The Fluorescent Detection of Glucose and Lactic Acid Based on Fluorescent Iron Nanoclusters
"> Figure 1
<p>(<b>A</b>) The fluorescence emission spectra (red line) and UV-Vis adsorption spectra (black line) of Fe NCs. (<b>B</b>) Zeta potential measurement of Fe NCs solutions.</p> "> Figure 2
<p>(<b>A</b>) TEM images of Fe NCs. (<b>B</b>) The particle size statistics histogram of Fe NCs.</p> "> Figure 3
<p>The fluorescence emission spectra of Fe NCs incubated with different concentrations of (<b>A</b>) potassium dichromate or (<b>B</b>) hydrogen peroxide for 10 min.</p> "> Figure 4
<p>(<b>A</b>) The fluorescence emission spectra of OPD-H<sub>2</sub>O<sub>2</sub>-Fe NCs system. OPD: 40 mM, H<sub>2</sub>O<sub>2</sub>: 10 μM, Fe NCs: 1 μg·mL<sup>−1</sup> (a), 2.5 μg·mL<sup>−1</sup> (b), 5 μg·mL<sup>−1</sup> (c), 7.5 μg·mL<sup>−1</sup> (d), 10 μg·mL<sup>−1</sup> (e), 20 μg·mL<sup>−1</sup> (f), and 40 μg·mL<sup>−1</sup> (g). Incubation time was 30 min. (<b>B</b>) The fluorescence emission spectra of OPD-H<sub>2</sub>O<sub>2</sub>-Fe NCs system. H<sub>2</sub>O<sub>2</sub>: 10 μM, Fe NCs: 7.5 μg·mL<sup>−1</sup>, OPD: 0 mM, 0.5 mM, 1.25 mM, 2.5 mM, 5.0 mM, 10.0 mM, 20.0 mM, 30.0 mM, and 40.0 mM. Incubation time was 30 min. All the operations were performed at 25 °C.</p> "> Figure 5
<p>(<b>A</b>) The fluorescence intensity changes of Fe NCs solution incubated with 100 µM glucose and different concentrations of GluOx (2.5, 5.0, 10, 25 µg·mL<sup>−1</sup>) at different reaction times (pH 7.4, 100 mM PBS). (<b>B</b>) The fluorescence intensity changes of Fe NCs solution incubated with 100 µM glucose and 10 µg·mL<sup>−1</sup> of GluOx in different pH environments at different reaction time (100 mM PBS). All the operations were performed at 25 °C.</p> "> Figure 6
<p>(<b>A</b>) The fluorescence emission spectra of Fe NCs solution incubated with 10 µg·mL<sup>−1</sup> of GluOx, and different concentrations of glucose for 60 min (pH 7.4, 100 mM PBS). (<b>B</b>) The linear relationship between F<sub>0</sub>/F<sub>616</sub> and glucose concentrations. All the operations were performed at 25 °C.</p> "> Figure 7
<p>(<b>A</b>) The fluorescence intensity changes of Fe NCs and the GluOx system incubated with 100 μM different additional biomolecules, respectively, for 60 min. Fe NCs: 100 μg·mL<sup>−1</sup>, GluOx: 10 µg·mL<sup>−1</sup>, pH environments: 7.4. (<b>B</b>) The fluorescence emission spectra of Fe NCs solution incubated with 100 μM of lactic acid, and different concentrations of LacOx (0, 0.5, 1, 2, 4, 8, 12, 20 μg·mL<sup>−1</sup>) for 60 min (pH 7.4, 100 mM PBS). All the operations were performed at 25 °C.</p> "> Figure 8
<p>(<b>A</b>) The fluorescence intensity changes of Fe NCs solution incubated with 50 µM lactic acid and 2 µg·mL<sup>−1</sup> of LacOx in different pH environments at different reaction times (100 mM PBS). (<b>B</b>) The fluorescence intensity changes of Fe NCs and the LacOx system incubated with 100 μM different additional biomolecules, respectively, for 60 min. Fe NCs: 100 μg·mL<sup>−1</sup>, LacOx: 2 µg·mL<sup>−1</sup>, pH environments: 7.4.</p> "> Figure 9
