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 3 | 96.87 | 0.98 | 210.69 | 0.83 |
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 4 | 95.22 | 0.98 | 227.32 | 0.80 |
Regressors | hnn | rmset | r2t | rmsev | r2v |
---|---|---|---|---|---|
CO (V) | 0 | 87.34 | 0.65 | 59.34 | 0.27 |
CO (V) | 1 | 84.93 | 0.67 | 59.05 | 0.28 |
CO (V) | 2 | 80.64 | 0.70 | 56.61 | 0.34 |
CO (V) | 3 | 80.42 | 0.70 | 56.62 | 0.34 |
CO (V) | 4 | 80.46 | 0.70 | 56.68 | 0.33 |
CO (V), CATA (V) | 0 | 85.68 | 0.66 | 57.90 | 0.31 |
CO (V), CATA (V) | 1 | 84.16 | 0.67 | 57.50 | 0.31 |
CO (V), CATA (V) | 2 | 80.35 | 0.70 | 55.01 | 0.37 |
CO (V), CATA (V) | 3 | 77.86 | 0.72 | 50.10 | 0.48 |
CO (V), CATA (V) | 4 | 71.12 | 0.77 | 55.98 | 0.35 |
CO (V), CATA (V), MOX (V), H2 (V) | 0 | 46.68 | 0.90 | 35.41 | 0.74 |
CO (V), CATA (V), MOX (V), H2 (V) | 1 | 41.51 | 0.92 | 25.36 | 0.87 |
CO (V), CATA (V), MOX (V), H2 (V) | 2 | 40.67 | 0.92 | 29.61 | 0.82 |
CO (V), CATA (V), MOX (V), H2 (V) | 3 | 40.42 | 0.92 | 25.85 | 0.86 |
CO (V), CATA (V), MOX (V), H2 (V) | 4 | 40.43 | 0.92 | 26.54 | 0.85 |
CO 2 (V) | 0 | 124.69 | 0.28 | 67.96 | 0.04 |
CO 2 (V) | 1 | 124.76 | 0.28 | 67.75 | 0.05 |
CO 2 (V) | 2 | 124.00 | 0.29 | 67.53 | 0.05 |
CO 2 (V) | 3 | 124.05 | 0.29 | 67.54 | 0.05 |
CO 2 (V) | 4 | 124.92 | 0.28 | 68.17 | 0.04 |
CO 2 (V), CATA 2 (V) | 0 | 111.85 | 0.42 | 69.25 | 0.01 |
CO 2 (V), CATA 2 (V) | 1 | 108.15 | 0.46 | 65.93 | 0.10 |
CO 2 (V), CATA 2 (V) | 2 | 104.75 | 0.49 | 61.24 | 0.22 |
CO 2 (V), CATA 2 (V) | 3 | 101.51 | 0.53 | 50.95 | 0.46 |
CO 2 (V), CATA 2 (V) | 4 | 99.49 | 0.54 | 48.70 | 0.51 |
CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) | 0 | 66.60 | 0.80 | 49.14 | 0.50 |
CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) | 1 | 62.62 | 0.82 | 50.30 | 0.48 |
CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) | 2 | 50.91 | 0.88 | 30.69 | 0.80 |
CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) | 3 | 54.04 | 0.87 | 28.44 | 0.83 |
CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) | 4 | 64.00 | 0.81 | 38.77 | 0.69 |
CO (V), CO 2 (V) | 0 | 87.78 | 0.65 | 61.68 | 0.21 |
CO (V), CO 2 (V) | 1 | 85.00 | 0.67 | 59.32 | 0.27 |
CO (V), CO 2 (V) | 2 | 80.29 | 0.70 | 57.08 | 0.32 |
CO (V), CO 2 (V) | 3 | 80.35 | 0.70 | 57.63 | 0.31 |
CO (V), CO 2 (V) | 4 | 80.27 | 0.70 | 56.95 | 0.33 |
CO (V), CATA (V), CO 2 (V), CATA 2 (V) | 0 | 79.55 | 0.71 | 44.80 | 0.58 |
CO (V), CATA (V), CO 2 (V), CATA 2 (V) | 1 | 77.22 | 0.73 | 43.11 | 0.61 |
CO (V), CATA (V), CO 2 (V), CATA 2 (V) | 2 | 72.58 | 0.76 | 45.15 | 0.58 |
CO (V), CATA (V), CO 2 (V), CATA 2 (V) | 3 | 70.14 | 0.77 | 49.03 | 0.50 |
CO (V), CATA (V), CO 2 (V), CATA 2 (V) | 4 | 72.33 | 0.76 | 45.31 | 0.57 |
CO (V), CATA (V), MOX (V), H2 (V), CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) | 0 | 38.63 | 0.93 | 24.08 | 0.88 |
CO (V), CATA (V), MOX (V), H2 (V), CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) | 1 | 37.44 | 0.94 | 21.94 | 0.90 |
CO (V), CATA (V), MOX (V), H2 (V), CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) | 2 | 36.82 | 0.94 | 20.89 | 0.91 |
CO (V), CATA (V), MOX (V), H2 (V), CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) | 3 | 34.67 | 0.94 | 21.60 | 0.90 |
