Revisiting the Role of Sensors for Shaping Plant Research: Applications and Future Perspectives
<p>Sensors used in plant biology for the detection of signaling molecules such as calcium (Ca<sup>2+</sup>), ROS, hormones, and nitric oxide (NO) which regulate diverse growth and stress responses. This Figure also shows different sensors used for monitoring pH in plants.</p> "> Figure 2
<p>Types of nanosensors made of different materials used for the detection of diverse molecules.</p> "> Figure 3
<p>The applications of nanosensors for the detection of biological processes, nutrients, and biotic and abiotic stressors, as well as soil health monitoring and disease assessment.</p> "> Figure 4
<p>Schematic illustration of different nanosensor-based pathogen detection systems in plants.</p> ">
Abstract
:1. Introduction
2. Application of Nanosensors in Agriculture
3. Application of Nanosensors for Pesticide Detection
4. Application of Nanosensors for the Detection of Heavy Metals
5. Role of Nanosensors for the Detection of Phytopathogens and Pests
6. Challenges and Future Perspectives of Sensor-Based Smart Farming
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Teshome, D.T.; Zharare, G.E.; Naidoo, S. The Threat of the Combined Effect of Biotic and Abiotic Stress Factors in Forestry Under a Changing Climate. Front. Plant Sci. 2020, 11, 601009. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Tyagi, A.; Mushtaq, M.; Al-Mahmoudi, H.; Bae, H. Harnessing plant microbiome for mitigating arsenic toxicity in sustainable agriculture. Environ. Pollut. 2022, 300, 118940. [Google Scholar] [CrossRef] [PubMed]
- Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef]
- Sabu, D.; Alagumariappan, P.; Sankaran, V.; Pittu, P.S.K.R. Design and Development of Internet of Things-Based Smart Sensors for Monitoring Agricultural Lands. Eng. Proc. 2023, 58, 13. [Google Scholar] [CrossRef]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.H.M. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Tanner, F.; Tonn, S.; de Wit, J.; Ackerveken, G.V.D.; Berger, B.; Plett, D. Sensor-based phenotyping of above-ground plant-pathogen interactions. Plant Methods 2022, 18, 35. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Tyagi, A.; Bae, H. ROS interplay between plant growth and stress biology: Challenges and future perspectives. Plant Physiol. Biochem. 2023, 203, 108032. [Google Scholar] [CrossRef] [PubMed]
- Pirayesh, N.; Giridhar, M.; Khedher, A.B.; Vothknecht, U.C.; Chigri, F. Organellar calcium signaling in plants: An update. Biochim. Biophys Acta Mol. Cell Res. 2021, 1868, 118948. [Google Scholar] [CrossRef] [PubMed]
- Kudla, J.; Becker, D.; Grill, E.; Hedrich, R.; Hippler, M.; Kummer, U.; Parniske, M.; Romeis, T.; Schumacher, K. Advances and current challenges in calcium signaling. New Phytol. 2018, 218, 414–431. [Google Scholar] [CrossRef]
- Tian, W.; Wang, C.; Gao, Q.; Li, L.; Luan, S. Calcium spikes, waves and oscillations in plant development and biotic interactions. Nat. Plants 2020, 6, 750–759. [Google Scholar] [CrossRef]
- Koldenkova, V.P.; Nagai, T. Genetically encoded Ca2+ indicators: Properties and evaluation. Biochim. Biophys Acta Mol. Cell Res. 2013, 1833, 1787–1797. [Google Scholar] [CrossRef]
- Knight, H.; Trewavas, A.J.; Knight, M.R. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 1996, 8, 489–503. [Google Scholar]
- Ordenes, V.R.; Moreno, I.; Maturana, D.; Norambuena, L.; Trewavas, A.J.; Orellana, A. In vivo analysis of the calcium signature in the plant Golgi apparatus reveals unique dynamics. Cell Calcium 2012, 52, 397–404. [Google Scholar] [CrossRef]
- Rogers, M.; Colquhoun, L.M.; Patrick, J.W.; Dani, J.A. Calcium flux through predominantly independent purinergic ATP and nicotinic acetylcholine receptors. J. Neurophysiol. 1997, 77, 1407–1417. [Google Scholar] [CrossRef]
- Ang, M.C.Y.; Saju, J.M.; Porter, T.K.; Mohaideen, S.; Sarangapani, S.; Khong, D.T.; Wang, S.; Cui, J.; Loh, S.I.; Singh, G.P.; et al. Decoding early stress signaling waves in living plants using nanosensor multiplexing. Nat. Commun. 2024, 15, 2943. [Google Scholar] [CrossRef]
- Fichman, Y.; Miller, G.; Mittler, R. Whole-plant live imaging of reactive oxygen species. Mol. Plant 2019, 12, 1203–1210. [Google Scholar] [CrossRef]
- Ali, S.; Tyagi, A.; Bae, H. Plant microbiome: An ocean of possibilities for improving disease resistance in plants. Microorganisms 2023, 11, 392. [Google Scholar] [CrossRef]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef]
- Stührwohldt, N.; Schaller, A. Regulation of plant peptide hormones and growth factors by post-translational modification. Plant Biol. 2019, 21, 49–63. [Google Scholar] [CrossRef]
- Nishimura, T.; Toyooka, K.; Sato, M.; Matsumoto, S.; Lucas, M.M.; Strnad, M.; Baluška, F.; Koshiba, T. Immunohistochemical observation of indole-3-acetic acid at the IAA synthetic maize coleoptile tips. Plant Signal. Behav. 2011, 6, 2013–2022. [Google Scholar] [CrossRef]