<p>(<b>A</b>) The fluorescence emission spectra of Fe NCs solution incubated with 2 µg·mL<sup>−1</sup> of LacOx, and different concentrations of lactic acid for 60 min (pH 7.4, 100 mM PBS). (<b>B</b>) The linear relationship between F<sub>0</sub>/F<sub>616</sub> and lactic acid concentrations. All the operations were performed at 25 °C.</p> "> Figure 10
<p>(<b>A</b>) Photo of Fe NCs solution under visible light and UV light. (<b>B</b>) Photo of agarose gel discs prepared with various volumes of Fe NCs solution (1 mg·mL<sup>−1</sup>) under UV light. (<b>C</b>) Photo of agarose gel discs based on Fe NCs immersed in H<sub>2</sub>O<sub>2</sub> solution with various concentrations for 30 min under UV light.</p> "> Figure 11
<p>(<b>A</b>) The photo of agarose gel discs based on Fe NCs and GluOX immersed in glucose solution with various concentrations for 60 min under UV light. (<b>B</b>) The photo of agarose gel discs based on Fe NCs and LacOx immersed in lactic acid solution with various concentrations for 60 min under UV light.</p> "> Scheme 1
<p>The illustrations of the synthesis of Fe NCs and the detection for glucose and lactic acid.</p> ">
Abstract
:1. Introduction
2. Experimental Detail
2.1. Synthesis of Fe NCs
2.2. Detection of H2O2
2.3. Detection of Glucose
2.4. Detection of Lactic Acid
2.5. The Preparation of Agarose Gel Based on Fe NCs
2.6. The Preparation of Agarose Gel for Glucose Based on Fe NCs and GluOx
2.7. The Preparation of Agarose Gel for Lactic Acid Based on Fe NCs and LacOx
2.8. The Determination of Glucose and Lactic Acid in Fetal Calf Serum Samples and Milk Samples
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, M.; Song, G.; Zhong, K.; Wang, Z.; Xia, X.; Tian, Y. Wearable fluorescent contact lenses for monitoring glucose via a smartphone. Sens. Actuators B 2022, 352, 131067. [Google Scholar] [CrossRef]
- Bechmann, L.P.; Hannivoort, R.A.; Gerken, G.; Hotamisligil, G.S.; Trauner, M.; Canbay, A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J. Hepatol. 2012, 56, 952–964. [Google Scholar] [CrossRef]
- Qi, X.; Tester, R.F. Fructose, galactose and glucose—In health and disease. Clin. Nutr. ESPEN 2019, 33, 18–28. [Google Scholar] [CrossRef]
- Tang, B.L. Glucose, glycolysis, and neurodegenerative diseases. J. Cell. Physiol. 2020, 235, 7653–7662. [Google Scholar] [CrossRef]
- Zeigerer, A.; Sekar, R.; Kleinert, M.; Nason, S.; Habegger, K.M.; Müller, T.D. Glucagon’s Metabolic Action in Health and Disease. Compr. Physiol. 2021, 11, 1759–1783. [Google Scholar]
- Mello, G.P.C.; Simões, E.F.C.; Crista, D.M.A.; Leitão, J.M.M.; Pinto da Silva, L.; Esteves da Silva, J.C.G. Glucose Sensing by Fluorescent Nanomaterials. Crit. Rev. Anal. Chem. 2019, 49, 542–552. [Google Scholar] [CrossRef]
- Ghosh, R.; Li, X.; Yates, M.Z. Nonenzymatic Glucose Sensor Using Bimetallic Catalysts. ACS Appl. Mater. Interfaces 2024, 16, 17–29. [Google Scholar] [CrossRef]