CO (V), CATA (V), MOX (V), H2 (V), CO 2 (V), CATA 2 (V), MOX 2 (V), H2 2 (V) | 4 | 34.38 | 0.95 | 19.27 | 0.92 |
Regressors | hnn | rmset | r2t | rmsev | r2v |
---|---|---|---|---|---|
MOX (V) | 0 | 2017.52 | 0.03 | 1929.53 | 0.01 |
MOX (V) | 1 | 2012.91 | 0.04 | 1907.28 | 0.03 |
MOX (V) | 2 | 2013.47 | 0.04 | 1908.39 | 0.03 |
MOX (V) | 3 | 2012.85 | 0.04 | 1907.44 | 0.03 |
MOX (V) | 4 | 2012.65 | 0.04 | 1906.95 | 0.03 |
H2 (V), CATA (V), MOX (V), CO (V) | 0 | 2064.63 | −0.01 | 2034.40 | −0.11 |
H2 (V), CATA (V), MOX (V), CO (V) | 1 | 2013.41 | 0.04 | 1904.95 | 0.03 |
H2 (V), CATA (V), MOX (V), CO (V) | 2 | 2019.50 | 0.03 | 1912.46 | 0.02 |
H2 (V), CATA (V), MOX (V), CO (V) | 3 | 2002.79 | 0.05 | 1888.72 | 0.05 |
H2 (V), CATA (V), MOX (V), CO (V) | 4 | 1993.49 | 0.05 | 1885.03 | 0.05 |
MOX 2 (V) | 0 | 2109.53 | −0.06 | 2072.43 | −0.15 |
MOX 2 (V) | 1 | 1041.14 | 0.74 | 951.45 | 0.76 |
MOX 2 (V) | 2 | 1053.46 | 0.74 | 946.47 | 0.76 |
MOX 2 (V) | 3 | 1309.52 | 0.59 | 1000.08 | 0.73 |
MOX 2 (V) | 4 | 1343.30 | 0.57 | 1027.83 | 0.72 |
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 0 | 634.05 | 0.90 | 504.01 | 0.93 |
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 1 | 2033.96 | 0.02 | 1924.30 | 0.01 |
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 2 | 775.57 | 0.86 | 613.21 | 0.90 |
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 3 | 956.25 | 0.78 | 687.63 | 0.87 |
H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 4 | 814.85 | 0.84 | 675.74 | 0.88 |
MOX (V), MOX 2 (V) | 0 | 656.50 | 0.90 | 536.24 | 0.92 |
MOX (V), MOX 2 (V) | 1 | 2003.38 | 0.05 | 1892.26 | 0.04 |
MOX (V), MOX 2 (V) | 2 | 803.81 | 0.85 | 549.04 | 0.92 |
MOX (V), MOX 2 (V) | 3 | 1033.47 | 0.75 | 718.90 | 0.86 |
MOX (V), MOX 2 (V) | 4 | 1045.05 | 0.74 | 758.92 | 0.85 |
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 0 | 613.07 | 0.91 | 511.26 | 0.93 |
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 1 | 670.82 | 0.89 | 497.27 | 0.93 |
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 2 | 751.48 | 0.87 | 725.78 | 0.86 |
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 3 | 659.12 | 0.90 | 596.29 | 0.91 |
H2 (V), CATA (V), MOX (V), CO (V), H2 2 (V), CATA 2 (V), MOX 2 (V), CO 2 (V) | 4 | 781.68 | 0.85 | 724.44 | 0.86 |
References
- Shiva Kumar, S.; Lim, H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 2022, 8, 13793–13813. [Google Scholar] [CrossRef]
- Ashok, J.; Pati, S.; Hongmanorom, P.; Tianxi, Z.; Junmei, C.; Kawi, S. A review of recent catalyst advances in CO2 methanation processes. Catal. Today 2020, 356, 471–489. [Google Scholar] [CrossRef]
- Torres, L.F.; Damascena, M.A.; Alves, M.M.; Santos, K.S.; Franceschi, E.; Dariva, C.; Barros, V.A.; Melo, D.C.; Borges, G.R. Use of near-infrared spectroscopy for the online monitoring of natural gas composition (hydrocarbons, water and CO2 content) at high pressure. Vib. Spectrosc. 2024, 131, 103653. [Google Scholar] [CrossRef]
- Sherstov, I.; Vasiliev, V. Highly sensitive Laser Photo-Acoustic SF6 Gas Analyzer with 10 decades dynamic range of concentration measurement. Infrared Phys. Technol. 2021, 119, 103922. [Google Scholar] [CrossRef]
