Layered Fusion Reconstruction Based on Fuzzy Features for Multi-Conductivity Electrical Impedance Tomography
<p>Principle of detection in EIT.</p> "> Figure 2
<p>Layers in observed domains with binary and multiple conductivity distributions. (<b>a</b>) Binary conductivity distribution decomposed into a two-layer domain. (<b>b</b>) Multi-conductivity distribution decomposed into a three-layer domain.</p> "> Figure 3
<p>Sensitivity analysis of measurement variations influenced by local conductivity changes, with the low-sensitivity range indicated.</p> "> Figure 4
<p>Visualized workflow of the layered fusion framework for multi-conductivity EIT.</p> "> Figure 5
<p>Comparative reconstruction results of simulation cases between methods of Tikhonov-type regularization (TK), filter-based layered fusion (FLF), and proportional-based layered fusion (PLF).</p> "> Figure 6
<p>Relative error (RE), size error (SE), and position error (PE) across six different cases (Case 1 to Case 6) using three reconstruction methods: TK, FLF, and PLF. Those marked in red are with best performance.</p> "> Figure 7
<p>Average evaluation results under different <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>N</mi> <mi>R</mi> </mrow> </semantics></math> values and using different algorithms: TK, FLF, and PLF. Quantitative metrics are RE, SE and PE.</p> "> Figure 8
<p>Experimental configuration and ground truth extraction for algorithm verification. (<b>a</b>) Reference scenario where tank was filled with chopped meat. (<b>b</b>) Observed domain that contains chopped meat, saline, and kidneys with varied conductivities. (<b>c</b>) Ground truth extracted from image processing. (<b>d</b>) Pixelated ground truth for reconstruction evaluation.</p> "> Figure 9
<p>Visual reconstruction results and corresponding quantitative metrics in the experimental domain using TK, FLF, and PLF methods. Data marked in red are with best performance.</p> ">
Abstract
:1. Introduction
2. Mathematical Model of EIT
3. Layered Fusion Based on EIT Features
3.1. Fuzzy Features of Multi-Conductivity Distributions
- A fuzzy boundary: In multi-conductivity distribution results, the boundaries exhibit significant ambiguity. This is observed both at object–background and lesion–object interfaces. The indistinct boundaries complicate element differentiation and add complexity to image interpretation.
- Similar boundaries for different objects: Consider two main objects in the multi-conductivity result. One is uniformly distributed, while the other exhibits local anomalies. Despite these differences, both objects share a common trait: their boundaries are similar. In other words, the presence of local anomalies does not significantly alter the main boundary.
- Local unrecognizability: The local conductivity variations within the object are merged into changes in the overall object conductivity. Despite processing, it is difficult to recognize the local changes in size and position.
3.2. Features of Measurement Changes
3.3. Layered Fusion Algorithm
Algorithm 1 Algorithm flow of LF reconstruction. |
|
4. Experiments and Results
4.1. Simulation Configuration
4.2. Image Reconstruction Using Simulated Noise-Free Data
4.3. Image Reconstruction Using Simulated Noisy Data
4.4. Results of Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, Z.; Zhang, Q.; Gao, K.; Xia, Z.; Wang, H. Electrical impedance sensors for multi-phase flow measurement: A review. IEEE Sens. J. 2021, 21, 27252–27267. [Google Scholar] [CrossRef]
- Ke, X.Y.; Hou, W.; Huang, Q.; Hou, X.; Bao, X.Y.; Kong, W.X.; Li, C.X.; Qiu, Y.Q.; Hu, S.Y.; Dong, L.H. Advances in electrical impedance tomography-based brain imaging. Mil. Med. Res. 2022, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.C.; Barbosa, V.A.; Ribeiro, D.E.; de Souza, R.E.; dos Santos, W.P. Electrical impedance tomography image reconstruction based on backprojection and extreme learning machines. Res. Biomed. Eng. 2020, 36, 399–410. [Google Scholar] [CrossRef]