- Gemperline, E.; Keller, C.; Jayaraman, D.; Maeda, J.; Sussman, M.R.; Ané, J.-M.; Li, L. Examination of endogenous peptides in Medicago truncatula using mass spectrometry imaging. J. Proteome Res. 2016, 15, 4403–4411. [Google Scholar] [CrossRef]
- Waadt, R.; Köster, P.; Andrés, Z.; Waadt, C.; Bradamante, G.; Lampou, K.; Kudla, J.; Schumacher, K. Dual-reporting transcriptionally linked genetically encoded fluorescent indicators resolve the spatiotemporal coordination of cytosolic abscisic acid and second messenger dynamics in Arabidopsis. Plant Cell 2020, 32, 2582–2601. [Google Scholar] [CrossRef]
- Irani, N.G.; Di Rubbo, S.; Mylle, E.; Van den Begin, J.; Schneider-Pizoń, J.; Hniliková, J.; Šíša, M.; Buyst, D.; Vilarrasa-Blasi, J.; Szatmári, A.-M.; et al. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nat. Chem. Biol. 2012, 8, 583–589. [Google Scholar] [CrossRef]
- Shani, E.; Weinstain, R.; Zhang, Y.; Castillejo, C.; Kaiserli, E.; Chory, J.; Tsien, R.Y.; Estelle, M. Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc. Natl. Acad. Sci. USA 2013, 110, 4834–4839. [Google Scholar] [CrossRef]
- Ortiz-Morea, F.A.; Savatin, D.V.; Dejonghe, W.; Kumar, R.; Luo, Y.; Adamowski, M.; Van den Begin, J.; Dressano, K.; de Oliveira, G.P.; Zhao, X.; et al. Danger-associated peptide signaling in Arabidopsis requires clathrin. Proc. Natl. Acad. Sci. USA 2016, 113, 11028–11033. [Google Scholar] [CrossRef]
- Zhang, L.; Takahashi, Y.; Hsu, P.K.; Kollist, H.; Merilo, E.; Krysan, P.J.; Schroeder, J.I. FRET Kinase Sensor Development Reveals SnRK2/OST1 Activation by ABA but Not by MeJA and High CO2 during Stomatal Closure; Bergmann, D.C., Hardtke, C.S., Leung, J., Eds.; eLife: Cambridge, UK, 2020; Volume 9, p. e56351. [Google Scholar]
- Vong, K.; Eda, S.; Kadota, Y.; Nasibullin, I.; Wakatake, T.; Yokoshima, S.; Shirasu, K.; Tanaka, K. An artificial metalloenzyme biosensor can detect ethylene gas in fruits and Arabidopsis leaves. Nat. Comm. 2019, 10, 5746. [Google Scholar] [CrossRef]
- Rizza, A.; Walia, A.; Lanquar, V.; Frommer, W.B.; Jones, A.M. In vivo gibberellin gradients visualized in rapidly elongating tissues. Nat. Plants 2017, 3, 803–813. [Google Scholar] [CrossRef]
- Walia, A.; Waadt, R.; Jones, A.M. Genetically encoded biosensors in plants: Pathways to discovery. Annu Rev. Plant Biol. 2018, 69, 497–524. [Google Scholar] [CrossRef]
- Geilfus, C.M. The pH of the apoplast: Dynamic factor with functional impact under stress. Mol. Plant 2017, 10, 1371–1386. [Google Scholar] [CrossRef]
- Tsai, H.H.; Schmidt, W. The enigma of environmental pH sensing in plants. Nat. Plants 2021, 7, 106–115. [Google Scholar] [CrossRef]
- Li, L.; Verstraeten, I.; Roosjen, M.; Takahashi, K.; Rodriguez, L.; Merrin, J.; Chen, J.; Shabala, L.; Smet, W.; Ren, H.; et al. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature 2021, 599, 273–277. [Google Scholar] [CrossRef]
- Lin, W.; Zhou, X.; Tang, W.; Takahashi, K.; Pan, X.; Dai, J.; Ren, H.; Zhu, X.; Pan, S.; Zheng, H.; et al. TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature 2021, 599, 278–282. [Google Scholar] [CrossRef]
- Bacon, M.A.; Wilkinson, S.; Davies, W.J. pH-regulated leaf cell expansion in droughted plants is abscisic acid dependent. Plant Physiol. 1998, 118, 1507–1515. [Google Scholar] [CrossRef]
- Krebs, M.; Held, K.; Binder, A.; Hashimoto, K.; Den Herder, G.; Parniske, M.; Kudla, J.; Schumacher, K. FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca2+ dynamics. Plant J. 2012, 69, 181–192. [Google Scholar] [CrossRef]
- Fendrych, M.; Van Hautegem, T.; Van Durme, M.; Olvera-Carrillo, Y.; Huysmans, M.; Karimi, M.; Lippens, S.; Guérin, C.J.; Krebs, M.; Schumacher, K.; et al. Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in Arabidopsis. Curr. Biol. 2014, 24, 931–940. [Google Scholar] [CrossRef]
- Choi, W.G.; Swanson, S.J.; Gilroy, S. High-resolution imaging of Ca2+, redox status, ROS and pH using GFP biosensors. Plant J. 2012, 70, 118–128. [Google Scholar] [CrossRef]
- Chin, M.Y.; Patwardhan, A.R.; Ang, K.H.; Wang, A.L.; Alquezar, C.; Welch, M.; Nguyen, P.T.; Grabe, M.; Molofsky, A.V.; Arkin, M.R.; et al. Genetically encoded, pH-sensitive mTFP1 biosensor for probing lysosomal pH. ACS Sens. 2021, 6, 2168–2180. [Google Scholar] [CrossRef]
- Kalyani, N.; Goel, S.; Jaiswal, S. On-site sensing of pesticides using point-of-care biosensors: A review. Environ. Chem. Lett. 2021, 19, 345–354. [Google Scholar] [CrossRef]
- Thakur, A.; Kumar, A. Recent Advances on Rapid Detection and Remediation of Environmental Pollutants Utilizing Nanomaterials-Based (Bio)Sensors. Sci. Total Environ. 2022, 834, 155219. [Google Scholar] [CrossRef]
- Rai, P.; Majhi, S.M.; Yu, Y.T.; Lee, J.H. Noble metal@ metal oxide semiconductor core@ shell nano-architectures as a new platform for gas sensor applications. RSC Adv. 2015, 5, 76229–76248. [Google Scholar] [CrossRef]