- Liu, A.; Yi, J.; Ding, X.; Deng, J.; Wu, D.; Huo, Y.; Jiang, J.; Li, Q.; Chen, J. An online technology for effectively monitoring inorganic condensable particulate matter emitted from industrial plants. J. Hazard. Mater. 2022, 428, 128221. [Google Scholar] [CrossRef] [PubMed]
- Sinha, M.; Neogi, S.; Ghosh, R. Temperature dependent selectivity switching from methanol to formaldehyde using ZnO nanorod based chemi-resistive sensor. Sens. Actuators A Phys. 2023, 357, 114405. [Google Scholar] [CrossRef]
- Wook Noh, H.; Jang, Y.; Dol Park, H.; Kim, D.; Hun Choi, J.; Ahn, C.-G. A selective feature optimized multi-sensor based e-nose system detecting illegal drugs validated in diverse laboratory conditions. Sens. Actuators B Chem. 2023, 390, 133965. [Google Scholar]
- Zhan, K.; Qin, P.; Jiang, Y.; Chen, Y.; Heinke, L. Optical sensor array of metal-organic-framework-based inverse opal films for the detection and identification of various alcohols. Sens. Actuators B Chem. 2023, 393, 134271. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.; Huang, Y. 2023 Chemiluminescence sensor array for oxidase discrimination based on ternary transition metal sulfide. Sens. Actuators B Chem. 2023, 390, 134003. [Google Scholar] [CrossRef]
- Tang, Y.; Xu, X.; Du, H.; Zhu, H.; Li, D.; Ao, D.; Guo, Y.; Fu, Y.; Zu, X. Cellulose nano-crystals as a sensitive and selective layer for high performance surface acoustic wave HCl gas sensors. Sens. Actuators A Phys. 2020, 301, 111792. [Google Scholar] [CrossRef]
- Hsiao, S.-H.; Wu, J.-X.; Chen, H.-I. High-selectivity NOx sensors based on an Au/InGaP Schottky diode functionalized with self-assembled monolayer of alkanedithiols. Sens. Actuators B Chem. 2020, 305, 127269. [Google Scholar] [CrossRef]
- Pushpanjali, P.; Manjunatha, J.; Srinivas, M. Highly sensitive platform utilizing poly(l-methionine) layered carbon nanotube paste sensor for the determination of voltaren. FlatChem 2020, 24, 100207. [Google Scholar] [CrossRef]
- Staszek, K.; Szkudlarek, A.; Kawa, M.; Rydosz, A. Microwave system with sensor utilizing GO-based gas-sensitive layer and its application to acetone detection. Sens. Actuators B Chem. 2019, 297, 126699. [Google Scholar] [CrossRef]
- Gao, J.; Viricelle, J.-P.; Pijolat, C.; Breuil, P.; Vernoux, P.; Boreave, A.; Giroir-Fendler, A. Improvement of the NOx selectivity for a planar YSZ sensor. Sens. Actuators B Chem. 2011, 154, 106–110. [Google Scholar] [CrossRef]
- Alsaedi, B.S.; McGraw, C.M.; Schaerf, T.M.; Dillingham, P.W. Multivariate limit of detection for non-linear sensor arrays. Chemom. Intell. Lab. Syst. 2020, 201, 104016. [Google Scholar] [CrossRef]
- Ferro, L.M.; Lemos, S.G.; Ferreira, M.; Trivinho-Strixino, F. Use of multivariate analysis on Fabry-Pérot interference spectra of nanoporous anodic alumina (NAA) for optical sensors purposes. Sens. Actuators B Chem. 2017, 248, 718–723. [Google Scholar] [CrossRef]
- Song, L.; Yang, L.; Wang, Z.; Liu, D.; Luo, L.; Zhu, X.; Xi, Y.; Yang, Z.; Han, N.; Wang, F.; et al. One-step electrospun SnO2/MOx heterostructured nanomaterials for highly selective gas sensor array integration. Sens. Actuators B Chem. 2019, 283, 793–801. [Google Scholar] [CrossRef]