- Liu, D.; Khambampati, A.K.; Kim, S.; Kim, K.Y. Multi-phase flow monitoring with electrical impedance tomography using level set based method. Nucl. Eng. Des. 2015, 289, 108–116. [Google Scholar] [CrossRef]
- Zhao, Y.; Yue, S.; Zhang, Y.; Wang, H. Flow velocity computation using a single ERT sensor. Flow Meas. Instrum. 2023, 93, 102433. [Google Scholar] [CrossRef]
- He, H.; Jiang, J.; Xu, M.; Yuan, S.; Long, Y.; Chi, Y.; Frerichs, I.; Zhao, Z. Saline bolus-based electrical impedance tomography method for rapid bedside assessment of regional lung perfusion during ECMO therapy. Crit. Care 2022, 26, 266. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, Z.; Xie, F.; Ren, S.; Xu, S. The research progress of electrical impedance tomography for lung monitoring. Front. Bioeng. Biotechnol. 2021, 9, 726652. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Park, K.; Mo, S.; Kim, J. Deep neural network based electrical impedance tomographic sensing methodology for large-area robotic tactile sensing. IEEE Trans. Robot. 2021, 37, 1570–1583. [Google Scholar] [CrossRef]
- Nawaz, M.; Chan, R.W.; Malik, A.; Khan, T.; Cao, P. Hand Gestures Classification Using Electrical Impedance Tomography Images. IEEE Sens. J. 2022, 22, 18922–18932. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Zhao, R.; Ni, Y.; Jing, X.; Gao, S. A review of EMG-, FMG-, and EIT-based biosensors and relevant human–machine interactivities and biomedical applications. Biosensors 2022, 12, 516. [Google Scholar] [CrossRef]
- Xu, M.; He, H.; Long, Y. Lung perfusion assessment by bedside electrical impedance tomography in critically ill patients. Front. Physiol. 2021, 12, 748724. [Google Scholar] [CrossRef] [PubMed]
- Barbas, C.S.; Amato, M.B. Electrical Impedance Tomography to Titrate PEEP at Bedside in ARDS. Respir. Care 2022, 67, 1061–1063. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, S.; Lau, R.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.; Boyle, A. Electrical impedance tomography: Tissue properties to image measures. IEEE Trans. Biomed. Eng. 2017, 64, 2494–2504. [Google Scholar] [PubMed]
- Zhang, K.; Guo, R.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Supervised descent learning for thoracic electrical impedance tomography. IEEE Trans. Biomed. Eng. 2020, 68, 1360–1369. [Google Scholar] [CrossRef] [PubMed]
- Becher, T.; Bußmeyer, M.; Lautenschläger, I.; Schädler, D.; Weiler, N.; Frerichs, I. Characteristic pattern of pleural effusion in electrical impedance tomography images of critically ill patients. Br. J. Anaesth. 2018, 120, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Yue, S.; Hao, Z.; Cui, Z.; Wang, H. An improved Tikhonov regularization method for lung cancer monitoring using electrical impedance tomography. IEEE Sens. J. 2019, 19, 3049–3057. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H. Image reconstruction based on 11 regularization for electrical impedance tomography (EIT). In Proceedings of the 2011 IEEE International Instrumentation and Measurement Technology Conference, Hangzhou, China, 10–12 May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–5. [Google Scholar]
- Wang, Q.; Lian, Z.; Wang, J.; Chen, Q.; Sun, Y.; Li, X.; Duan, X.; Cui, Z.; Wang, H. Accelerated reconstruction of electrical impedance tomography images via patch based sparse representation. Rev. Sci. Instrum. 2016, 87, 114707. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ying, L. Solving electrical impedance tomography with deep learning. J. Comput. Phys. 2020, 404, 109119. [Google Scholar] [CrossRef]
- Aller, M.; Mera, D.; Cotos, J.M.; Villaroya, S. Study and comparison of different Machine Learning-based approaches to solve the inverse problem in Electrical Impedance Tomographies. Neural Comput. Appl. 2023, 35, 5465–5477. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Fu, R.; Wang, D.; Chen, X.; Wang, H. Electrical Impedance Tomography Image Reconstruction with Attention-based Deep Convolutional Neural Network. IEEE Trans. Instrum. Meas. 2023, 72, 5011318. [Google Scholar] [CrossRef]