- Ramnani, P.; Saucedo, N.M.; Mulchandani, A. Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere 2016, 143, 85–98. [Google Scholar] [CrossRef]
- Mondal, R.; Dam, P.; Chakraborty, J.; Paret, M.L.; Katı, A.; Altuntas, S.; Sarkar, R.; Ghorai, S.; Gangopadhyay, D.; Mandal, A.K.; et al. Potential of nanobiosensor in sustainable agriculture: The state-of-art. Heliyon 2022, 8, e12207. [Google Scholar] [CrossRef]
- Sharma, P.; Pandey, V.; Sharma, M.M.M.; Patra, A.; Singh, B.; Mehta, S.; Husen, A. A Review on Biosensors and Nanosensors Application in Agroecosystems. Nanoscale Res. Lett. 2021, 16, 1–24. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, Environment, and Food Safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Saad-Hussein, A.; Beshir, S.; Taha, M.M.; Shahy, E.M.; Shaheen, W.; Abdel-Shafy, E.A.; Thabet, E. Early Prediction of Liver Carcinogenicity Due to Occupational Exposure to Pesticides. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 838, 46–53. [Google Scholar] [CrossRef]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for Nano-Biotechnology Enabled Protection and Nutrition of Plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Almutairi, K.F.; Alotaibi, M.; Shami, A.; Alhammad, B.A.; Battaglia, M.L. Nano-Fertilization as an Emerging Fertilization Technique: Why Can Modern Agriculture Benefit from Its Use? Plants 2020, 10, 2. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, M.P.; Ahmad, A. Construction and Characterization of Protein-Based Cysteine Nanosensor for the Real Time Measurement of Cysteine Level in Living Cells. Int. J. Biol. Macromol. 2020, 143, 273–284. [Google Scholar] [CrossRef]
- Zhang, C.; Qiu, M.; Wang, J.; Liu, Y. Recent Advances in Nanoparticle-Based Optical Sensors for Detection of Pesticide Residues in Soil. Biosens 2023, 13, 415. [Google Scholar] [CrossRef]
- Qu, Y.; Min, H.; Wei, Y.; Xiao, F.; Shi, G.; Li, X.; Jin, L. Au–TiO2/Chit Modified Sensor for Electrochemical Detection of Trace Organophosphates Insecticides. Talanta 2008, 76, 758–762. [Google Scholar] [CrossRef]
- Cesarino, I.; Moraes, F.C.; Lanza, M.R.V.; MacHado, S.A.S. Electrochemical Detection of Carbamate Pesticides in Fruit and Vegetables with a Biosensor Based on Acetylcholinesterase Immobilised on a Composite of Polyaniline-Carbon Nanotubes. Food Chem. 2012, 135, 873–879. [Google Scholar] [CrossRef]
- Rhouati, A.; Majdinasab, M.; Hayat, A. A Perspective on Non-Enzymatic Electrochemical Nanosensors for Direct Detection of Pesticides. Curr. Opin. Electrochem. 2018, 11, 12–18. [Google Scholar] [CrossRef]
- Habekost, A. Rapid and Sensitive Spectroelectrochemical and Electrochemical Detection of Glyphosate and AMPA with Screen-Printed Electrodes. Talanta 2017, 162, 583–588. [Google Scholar] [CrossRef]
- Kumar, S.; Sachdeva, S.; Chaudhary, S.; Chaudhary, G.R. Assessing the Potential Application of Bio-Compatibly Tuned Nanosensor of Yb2O3 for Selective Detection of Imazapyr in Real Samples. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 593, 124612. [Google Scholar] [CrossRef]
- Kant, R. Surface Plasmon Resonance Based Fiber-Optic Nanosensor for the Pesticide Fenitrothion Utilizing Ta2O5 Nanostructures Sequestered onto a Reduced Graphene Oxide Matrix. Mikrochim. Acta 2019, 187, 8. [Google Scholar] [CrossRef]
- Butmee, P.; Mala, J.; Damphathik, C.; Kunpatee, K.; Tumcharern, G.; Kerr, M.; Mehmeti, E.; Raber, G.; Kalcher, K.; Samphao, A. A Portable Selective Electrochemical Sensor Amplified with Fe3O4@Au-Cysteamine-Thymine Acetic Acid as Conductive Mediator for Determination of Mercuric Ion. Talanta 2021, 221, 121669. [Google Scholar] [CrossRef]
- Khairy, M.; Ayoub, H.A.; Banks, C.E. Non-Enzymatic Electrochemical Platform for Parathion Pesticide Sensing Based on Nanometer-Sized Nickel Oxide Modified Screen-Printed Electrodes. Food Chem. 2018, 255, 104–111. [Google Scholar] [CrossRef]
- Wen, X.; Fei, J.; Chen, X.; Yi, L.; Ge, F.; Huang, M. Electrochemical Analysis of Trifluralin Using a Nanostructuring Electrode with Multi-Walled Carbon Nanotubes. Environ. Pollut 2008, 156, 1015–1020. [Google Scholar] [CrossRef] [PubMed]
- Zubrod, J.P.; Bundschuh, M.; Arts, G.; Brühl, C.A.; Imfeld, G.; Knäbel, A.; Payraudeau, S.; Rasmussen, J.J.; Rohr, J.; Scharmüller, A.; et al. Fungicides: An Overlooked Pesticide Class? Environ. Sci. Technol. 2019, 53, 3347–3365. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Lin, Y.S.; Xiao, G.T.; Chiu, T.C.; Hu, C.C. A Highly Selective and Sensitive Nanosensor for the Detection of Glyphosate. Talanta 2016, 161, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, P.; Liu, Z.; Liu, J.; Yi, J.; Xia, F.; Zhou, C. Electrochemical Luminescence Sensor Based on Double Suppression for Highly Sensitive Detection of Glyphosate. Sens. Actuators B Chem. 2020, 304, 121669. [Google Scholar] [CrossRef]