- Chi, Z.; Li, M.; Xu, J.; Yang, L. A photonic crystal fiber-based fluorescence sensor for simultaneous and sensitive detection of lactic acid enantiomers. Anal. Bioanal. Chem. 2022, 414, 1641–1649. [Google Scholar] [CrossRef]
- Schuck, A.; Kim, H.E.; Moreira, J.K.; Lora, P.S.; Kim, Y.S. A grapheme based enzymatic biosensor using a common-gate field-effect transistor for L-lactic acid detection in blood plasma samples. Sensors 2021, 21, 1852. [Google Scholar] [CrossRef]
- Surme, S.; Buyukyazgan, A.; Bayramlar, O.F.; Cinar, A.K.; Copur, B.; Zerdali, E.; Tuncer, G.; Balli, H.; Nakir, I.Y.; Yazla, M.; et al. Predictors of Intensive Care Unit admission in patients with coronavirus disease 2019 (COVID-19). Monaldi Arch. Chest Dis. 2020, 90, 430–436. [Google Scholar]
- Li, Y.S.; Ju, X.; Gao, X.F.; Zhao, Y.Y.; Wu, Y.F. Immobilization enzyme fluorescence capillary analysis for determination of lactic acid. Anal. Chim. Acta 2008, 610, 249–256. [Google Scholar] [CrossRef]
- Batool, R.; Rhouati, A.; Nawaz, M.H.; Hayat, A.; Marty, J.L. A Review of the Construction of Nano-Hybrids for Electrochemical Biosensing of Glucose. Biosensors 2019, 9, 46. [Google Scholar] [CrossRef]
- Todoroki, K.; Goto, K.; Nakano, T.; Ishii, Y.; Min, J.Z.; Inoue, K.; Toyo’oka, T. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride as an enantioseparation enhancer for fluorescence chiral derivatization-liquid chromatographic analysis of DL-lactic acid. J. Chromatogr. A 2014, 1360, 188–195. [Google Scholar] [CrossRef]
- Tsutsui, H.; Mochizuki, T.; Maeda, T.; Noge, I.; Kitagawa, Y.; Min, J.Z.; Todoroki, K.; Inoue, K.; Toyo’oka, T. Simultaneous determination of DL-lactic acid and DL-3-hydroxybutyric acid enantiomers in saliva of diabetes mellitus patients by high-throughput LC-ESI-MS/MS. Anal. Bioanal. Chem. 2012, 404, 1925–1934. [Google Scholar] [CrossRef]
- Liao, Q.L.; Jiang, H.; Zhang, X.W.; Qiu, Q.F.; Tang, Y.; Yang, X.K.; Liu, Y.L.; Huang, W.H. A single nanowire sensor for intracellular glucose detection. Nanoscale 2019, 11, 10702–10708. [Google Scholar] [CrossRef]
- Hsu, C.C.; Chung, W.Y.; Chang, C.Y.; Wu, C.C.; Lee, C.L. Enzymatic Glucose Fiber Sensor for Glucose Concentration Measurement with a Heterodyne Interferometry. Sensors 2023, 23, 2990. [Google Scholar] [CrossRef]
- Abrar, M.A.; Dong, Y.; Lee, P.K.; Kim, W.S. Bendable Electro-chemical Lactate Sensor Printed with Silver Nano-particles. Sci. Rep. 2016, 6, 30565. [Google Scholar] [CrossRef]
- Soldà, A.; Valenti, G.; Marcaccio, M.; Giorgio, M.; Pelicci, P.G.; Paolucci, F.; Rapino, S. Glucose and Lactate Miniaturized Biosensors for SECM-Based High-Spatial Resolution Analysis: A Comparative Study. ACS Sens. 2017, 2, 1310–1318. [Google Scholar] [CrossRef]
- Li, X.; Xu, X.; Wang, K.; Chen, Y.; Zhang, Y.; Si, Q.; Pan, Z.; Jia, F.; Cui, X.; Wang, X.; et al. Fluorescence-Amplified Origami Microneedle Device for Quantitatively Monitoring Blood Glucose. Adv. Mater. 2023, 35, e2208820. [Google Scholar] [CrossRef]
- Hu, Y.; Wen, J.; Li, D.; Li, Y.; Alheshibri, M.; Zhang, M.; Shui, L.; Li, N. Carbon dots-based fluorescence enhanced probe for the determination of glucose. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 303, 123149. [Google Scholar] [CrossRef]