- Yousefi-Darani, A.; Babor, M.; Paquet-Durand, O.; Hitzmann, B. Model-based calibration of a gas sensor array for on-line monitoring of ethanol concentration in Saccharomyces cerevisiae batch cultivation. Biosyst. Eng. 2020, 198, 198–209. [Google Scholar] [CrossRef]
- Chu, J.; Li, W.; Yang, X.; Wu, Y.; Wang, D.; Yang, A.; Yuan, H.; Wang, X.; Li, Y.; Rong, M. Identification of gas mixtures via sensor array combining with neural networks. Sens. Actuators B Chem. 2021, 329, 129090. [Google Scholar] [CrossRef]
- Singh, V. Quantum dot decorated multi-walled carbon nanotube modified electrochemical sensor array for single drop insulin detection. Mater. Lett. 2019, 254, 415–418. [Google Scholar] [CrossRef]
- Gornall, D.D.; Collyer, S.D.; Higson, S.P.J. Investigations into the use of screen-printed carbon electrodes as templates for electrochemical sensors and sonochemically fabricated microelectrode arrays. Sens. Actuators B Chem. 2009, 141, 581–591. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Xiao, H.; Liu, M. Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose signals. Sens. Actuators B Chem. 2009, 140, 378–382. [Google Scholar] [CrossRef]
- Lin, C.; Gillespie, J.; Schuder; Duberstein, W.; Beverland, I.; Heal, M. Evaluation and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide. Atmosp. Environ. 2015, 100, 111–116. [Google Scholar] [CrossRef]
- Alonso, M.J.; Madsen, H.; Liu, P.; Jørgensen, R.B.; Jørgensen, T.B.; Christiansen, E.J.; Myrvang, O.A.; Bastien, D.; Mathisen, H.M. Evaluation of low-cost formaldehyde sensors calibration. J. Affect. Disord. 2022, 222, 109380. [Google Scholar] [CrossRef]
- Liang, H.; Liu, G. Research on quantitative analysis method of PLS hydrocarbon gas infrared spectroscopy based on net signal analysis and density peak clustering. Measurement 2022, 188, 110392. [Google Scholar] [CrossRef]
- Karami, H.; Rasekh, M.; Mirzaee-Ghaleh, E. Qualitative analysis of edible oil oxidation using an olfactory machine. J. Food Meas. Charact. 2020, 14, 2600–2610. [Google Scholar] [CrossRef]
- Karami, H.; Kamruzzaman, M.; Covington, J.A.; Hassouna, M.; Darvishi, Y.; Ueland, M.; Fuentes, S.; Gancarz, M. Advanced evaluation techniques: Gas sensor networks, machine learning, and chemometrics for fraud detection in plant and animal products. Sens. Actuators A Phys. 2024, 370, 115192. [Google Scholar] [CrossRef]
- Swirszcz, G.; Czarnecki, W.M.; Pascanu, R. Local minima in training of neural networks. arXiv 2016, arXiv:1611.06310. [Google Scholar]
- Haugen, J.-E.; Tomic, O.; Kvaal, K. A calibration method for handling the temporal drift of solid state gas-sensors. Anal. Chim. Acta 2000, 407, 23–39. [Google Scholar] [CrossRef]
- Capone, S.; Epifani, M.; Francioso, L.; Kaciulis, S.; Mezzi, A.; Siciliano, P.; Taurino, A.M. Influence of electrodes ageing on the properties of the gas sensors based on SnO2. Sens. Actuators B Chem. 2006, 115, 396–402. [Google Scholar] [CrossRef]
- Carvalho, C.; Nechio, F.; Tristao, T. 2021 Taylor rule estimation by OLS. J. Monet. Econ. 2016, 124, 140–154. [Google Scholar] [CrossRef]
- Sundberg, R. Small-sample and selection bias effects in multivariate calibration, exemplified for OLS and PLS regressions. Chemom. Intell. Lab. Syst. 2006, 84, 21–25. [Google Scholar] [CrossRef]