- Tian, X.; Liu, L.; Li, Y.; Yang, C.; Zhou, Z.; Nie, Y.; Wang, Y. Nonenzymatic Electrochemical Sensor Based on CuO-TiO2 for Sensitive and Selective Detection of Methyl Parathion Pesticide in Ground Water. Sens. Actuators B Chem. 2018, 256, 135–142. [Google Scholar] [CrossRef]
- Prabhakar, N.; Thakur, H.; Bharti, A.; Kaur, N. Chitosan-Iron Oxide Nanocomposite Based Electrochemical Aptasensor for Determination of Malathion. Anal. Chim. Acta 2016, 939, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.H.T.; Kim, J.; Chang, S.; Chung, W. Bacterial Biosorbents, an Efficient Heavy Metals Green Clean-Up Strategy: Prospects, Challenges, and Opportunities. Microorganisms 2022, 10, 610. [Google Scholar] [CrossRef] [PubMed]
- Saleh, S.M.; Alminderej, F.M.; Ali, R.; Abdallah, O.I. Optical Sensor Film for Metribuzin Pesticide Detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 229, 117971. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, E.; Özgür, E.; Bereli, N.; Türkmen, D.; Denizli, A. Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection. Mater. Sci. Eng. C 2017, 73, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Yu, Y.; Lu, L.; Ma, X.; Gong, L.; Huang, X.; Liu, G.; Yu, Y. CuO Nanoparticles Decorated 3D Graphene Nanocomposite as Non-Enzymatic Electrochemical Sensing Platform for Malathion Detection. J. Electroanal. Chem. 2018, 812, 82–89. [Google Scholar] [CrossRef]
- Abeywickrama, C.J.; Wansapala, J. Review of organic and conventional agricultural products: Heavy metal availability, accumulation and safety. Int. J. Food Sci. Nutr. 2019, 4, 77–88. [Google Scholar]
- Samanta, S.; Kumar, V.; Nag, S.K.; Saha, K.; Sajina, A.M.; Bhowmick, S.; Paul, S.K.; Das, B.K. Assessment of Heavy Metal Contaminations in Water and Sediment of River Godavari, India. Aquat. Ecosyst. Health Manag. 2021, 24, 23–33. [Google Scholar] [CrossRef]
- Kara, H.; Demir Yetis, A.; Temel, H. Assessment of Heavy Metal Contamination in Groundwater of Diyarbakir Oil Production Area, (Turkey) Using Pollution Indices and Chemometric Analysis. Environ. Earth Sci. 2021, 80, 1–15. [Google Scholar] [CrossRef]
- Pérez-Figueroa, C.E.; Salazar-Moreno, R.; Rodríguez, E.F.; Cruz, I.L.L.; Schmidt, U.; Dannehl, D. Heavy Metals Accumulation in Lettuce and Cherry Cultivated in Cities. Pol. J. Environ. Stud. 2023, 32, 2293–2308. [Google Scholar] [CrossRef] [PubMed]
- Pieper, K.J.; Martin, R.; Tang, M.; Walters, L.; Parks, J.; Roy, S.; Devine, C.; Edwards, M.A. Evaluating Water Lead Levels during the Flint Water Crisis. Environ. Sci. Technol. 2018, 52, 8124–8132. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, X.; Li, X. Something in the Pipe: The Flint Water Crisis and Health at Birth. J. Popul. Econ. 2022, 35, 1723–1749. [Google Scholar] [CrossRef]
- Li, Z.; Xu, D.; Zhang, D.; Yamaguchi, Y. A Portable Instrument for On-Site Detection of Heavy Metal Ions in Water. Anal. Bioanal. Chem. 2021, 413, 3471–3477. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Nor, N.; Ramli, N.H.; Poobalan, H.; Qi Tan, K.; Abdul Razak, K. Recent Advancement in Disposable Electrode Modified with Nanomaterials for Electrochemical Heavy Metal Sensors. Crit. Rev. Anal. Chem. 2023, 53, 253–288. [Google Scholar] [CrossRef]
- Naseri, M.; Mohammadniaei, M.; Ghosh, K.; Sarkar, S.; Sankar, R.; Mukherjee, S.; Pal, S.; Ansari Dezfouli, E.; Halder, A.; Qiao, J.; et al. A Robust Electrochemical Sensor Based on Butterfly-Shaped Silver Nanostructure for Concurrent Quantification of Heavy Metals in Water Samples. Electroanalysis 2023, 35, e202200114. [Google Scholar] [CrossRef]
- Ramdani, S.; Amar, A.; Belhsaien, K.; El Hajjaji, S.; Ghalem, S.; Zouahri, A.; Douaik, A. Assessment of Heavy Metal Pollution and Ecological Risk of Roadside Soils in Tlemcen (Algeria) Using Flame-Atomic Absorption Spectrometry. Anal. Lett. 2018, 51, 2468–2487. [Google Scholar] [CrossRef]
- Kristian, K.E.; Friedbauer, S.; Kabashi, D.; Ferencz, K.M.; Barajas, J.C.; Obrien, K. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy. J. Chem. Educ. 2015, 92, 698–702. [Google Scholar] [CrossRef]
- Yan, N.; Zhu, Z.; Jin, L.; Guo, W.; Gan, Y.; Hu, S. Quantitative Characterization of Gold Nanoparticles by Coupling Thin Layer Chromatography with Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2015, 87, 6079–6087. [Google Scholar] [CrossRef]
- Hu, T.; Lai, Q.; Fan, W.; Zhang, Y.; Liu, Z. Advances in Portable Heavy Metal Ion Sensors. Sensors 2023, 23, 4125. [Google Scholar] [CrossRef] [PubMed]
- Nayan Kumar, H.N.; Nagaraju, D.H.; Yhobu, Z.; Shivakumar, P.; Manjunatha Kumara, K.S.; Budagumpi, S.; Praveen, B.M. Recent Advances in On-Site Monitoring of Heavy Metal Ions in the Environment. Microchem. J. 2022, 182, 107894. [Google Scholar] [CrossRef]
- GadelHak, Y.; Hafez, S.H.M.; Mohamed, H.F.M.; Abdel-Hady, E.E.; Mahmoud, R. Nanomaterials-Modified Disposable Electrodes and Portable Electrochemical Systems for Heavy Metals Detection in Wastewater Streams: A Review. Microchem. J. 2023, 193, 109043. [Google Scholar] [CrossRef]