- Lu, Q.; Huang, T.; Zhou, J.; Zeng, Y.; Wu, C.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. Limitation-induced fluorescence enhancement of carbon nanoparticles and their application for glucose detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 244, 118893. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Mu, Z.; Wu, S.; Wang, J.; Yang, Y.; Zhao, M.; Wang, Y. Label-free fluorescence detection of hydrogen peroxide and glucose based on the Ni-MOF nanozyme-induced self-ligand emission. Mikrochim. Acta 2022, 189, 219. [Google Scholar] [CrossRef]
- Hallaj, R.; Hosseinchi, Z. Surface-Modified Colloid CdTe/CdS Quantum Dots by a Biocompatible Thiazolidine Derivative as Promising Platform for Immobilization of GluOx: Application to Fluorescence Sensing of Glucose. J. Fluoresc. 2021, 31, 1805–1813. [Google Scholar] [CrossRef]
- Nishitani, S.; Tran, T.; Puglise, A.; Yang, S.; Landry, M.P. Engineered glucose oxidase-carbon nanotube conjugates for tissue-translatable glucose nanosensors. Angew. Chem. Int. Ed. Engl. 2024, 63, e202311476. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, B.; Zhang, Y.; Zhang, Q.; Akhtar, M.H.; Li, M.; Gu, Y.; Yu, C. Portable smartphone-assisted ratiometric fluorescence sensor for visual detection of glucose. Anal. Chim. Acta 2023, 1260, 341173. [Google Scholar] [CrossRef]
- Fu, Q.; Zhou, X.; Wang, M.; Su, X. Nanozyme-based sensitive ratiometric fluorescence detection platform for glucose. Anal. Chim. Acta 2022, 1216, 339993. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, H.; Jiang, Y.; Song, S.; Zhao, Y.; Zhang, C.; Xin, J.; Yang, B.; Lin, Q. Detection of Various Biomarkers and Enzymes via a Nanocluster-Based Fluorescence Turn-on Sensing Platform. Anal. Chem. 2018, 90, 14578–14585. [Google Scholar] [CrossRef]
- Williams, G.T.; Kedge, J.L.; Fossey, J.S. Molecular Boronic Acid-Based Saccharide Sensors. ACS Sens. 2021, 6, 1508–1528. [Google Scholar] [CrossRef]
- Li, Y.; Luo, S.; Gui, Y.; Wang, X.; Tian, Z.; Yu, H. Difunctional Hydrogel Optical Fiber Fluorescence Sensor for Continuous and Simultaneous Monitoring of Glucose and pH. Biosensors 2023, 13, 287. [Google Scholar] [CrossRef]
- Kshtriya, V.; Koshti, B.; Pandey, D.K.; Kharbanda, S.; Kanth, P.C.; Singh, D.K.; Bhatia, D.; Gour, N. Sequential and cellular detection of copper and lactic acid by disaggregation and re-aggregation of the fluorescent panchromatic fibres of an acylthiourea based sensor. Soft Matter. 2021, 17, 4304–4316. [Google Scholar] [CrossRef]
- Liu, J.; Lu, J.; Li, Z.; Fan, Y.; Liu, S. An ultra-small fluorescence zero-valent iron nanoclusters selectively kill gram-positive bacteria by promoting reactive oxygen species generation. Colloids Surf. B Biointerfaces 2023, 227, 113343. [Google Scholar] [CrossRef] [PubMed]