- Yamashita, G.H.; Anzanello, M.J.; Soares, F.; Rocha, M.K.; Fogliatto, F.S. Selecting relevant wavelength intervals for PLS calibration based on absorbance interquartile ranges. Chemom. Intell. Lab. Syst. 2022, 231, 104689. [Google Scholar] [CrossRef]
- Aguilera, A.M.; Escabias, M.; Preda, C.; Saporta, G. Using basis expansions for estimating functional PLS regression: Applications with chemometric data. Chemom. Intell. Lab. Syst. 2010, 104, 289–305. [Google Scholar] [CrossRef]
- Abdi, H. Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 97–106. [Google Scholar] [CrossRef]
- Hashem, S.; Keller, P.E.; Kouzes, R.T.; Kangas, L.J. Neural Network based data analysis for chemical sensor arrays. In Proceedings of the Applications and Science of Artificial Neural Networks of Symposium SPIE 2492, Orlando, FL, USA, 6 April 1995. [Google Scholar]
- Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151. [Google Scholar] [CrossRef]
CO | CO2 | H2 | CH4 | |
---|---|---|---|---|
MOX (semiconductors) | X | X | X | |
Pellistors (Catalytic sensors) | X | XX | ||
NDIR sensors | XXX | X | ||
Photo-acoustic sensors | X | |||
Electrochemical | XXX | X |
Brand Name | Model | Type | Detection Range | Detected Gas ** | |
---|---|---|---|---|---|
EC-CO | Membrapor | CO/MF-1000 | Electrochemical | 0–1000 ppm | CO |
CATA | Figaro | TGS6812-D00 | Catalytic | 0–100% LEL * | H2, CH4, C3H8 |
MOX | Figaro | TGS2612-D00 | Semiconductor | 1–25% LEL * | H2, CH4, C3H8 |
CO2 | Sensirion | SCD30 | Infrared | 0–40% | CO2 (+HR et T) |
EC-H2 | Membrapor | H2/M-4000 | Electrochemical | 0–4000 ppm | H2 |
Model | Training Prediction RMSE (ppm) | ||
---|---|---|---|
H2 | CO | CH4 | |
MLR—OLS | 1801 | 895 | 11,060 |
MLR—PLS | 66 | 35 | 656 |
Best ANN | 103 | 34 | 671 |
Model | Training Prediction RMSE (ppm) | ||
---|---|---|---|
H2 | CO | CH4 | |
MLR—PLS | 197 | 26 | 755 |
Best ANN | 207 | 19 | 497 |
Model | Training Prediction RMSE (ppm) | ||
---|---|---|---|
H2 | CO | CH4 | |
MLR—PLS | 194 | 22 | 622 |
Best ANN | 205 | 19 | 424 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakhmi, R.; Fischer, M.; Darves-Blanc, Q.; Alrammouz, R.; Rieu, M.; Viricelle, J.-P. Linear and Non-Linear Modelling Methods for a Gas Sensor Array Developed for Process Control Applications. Sensors 2024, 24, 3499. https://doi.org/10.3390/s24113499
Lakhmi R, Fischer M, Darves-Blanc Q, Alrammouz R, Rieu M, Viricelle J-P. Linear and Non-Linear Modelling Methods for a Gas Sensor Array Developed for Process Control Applications. Sensors. 2024; 24(11):3499. https://doi.org/10.3390/s24113499
Chicago/Turabian StyleLakhmi, Riadh, Marc Fischer, Quentin Darves-Blanc, Rouba Alrammouz, Mathilde Rieu, and Jean-Paul Viricelle. 2024. "Linear and Non-Linear Modelling Methods for a Gas Sensor Array Developed for Process Control Applications" Sensors 24, no. 11: 3499. https://doi.org/10.3390/s24113499
APA StyleLakhmi, R., Fischer, M., Darves-Blanc, Q., Alrammouz, R., Rieu, M., & Viricelle, J.-P. (2024). Linear and Non-Linear Modelling Methods for a Gas Sensor Array Developed for Process Control Applications. Sensors, 24(11), 3499. https://doi.org/10.3390/s24113499