- Hajzus, J.R.; Shriver-Lake, L.C.; Dean, S.N.; Erickson, J.S.; Zabetakis, D.; Golden, J.; Pennachio, D.J.; Myers-Ward, R.L.; Trammell, S.A. Modifications of Epitaxial Graphene on SiC for the Electrochemical Detection and Identification of Heavy Metal Salts in Seawater. Sensors 2022, 22, 5367. [Google Scholar] [CrossRef]
- Bao, Q.; Li, G.; Yang, Z.; Pan, P.; Liu, J.; Li, R.; Wei, J.; Hu, W.; Cheng, W.; Lin, L. In Situ Detection of Heavy Metal Ions in Sewage with Screen-Printed Electrode-Based Portable Electrochemical Sensors. Analyst 2021, 146, 5610–5618. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, G.; Yang, W.; Dai, X.; Huang, Y.; Ni, J.; Wang, Q. Portable Anti-Fouling Electrochemical Sensor for Soil Heavy Metal Ions Detection Based on the Screen-Printed Carbon Electrode Modified with Silica Isoporous Membrane. J. Electroanal. Chem. 2023, 930, 117141. [Google Scholar] [CrossRef]
- Tan, B.; Yuan, R.; Xie, X.; Qi, Y.; Qi, Z.; Wang, X. High Performance Hetero-Shelled Hollow Structure Metal-Organic Framework Hybrid Material for the Efficient Electrochemical Determination of Lead Ions. Microchem. J. 2023, 193, 109147. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, X.; Liu, S.; Yang, P.; Zhang, S.; Hou, C.; Huo, D. Electrochemical Sensor for Cd2+ Detection Based on Carbon Fiber Paper Sequentially Modified With CoMOF, AuNPs, and Glutathione. J. Electrochem. Soc. 2021, 168, 067526. [Google Scholar] [CrossRef]
- Costa, M.; Di Masi, S.; Garcia-Cruz, A.; Piletsky, S.A.; Malitesta, C. Disposable Electrochemical Sensor Based on Ion Imprinted Polymeric Receptor for Cd(II) Ion Monitoring in Waters. Sens. Actuators B Chem. 2023, 383, 133559. [Google Scholar] [CrossRef]
- Bu, L.; Xie, Q.; Ming, H. Simultaneous Sensitive Analysis of Cd(II), Pb(II) and As(III) Using a Dual-Channel Anodic Stripping Voltammetry Approach. New J. Chem. 2020, 44, 5739–5745. [Google Scholar] [CrossRef]
- Rasheed, T.; Shafi, S.; Ali, J.; Sher, F.; Rizwan, K.; Khan, S. Recent Advances in Chemically and Biologically Synthesized Nanostructures for Colorimetric Detection of Heavy Metal. J. King Saud Univ.-Sci. 2022, 34, 101745. [Google Scholar] [CrossRef]
- Ghasemi, Z.; Mohammadi, A. Sensitive and Selective Colorimetric Detection of Cu (II) in Water Samples by Thiazolylazopyrimidine-Functionalized TiO2 Nanoparticles. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2020, 239, 118554. [Google Scholar] [CrossRef] [PubMed]
- Aygun, A.; Sahin, G.; Tiri, R.N.E.; Tekeli, Y.; Sen, F. Colorimetric Sensor Based on Biogenic Nanomaterials for High Sensitive Detection of Hydrogen Peroxide and Multi-Metals. Chemosphere 2023, 339, 139702. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Xu, J.; Zhu, X.; Duan, X.; Lu, L.; Zuo, Y.; Zhang, Y.; Wang, W. A new electrochemical sensor based on carboimidazole grafted reduced graphene oxide for simultaneous detection of Hg2+ and Pb2+. J. Electroanal. Chem. 2016, 782, 250–255. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Zhou, P.; Tao, H.; Wang, X.; Wu, Y. Oligonucleotide-Induced Regulation of the Oxidase-Mimicking Activity of Octahedral Mn3O4 Nanoparticles for Colorimetric Detection of Heavy Metals. Mikrochim. Acta 2020, 187, 99. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Zhao, J.; Weng, G.; Li, J.; Zhu, J.; Zhao, J. Modification-Free Colorimetric and Visual Detection of Hg2+ Based on the Etching from Core-Shell Structural Au-Ag Nanorods to Nanorices. Sens. Actuators B Chem. 2018, 267, 181–190. [Google Scholar] [CrossRef]
- Jimenez-Falcao, S.; Villalonga, A.; Parra-Nieto, J.; Llopis-Lorente, A.; Martinez-Ruiz, P.; Martinez-Mañez, R.; Villalonga, R. Dithioacetal-Mechanized Mesoporous Nanosensor for Hg(II) Determination. Microporous Mesoporous Mater. 2020, 297, 110054. [Google Scholar] [CrossRef]
- Satapathi, S.; Kumar, V.; Chini, M.K.; Bera, R.; Halder, K.K.; Patra, A. Highly Sensitive Detection and Removal of Mercury Ion Using a Multimodal Nanosensor. Nano-Struct. Nano-Objects 2018, 16, 120–126. [Google Scholar] [CrossRef]
- Ikram, F.; Qayoom, A.; Aslam, Z.; Shah, M.R. Epicatechin Coated Silver Nanoparticles as Highly Selective Nanosensor for the Detection of Pb 2+ in Environmental Samples. J. Mol. Liq. 2019, 277, 649–655. [Google Scholar] [CrossRef]
- Yang, C.H.; Ding, Y.L.; Qian, J. Design of Magnetic-Fluorescent Based Nanosensor for Highly Sensitive Determination and Removal of HG2+. Ceram. Int. 2018, 44, 9746–9752. [Google Scholar] [CrossRef]
- Ali, S.; Tyagi, A.; Mir, R.A.; Rather, I.A.; Anwar, Y.; Mahmoudi, H. Plant beneficial microbiome a boon for improving multiple stress tolerance in plants. Front. Plant Sci. 2023, 14, 1266182. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.Y.; Wang, Y.; Wee, E.J.; Botella, J.R.; Trau, M. Field demonstration of a multiplexed point-of-care diagnostic platform for plant pathogens. Anal. Chem. 2016, 88, 8074–8081. [Google Scholar] [CrossRef] [PubMed]