- Goswami, N.; Baksi, A.; Giri, A.; Xavier, P.L.; Basu, G.; Pradeep, T.; Pal, S.K. Luminescent iron clusters in solution. Nanoscale 2014, 6, 1848–1854. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, N.; Vaezi, Z.; Sedghi, M.; Naderi-Manesh, H. Hemoglobin-incorporated iron quantum clusters as a novel fluorometric and colorimetric probe for sensing and cellular imaging of Zn(II) and cysteine. Mikrochim. Acta 2017, 185, 60. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sun, M.; Gu, H.; Huang, J.; Wang, G.; Tan, R.; Wu, R.; Zhang, X.; Liu, S.; Zheng, L.; et al. Peroxidase-Like FeCoZn Triple-Atom Catalyst-Based Electronic Tongue for Colorimetric Discrimination of Food Preservatives. Small 2023, 19, e2207036. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Gao, X.; Chen, H.; Wei, Y.; Yang, H.; Gu, Y. Ultrathin C3N4 nanosheets-based oxidase-like 2D fluorescence nanozyme for dual-mode detection of organophosphorus pesticides. J. Hazard. Mater. 2023, 451, 131171. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wei, X.; Wang, Y.; Liu, H.; Xu, Y.; Zhang, Z.; Li, J.; Wang, J.; Guo, C.; Sui, S.; et al. Improvement of optimum pH and specific activity of pectate lyase from Bacillus RN.1 using loop replacement. Front. Bioeng. Biotechnol. 2023, 11, 1242123. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.F.T.; Billings, S.A. Temperature and pH mediate stoichiometric constraints of organically derived soil nutrients. Glob. Chang. Biol. 2022, 28, 1630–1642. [Google Scholar] [CrossRef]
Samples | Initial (µM) | Added (µM) | Found (µM) | Recovery (%) | RSD (n = 3, %) |
---|---|---|---|---|---|
1 | 12.6 | 5 | 18.1 | 110 | 4.3 |
2 | 12.6 | 10 | 22.1 | 95 | 3.9 |
3 | 12.6 | 20 | 34.3 | 109 | 4.6 |
Samples | Initial (µM) | Added (µM) | Found (µM) | Recovery (%) | RSD (n = 3, %) |
---|---|---|---|---|---|
1 | 78.6 | 5 | 84.0 | 108 | 3.6 |
2 | 78.6 | 10 | 87.6 | 90 | 4.2 |
3 | 78.6 | 20 | 99.7 | 106 | 3.7 |
Samples | Initial (µM) | Added (µM) | Found (µM) | Recovery (%) | RSD (n = 3, %) |
---|---|---|---|---|---|
1 | 15.2 | 5 | 20.3 | 102 | 3.2 |
2 | 15.2 | 10 | 24.9 | 97 | 4.7 |
3 | 15.2 | 20 | 33.6 | 92 | 2.8 |
Samples | Initial (µM) | Added (µM) | Found (µM) | Recovery (%) | RSD (n = 3, %) |
---|---|---|---|---|---|
1 | 69.1 | 5 | 74.3 | 104 | 3.8 |
2 | 69.1 | 10 | 78.2 | 91 | 4.1 |
3 | 69.1 | 20 | 88.3 | 96 | 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, J.; Mao, W.; Wang, X.; Zhang, M.; Liu, S. The Fluorescent Detection of Glucose and Lactic Acid Based on Fluorescent Iron Nanoclusters. Sensors 2024, 24, 3447. https://doi.org/10.3390/s24113447
Ge J, Mao W, Wang X, Zhang M, Liu S. The Fluorescent Detection of Glucose and Lactic Acid Based on Fluorescent Iron Nanoclusters. Sensors. 2024; 24(11):3447. https://doi.org/10.3390/s24113447
Chicago/Turabian StyleGe, Jing, Wenlu Mao, Xinyi Wang, Muqi Zhang, and Siyu Liu. 2024. "The Fluorescent Detection of Glucose and Lactic Acid Based on Fluorescent Iron Nanoclusters" Sensors 24, no. 11: 3447. https://doi.org/10.3390/s24113447
APA StyleGe, J., Mao, W., Wang, X., Zhang, M., & Liu, S. (2024). The Fluorescent Detection of Glucose and Lactic Acid Based on Fluorescent Iron Nanoclusters. Sensors, 24(11), 3447. https://doi.org/10.3390/s24113447