- Hamilton, S.J.; Hauptmann, A. Deep D-bar: Real-time electrical impedance tomography imaging with deep neural networks. IEEE Trans. Med. Imaging 2018, 37, 2367–2377. [Google Scholar] [CrossRef] [PubMed]
- Capps, M.; Mueller, J.L. Reconstruction of organ boundaries with deep learning in the D-bar method for electrical impedance tomography. IEEE Trans. Biomed. Eng. 2020, 68, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Rymarczyk, T.; Kłosowski, G.; Kozłowski, E.; Tchórzewski, P. Comparison of selected machine learning algorithms for industrial electrical tomography. Sensors 2019, 19, 1521. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.; Arnold, J.H.; Bayford, R.; Borsic, A.; Brown, B.; Dixon, P.; Faes, T.J.; Frerichs, I.; Gagnon, H.; Gärber, Y.; et al. GREIT: A unified approach to 2D linear EIT reconstruction of lung images. Physiol. Meas. 2009, 30, S35. [Google Scholar] [CrossRef] [PubMed]
- Tomicic, V.; Cornejo, R. Lung monitoring with electrical impedance tomography: Technical considerations and clinical applications. J. Thorac. Dis. 2019, 11, 3122. [Google Scholar] [CrossRef]
- Prins, S.A.; Weller, D.; Labout, J.A.; den Uil, C.A. Electrical Impedance Tomography as a Bedside Diagnostic Tool for Pulmonary Embolism. Crit. Care Explor. 2023, 5, e0843. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.; Ahmad, S.; Santos, T.B.R.; Barbosa da Rosa Junior, N.; Mueller, J.L. Comparison of Two Linearization-Based Methods for 3-D EIT Reconstructions on a Simulated Chest. J. Math. Imaging Vis. 2023, 66, 185–197. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X. A regularization structure based on novel iterative penalty term for electrical impedance tomography. Measurement 2023, 209, 112472. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Li, J. Posterior Approximate Clustering-Based Sensitivity Matrix Decomposition for Electrical Impedance Tomography. Sensors 2024, 24, 333. [Google Scholar] [CrossRef]
- Kang, S.I.; Khambampati, A.K.; Jeon, M.H.; Kim, B.S.; Kim, K.Y. A sub-domain based regularization method with prior information for human thorax imaging using electrical impedance tomography. Meas. Sci. Technol. 2016, 27, 025703. [Google Scholar] [CrossRef]
- Bai, X.; Liu, D.; Wei, J.; Bai, X.; Sun, S.; Tian, W. Simultaneous Imaging of Bio-and Non-Conductive Targets by Combining Frequency and Time Difference Imaging Methods in Electrical Impedance Tomography. Biosensors 2021, 11, 176. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Fan, W. R-UNet deep learning-based damage detection of CFRP with electrical impedance tomography. IEEE Trans. Instrum. Meas. 2022, 71, 4506308. [Google Scholar] [CrossRef]
- Zhang, T.; Tian, X.; Liu, X.; Ye, J.; Fu, F.; Shi, X.; Liu, R.; Xu, C. Advances of deep learning in electrical impedance tomography image reconstruction. Front. Bioeng. Biotechnol. 2022, 10, 1019531. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.; Shan, Q.; Smyl, D.; Deng, J.; Du, J. DeepEIT: Deep image prior enabled electrical impedance tomography. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 9627–9638. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Li, J.; Sun, Y. Layered Fusion Reconstruction Based on Fuzzy Features for Multi-Conductivity Electrical Impedance Tomography. Sensors 2024, 24, 3380. https://doi.org/10.3390/s24113380
Wang Z, Li J, Sun Y. Layered Fusion Reconstruction Based on Fuzzy Features for Multi-Conductivity Electrical Impedance Tomography. Sensors. 2024; 24(11):3380. https://doi.org/10.3390/s24113380
Chicago/Turabian StyleWang, Zeying, Jiaqing Li, and Yixuan Sun. 2024. "Layered Fusion Reconstruction Based on Fuzzy Features for Multi-Conductivity Electrical Impedance Tomography" Sensors 24, no. 11: 3380. https://doi.org/10.3390/s24113380
APA StyleWang, Z., Li, J., & Sun, Y. (2024). Layered Fusion Reconstruction Based on Fuzzy Features for Multi-Conductivity Electrical Impedance Tomography. Sensors, 24(11), 3380. https://doi.org/10.3390/s24113380