- Capote, N.; Pastrana, A.M.; Aguado, A.; Sánchez-Torres, P. Molecular tools for detection of plant pathogenic fungi and fungicide resistance. Plant Pathol. 2012, 4, 151–202. [Google Scholar]
- DeBoer, S.H.; López, M.M. New grower-friendly methods for plant pathogen monitoring. Annu. Rev. Phytopathol. 2012, 8, 197–218. [Google Scholar] [CrossRef]
- Uehara-Ichiki, T.; Shiba, T.; Matsukura, K.; Ueno, T.; Hirae, M.; Sasaya, T. Detection and diagnosis of rice-infecting viruses. Front. Microbiol. 2013, 4, 289. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, F.; Scalenghe, R.; Davino, S.; Panno, S.; Scuderi, G.; Ruisi, P.; Villa, P.; Stroppiana, D.; Boschetti, M.; Goulart, L.R.; et al. Advanced methods of plant disease detection: A review. Agron. Sustain. Dev. 2015, 35, 1–25. [Google Scholar] [CrossRef]
- Malik, S.; Singh, J.; Goyat, R.; Saharan, Y.; Chaudhry, V.; Umar, A.; Ibrahim, A.A.; Akbar, S.; Ameen, S.; Baskoutas, S. Nanomaterials-based biosensor and their applications: A review. Heliyon 2023, 7, e19929. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.S.; Li, S.J.; Tzeng, K.C.; Cheng, T.C.; Chang, C.Y.; Chiu, C.Y.; Liao, C.Y.; Hsu, J.J.; Lin, Z.P. Fluorescence Silica Nanoprobe as a Biomarker for Rapid Detection of Plant Pathogens. Adv. Mater. Res. 2009, 79–82, 513–516. [Google Scholar] [CrossRef]
- Firrao, G.; Moretti, M.; Ruiz Rosquete, M.; Gobbi, E.; Locci, R. Nanobiotransducer for Detecting Flavescence Dorée Phytoplasma. J. Plant Pathol. 2005, 87, 101–107. [Google Scholar]
- Lau, H.Y.; Wu, H.; Wee, E.J.H.; Trau, M.; Wang, Y.; Botella, J.R. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes. Sci. Rep. 2017, 7, 38896. [Google Scholar] [CrossRef]
- Lattanzio, V.M.; Nivarlet, N.; Lippolis, V.; Della Gatta, S.; Huet, A.C.; Delahaut, P.; Granier, B.; Visconti, A. Multiplex Dipstick Immunoassay for Semi-Quantitative Determination of Fusarium Mycotoxins in Cereals. Anal. Chim. Acta 2012, 718, 99–108. [Google Scholar] [CrossRef]
- Etefagh, R.; Azhir, E.; Shahtahmasebi, N. Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci. Iran. 2013, 20, 1055–1058. [Google Scholar]
- Greenshields, M.W.C.C.; Cunha, B.B.; Coville, N.J.; Pimentel, I.C.; Zawadneak, M.A.C.; Dobrovolski, S.; Souza, M.T.; Hümmelgen, I.A. Fungi active microbial metabolism detection of Rhizopus sp. and Aspergillus sp. section Nigri on strawberry using a set of chemical sensors based on carbon nanostructures. Chemosensors 2016, 4, 19. [Google Scholar] [CrossRef]
- Repo, T.; Korhonen, A.; Laukkanen, M.; Lehto, T.; Silvennoinen, R. Detecting mycorrhizal colonisation in Scots pine roots using electrical impedance spectra. Biosyst. Eng. 2014, 121, 139–149. [Google Scholar] [CrossRef]
- Tereshchenko, A.; Fedorenko, V.; Smyntyna, V.; Konup, I.; Konup, A.; Eriksson, M.; Yakimova, R.; Ramanavicius, A.; Balme, S.; Bechelany, M. ZnO Films Formed by Atomic Layer Deposition as an Optical Biosensor Platform for the Detection of Grapevine Virus A-Type Proteins. Biosens. Bioelectron. 2017, 92, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, W.; Chen, X.; Zhang, Y.; Lin, X.; Wu, Z.; Li, M. Multiplex Immunoassays of Plant Viruses Based on Functionalized Upconversion Nanoparticles Coupled with Immunomagnetic Separation. J. Nanomater. 2013, 2013, 317437. [Google Scholar] [CrossRef]
- Medintz, I.L.; Sapsford, K.E.; Konnert, J.H.; Chatterji, A.; Lin, T.; Johnson, J.E.; Mattoussi, H. Decoration of Discretely Immobilized Cowpea Mosaic Virus with Luminescent Quantum Dots. Langmuir 2005, 21, 5501–5510. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhong, J.; Qin, P.; Jiao, K. Electrochemical Biosensor for the Detection of Cauliflower Mosaic Virus 35 S Gene Sequences Using Lead Sulfide Nanoparticles as Oligonucleotide Labels. Anal. Biochem. 2008, 377, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Shojaei, T.R.; Salleh, M.A.M.; Sijam, K.; Rahim, R.A.; Mohsenifar, A.; Safarnejad, R.; Tabatabaei, M. Fluorometric Immunoassay for Detecting the Plant Virus Citrus Tristeza Using Carbon Nanoparticles Acting as Quenchers and Antibodies Labeled with CdTe Quantum Dots. Microchim. Acta 2016, 183, 2277–2287. [Google Scholar] [CrossRef]
- Sharma, A.; Jindal, S.K.; Thakur, H. Phenotypic classes of leaf curl virus disease severity for nursery screening in chilli pepper. Plant Dis. Res. 2018, 33, 99–103. [Google Scholar]
- Skottrup, P.; Nicolaisen, M.; Justesen, A.F. Rapid determination of Phytophthora infestans sporangia using a surface plasmon resonance immunosensor. J. Microbiol. Methods. 2007, 68, 507–515. [Google Scholar] [CrossRef]
- Wilson, A.D. Applications of electronic-nose technologies for noninvasive early detection of plant, animal and human diseases. Chemosens 2018, 4, 45. [Google Scholar] [CrossRef]
- FAO. New Standards to Curb the Global Spread of Plant Pests and Diseases. 2021. Available online: https://www.fao.org/news/story/en/item/1187738/icode/ (accessed on 12 May 2024).
- Abd El-Ghany, N.M.; Abd El-Aziz, S.E.; Marei, S.S. A review: Application of remote sensing as a promising strategy for insect pests and diseases management. Environ. Sci. Pollut. Res. 2020, 27, 33503–33515. [Google Scholar] [CrossRef] [PubMed]
- Afsharinejad, A.; Davy, A.; Jennings, B.; Brennan, C. Performance analysis of plant monitoring nanosensor networks at THz frequencies. IEEE Internet Things J. 2015, 3, 59–69. [Google Scholar] [CrossRef]
- Martinazzo, J.; Ballen, S.C.; Steffens, J.; Steffens, C. Sensing of pheromones from Euschistus heros (F.) stink bugs by nanosensors. Sens. Actuators Rep. 2022, 4, 100071. [Google Scholar] [CrossRef]
- Brezolin, A.N.; Martinazzo, J.; Steffens, J.; Steffens, C. Nanostructured cantilever sensor using with Pani/MWCNT-COOH nanocomposites applied in the detection of pheromone. J. Mater. Sci. Mater. Electron. 2020, 31, 6008–6016. [Google Scholar] [CrossRef]
- Wehrenfennig, C.; Schott, M.; Gasch, T.; Sauerwald, T.; Düring, R.A.; Vilcinskas, A.; Kohl, C.D. Laboratory characterization of metal-oxide sensors intended for in situ analyses of pheromones—SOMMSA approach Phys. Status Solidi. 2012, 209, 935–939. [Google Scholar] [CrossRef]
- Moitra, P.; Bhagat, D.; Pratap, R.; Bhattacharya, S. A novel bio-engineering approach to generate an eminent surface-functionalized template for selective detection of female sex pheromone of Helicoverpa armigera. Sci. Rep. 2016, 6, 37355. [Google Scholar] [CrossRef] [PubMed]
- Brezolin, A.N.; Martinazzo, J.; Blassioli-Moraes, M.C.; Manzoli, A.; Steffens, J.; Steffens, C. Highly sensitive sensor for trace level detection of Euschistus heros pheromone. Ind. Biotechnol. 2019, 15, 357–364. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int. J. Intell. Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Singh, G.; Sahu, R. A Bibliometric Analysis on Agriculture 4.0. NOLEGEIN-J. Oper. Res. Manag. 2019, 2, 6–13. [Google Scholar]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Dragavtsev, V.A. Genetic and physiological mechanisms of plant adaptation. In Adaptation in Plant Breeding; Tigerstedt, P.M.A., Ed.; Springer: Dordrecht, The Netherlands, 1997; Volume 4, pp. 59–67. [Google Scholar] [CrossRef]
- Dragavtsev, V.A. Novel Regulatory System in Plants and the Necessity of a Breeding Phytotron in the Russian Federation. Tech. Phys. 2018, 63, 1288–1292. [Google Scholar] [CrossRef]
- Dragavtsev, V.A. Epigenetics and the Engineering of Plant Varieties with Breakthrough Yield. Tech. Phys. 2022, 67, 330–339. [Google Scholar] [CrossRef]
Nanosensor Type | Sensor Types and Sensing Mechanism | Pesticide Detected and Trace Amounts | Purpose | Finding | References |
---|---|---|---|---|---|
| Imazapyr quenches the fluorescence intensity of aminopropyltriethoxysilane (APTES)-coated ytterbium oxide (Yb2O3) nanoparticles. | Imazapyr at 0.2 ppm | The hydrothermal production of ytterbium oxide (Yb2O3) nanoparticles was followed by surface modification with aminopropyltriethoxysilane (APTES) to create a biocompatible tunable fluorescent nanosensor for the accurate and effective monitoring of imazapyr. | Exhibited excellent efficiency in detecting imazapyr and demonstrating its potential for herbicide sensing in real field conditions. | [56] |
Introduction of glyphosate into the solution leads to the inhibition of the catalytic activity of Copper (II) oxide (CuO) by multiwall carbon nanotube (MWCNT) nanomaterials, resulting in a fluorescence response being turned off. | Glyphosate at 0.67 ppb | Turn-off fluorescence sensor that detects glyphosate by inhibiting the catalytic activity of CuO/MWCNTs. | A highly efficient and sensitive nanosensor for detecting glyphosate. | [62] | |
| Affinity sensor. Atrazine selectively binds to molecular imprinted nanoparticles on the gold surface of the SPR chip. | Atrazine at 0.7134 ng/mL | Atrazine-imprinted nanoparticles are synthesised using the emulsion polymerization process and subsequently affixed to the gold surface of the surface plasmon resonance system. | Selective atrazine detection using plastic antibody-based surface plasmon resonance nanosensors. | [68] |
Optic-sensor: interaction with silver film leading to change in refractive index. | Fenitrothion at 38 nM | Fenitrothion is determined by utilizing Ta2O5 nanostructures immobilized onto a reduced graphene oxide matrix. | Use of selective and sensitive optical fiber sensor utilizing SPR for the identification of fenitrothion pesticide. | [57] | |
| Luminescence sensor: glyphosate inhibits enzymatic reaction by competing with L-cysteine which in turn forms glyphosate-Cu (II). This complex inhibits the catalytic action of peroxidase-mimicking substances. | Glyphosate at 0.5 nM | An electrochemical luminescence sensor employing a double suppression mechanism for the highly sensitive detection of glyphosate. | The sensor detects glyphosate using a double inhibition approach with effective detection performance, accurate sensitivity, reproducibility and stability in detection of glyphosate. | [63] |
Electrochemical detection of methyl parathion using CuO-TiO2 complex nanocomposites coupled with a glass carbon electrode. | Methyl parathion at 1.21 ppb | Efficient detection of methyl parathion pesticide using non-enzymatic electrochemical sensor based on CuO-TiO2. | Using non-enzymatic electrochemical nanosensor with CuO-TiO2 hybrid nanocomposites for sensitive and selective detection of methyl parathion. | [64] | |
Aptasensor based sensor. Specific interaction between the biotinylated aptamer sequence of DNA and malathion molecules, immobilized onto the iron oxide-doped chitosan/FTO electrode. | Malathion at 0.001 ng/mL | Efficient sensors for the detection of malathion which provide a rapid and reliable method for analyzing malathion contamination in lettuce leaves and soil samples. | The successful fabrication and characterization of chitosan–iron oxide nanocomposite (CHIT–IO) layer on fluorine tin oxide (FTO) electrode as well as the detection of malathion in lettuce leaves and soil sample. | [65] | |
This nanosensor relies on the hindrance of the redox reaction of CuO nanoparticles by malathion. | Malathion at 0.01 nM | To provide an efficient electrochemical platform for the identification of malathion, utilizing copper oxide nanoparticles supported on 3D graphene as a non-enzymatic sensing interface. | In soil sample, malation detection was based on copper oxide nanoparticles supported by three-dimensional graphene used by the electrochemical sensor. | [69] | |
| The strength of the surface-enhanced Raman spectroscopy (SERS) signal rises accordingly with the concentration of dimethoate. | Dimethoate at 0.002 ppm | Surface-enhanced Raman spectroscopy (SERS) using silver nanodendrites on microsphere end-shape optical fibre for the identification of pesticide residues. | Enabling highly sensitive identification of Rhodamine-6-G and dimethoate pesticide at ultralow concentrations, demonstrating its potential for highly-sensitive chemo-sensing applications. | [66] |
To detect variations in the concentration of metribuzin, the distinctive luminescent capabilities of upconverting nanoparticles (UCNPs) are combined with the colorimetric response of a near infrared (NIR) dye contained in a polyvinyl chloride (PVC) matrix. | Metribuzin at 6.8 × 10−8 M | To enable the detection of metribuzin, a prevalent pesticide, within a low concentration range using a ratiometric and colorimetric optical sensor film. | Highly sensitive sensor with UCNPs’ distinctive luminous features and outstanding recognition abilities at extremely low detection limits. | [67] |
Nanosensor Type | Sensor Types and Sensing Mechanism | Detected Heavy Metal and Trace Amounts | Purpose | Finding | References |
---|---|---|---|---|---|
ICTS nanosensor | Monoclonal antibodies bind specifically to the cadmium-ethylenediaminetetraacetic acid (EDTA) complex, allowing for more selective detection of cadmium ions in aqueous samples. | Cadmium (Cd) at 0.35 µg/L | Using specific on-site screening tool utilizing an enhanced test strip for the quick identification of cadmium [Cd (II)] ions, particularly when the sample comprises the excess of ethylenediaminetetraacetic acid (EDTA) | Sensitive and specific colorimetric test strip that uses a monoclonal antibody for the cadmium-ethylenediaminetetraacetic acid (EDTA) complex, capable of detecting cadmium. | [95] |
Colorimetric nanosensor | Mn3O4 nanoparticles’ oxidase-mimicking activity via oligonucleotides, where heavy metal ions interfere with the inhibition of tetramethylbenzidine (TMB) oxidation, resulting in a color change from light green to yellow, allowing visual identification of heavy metal ions in solution. | Mercury (Hg (II)) at 3.8 μg·L−1 and cadmium [Cd (II)] at 2.4 μg·L−1 | A colorimetric test that uses Mn3O4 nanoparticles regulated by oligonucleotides to visually identify heavy metals, specifically mercury [Hg (II)] as well as cadmium [Cd (II)], with the aim of obtaining high sensitivity and selectivity. | Colorimetric technique using Mn3O4 nanoparticles regulated by oligonucleotides for visual detection of heavy metals, particularly mercury [Hg (II)] as well as Cd (II), with good sensitivity, selectivity, and validity in water samples. | [96] |
Etching silver-coated gold nanobipyramids causes a color shift that is used to detect Hg2+. | Mercury at 0.8 µM | The gold nanobundles Au NBs were created using the seed-mediated growth method, and then different quantities of AgNO3 were added to the colloidal solution to form Au NBs–Ag nanoparticles. The Au NBs were created using the seed-mediated growth method, and then different quantities of AgNO3 were added to the colloidal solution to form Au-NBs–Ag nanoparticles. | The strategy saves time and eliminates the need for difficult operations. | [97] | |
Hg (II) ions coupled with the dithioacetal-based stimulus–responsive molecular gates cause a colorimetric shift in the reporter dye placed onto the mechanized mesoporous silica nanoparticles (MSN), allowing for sensitive and selective detection of Hg (II) ions. | Mercury (Hg) at 60 pM | A highly efficient colorimetric nanosensor for detecting Hg (II) ions, using mechanized mesoporous silica nanoparticles functionalized with stimulus-responsive molecular gates. | Hg (II) is detected using a colorimetric nanosensor that uses mechanized mesoporous silica nanoparticles functionalized with dithioacetal-based molecular gates. | [98] | |
Pd (II) aggregated APP-AuNPs more readily than other metals, thereby eliminating the SPR. |
Palladium Pd (II) at 4.23 µM | To detect Pd(II), gold nanoparticles were stabilized using the cationic 1-(3-(acetylthio)propyl)pyrazin-1-ium ligand. | The nanosensors permit naked eye detection. | [96] | |
Optical nanosensor | Nanohybrid CdSe QDs. Following the addition of cadmium, green photoluminescence gradually returned. | Cadmium at 25 nM | Utilizing a modified reverse microemulsion technique, amino-capped CdTe–SiO2 core-shell-structured fluorescent silica nanoparticles were created. The CdTe–SiO2–CdSe ratiometric probes were made by covalently pairing green-emitting dual-stabilizer-capped CdSe to the silica membrane. | [96] | |
Multimodal nanosensor | Fluorescence quenching as the quantity of Hg2+ increases. | Mercury at 0.49 nM | Following their preparation using the chemical coprecipitation process, silica-coated Fe2O3 nanoparticles were electrostatically bonded to cysteamine-capped CdTe QDs. | The identified analyte can be eliminated with an external bar magnet, leaving no residual contamination. | [99] |
Surface plasmon resonance | When the metal bound to silver nanoparticles based on epicatechin, it displayed a hyperchromic change. | Lead at 1.52 μM | The epicatechin and AgNO3 ratios were mixed, and then the mixture was stirred magnetically to create the ECAgNPs, which were then employed for lead detection. | AgNPs can preferentially detect Pb2+ in the presence of additional interfering metal ions. | [100] |
Electrochemical sensor | As heavy metal concentrations rise, the peak current rises as well. | Cadmium at 8.5 nM, lead at 0.6 nM and copper at 0.8 nM | N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were used as crosslinking agents to prepare Fc-NH2-UiO-66, which was then dispersed on the trGNO nanosheets, and NH2-UiO-66 which was synthesized hydrothermally. | Found to be an excellent platform for the identification of numerous heavy metal ions at once. | [96] |
Magnetic-fluorescent based nanosensor | Quenching of nanosensor’s fluorescence. | Mercury at 9.1 × 10−8 mol/L | Fe3O4 nanoparticles and QDs were encapsulated using carboxymethyl chitosan as an encapsulating agent, producing multifunctional magnetic–fluorescent nanoparticles that were subsequently employed as nanosensors. | The nanosensor exhibits improved Hg2+ ion selectivity and sensitivity. | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyagi, A.; Mir, Z.A.; Ali, S. Revisiting the Role of Sensors for Shaping Plant Research: Applications and Future Perspectives. Sensors 2024, 24, 3261. https://doi.org/10.3390/s24113261
Tyagi A, Mir ZA, Ali S. Revisiting the Role of Sensors for Shaping Plant Research: Applications and Future Perspectives. Sensors. 2024; 24(11):3261. https://doi.org/10.3390/s24113261
Chicago/Turabian StyleTyagi, Anshika, Zahoor Ahmad Mir, and Sajad Ali. 2024. "Revisiting the Role of Sensors for Shaping Plant Research: Applications and Future Perspectives" Sensors 24, no. 11: 3261. https://doi.org/10.3390/s24113261
APA StyleTyagi, A., Mir, Z. A., & Ali, S. (2024). Revisiting the Role of Sensors for Shaping Plant Research: Applications and Future Perspectives. Sensors, 24(11), 3261. https://doi.org/10.3390/s24113261