MocapMe: DeepLabCut-Enhanced Neural Network for Enhanced Markerless Stability in Sit-to-Stand Motion Capture
<p>Schematic representation of distances and angles.</p> "> Figure 2
<p>MocapMe mobile application snapshot.</p> "> Figure 3
<p>Training loss and learning rate over iterations, illustrating the model’s learning process. The blue trajectory delineates the training loss, indicating a significant decrease as the iterations progressed, which demonstrated the model’s capacity to learn effectively. The orange line represents the learning rate, which remained constant throughout the training process.</p> "> Figure 4
<p>Confidence (mean ± std) of the selected keypoints for OpenPose and MocapMe (DeepLabCut-based). Each bar plot corresponds to one of the five points, showcasing the models’ performance consistencies across the dataset. *** indicates <math display="inline"><semantics> <mrow> <mi>p</mi> <mo><</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>10</mn> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 5
<p>Processing time comparison between OpenPose and DeepLabCut-based MocapMe across various videos, underscoring the enhanced efficiency of MocapMe.</p> "> Figure 6
<p>Stability (mean ± std) of the ankle and foot keypoints for OpenPose and MocapMe (DeepLabCut-based). Each bar plot shows the model performance in terms of the mean distance from the centroid. ‘*’ indicates <math display="inline"><semantics> <mrow> <mi>p</mi> <mo><</mo> <mn>0.005</mn> </mrow> </semantics></math>, ‘<math display="inline"><semantics> <mrow> <mo>*</mo> <mo>*</mo> </mrow> </semantics></math>’ indicates <math display="inline"><semantics> <mrow> <mi>p</mi> <mo><</mo> <mn>0.0005</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Related Works
3. Material and Methods
3.1. Data Sources and Structure
- Primary dataset: This dataset was sourced from an online repository, as presented in a study by Boswell et al. [45]. The dataset consists of 493 videos, originally captured from various perspectives. These videos were subsequently processed to ensure a consistent view of the movement from the subject’s left side.
- Supplementary dataset: Additionally, a second dataset was specifically curated for this research, comprising 48 videos. These videos were evenly distributed between three subjects, all of Italian nationality, aged between 28 and 37 years, with an average age of 33 years.
3.1.1. Test Characteristics and Participant Details
3.1.2. Supplementary Dataset Acquisition
3.2. Detailed Overview of ResNet Architecture
3.3. MocapMe
3.4. Implementation Objectives
3.5. Implementation Strategy
3.6. Implementation Methodology
Algorithm 1 Motion analysis using OpenPose and DeepLabCut. |
|
3.7. Training Methodology and Analytical Outcomes
Data Preparation and Refinement
- X-coordinate column: ;
- Y-coordinate column: ;
- Confidence value column: .
4. Results
4.1. Computational Efficiency
4.2. Reliability and Precision of Motion Tracking
4.2.1. Reliability in Keypoint Estimation
4.2.2. Precision in Keypoint Tracking
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
STS | Sit-to-stand |
MLS | Markerless motion capture system |
COG | Center of gravity |
MBS | Marker-based system |
CST | 30-s chair stand test |
iSTS | Instrumented sit-to-stand |
MMC | Markerless motion capture |
DWR | Deep water running |
KAM | Knee adduction moment |
PD | Parkinson’s disease |
VR | Virtual reality |
PROMs | Patient-reported outcome measures |
References
- Frykberg, G.E.; Häger, C.K. Movement analysis of sit-to-stand–research informing clinical practice. Phys. Ther. Rev. 2015, 20, 156–167. [Google Scholar] [CrossRef]
- Boonstra, M.C.; Schwering, P.J.; De Waal Malefijt, M.C.; Verdonschot, N. Sit-to-stand movement as a performance-based measure for patients with total knee arthroplasty. Phys. Ther. 2010, 90, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Hindle, B.R.; Keogh, J.W.; Lorimer, A.V. Inertial-based human motion capture: A technical summary of current processing methodologies for spatiotemporal and kinematic measures. Appl. Bionics Biomech. 2021, 2021, 6628320. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Hidalgo Martinez, G.; Simon, T.; Wei, S.; Sheikh, Y.A. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. In Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, Honolulu, HI, USA, 21–16 July 2019. [Google Scholar]
- Simon, T.; Joo, H.; Matthews, I.; Sheikh, Y. Hand Keypoint Detection in Single Images using Multiview Bootstrapping. In Proceedings of the CVPR, Honolulu, HI, USA, 21–16 July 2017. [Google Scholar]
- Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. In Proceedings of the CVPR, Honolulu, HI, USA, 21–16 July 2017. [Google Scholar]
- Wei, S.E.; Ramakrishna, V.; Kanade, T.; Sheikh, Y. Convolutional pose machines. In Proceedings of the CVPR, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Nakano, N.; Sakura, T.; Ueda, K.; Omura, L.; Kimura, A.; Iino, Y.; Fukashiro, S.; Yoshioka, S. Evaluation of 3D markerless motion capture accuracy using OpenPose with multiple video cameras. Front. Sport. Act. Living 2020, 2, 50. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Ishii, Y.; Yamasaki, T.; Kawanishi, H. Measurement of the total body center of gravity during sit-to-stand motion using a markerless motion capture system. Med. Eng. Phys. 2019, 66, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Hall, J.B.; Bliss, R.; Guess, T.M. Comparison of Azure Kinect and optical retroreflective motion capture for kinematic and spatiotemporal evaluation of the sit-to-stand test. Gait Posture 2022, 94, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Onitsuka, K.; Kubota, K.; Yokoyama, M.; Miyazawa, T.; Hamaguchi, T.; Taniguchi, H.; Usuki, N.; Miyamoto, S.; Okazaki, K.; Murata, K.; et al. Clinical utility of markerless motion capture for kinematic evaluation of sit-to-stand during 30 s-CST at one year post total knee arthroplasty: A retrospective study. BMC Musculoskelet. Disord. 2023, 24, 254. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.; Tangen, C.; Newman, A.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.; Burke, G.; McBurnie, M. Cardiovascular health study collaborative research group: Cardiovascular health study collaborative research group. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Bochicchio, G.; Ferrari, L.; Bottari, A.; Lucertini, F.; Scarton, A.; Pogliaghi, S. Temporal, Kinematic and Kinetic Variables Derived from a Wearable 3D Inertial Sensor to Estimate Muscle Power during the 5 Sit to Stand Test in Older Individuals: A Validation Study. Sensors 2023, 23, 4802. [Google Scholar] [CrossRef]
- Cobo, A.; Villalba-Mora, E.; Pérez-Rodríguez, R.; Ferre, X.; Escalante, W.; Moral, C.; Rodriguez-Mañas, L. Automatic and real-time computation of the 30-seconds chair-stand test without professional supervision for community-dwelling older adults. Sensors 2020, 20, 5813. [Google Scholar] [CrossRef]
- Van Lummel, R.C.; Walgaard, S.; Maier, A.B.; Ainsworth, E.; Beek, P.J.; van Dieën, J.H. The instrumented sit-to-stand test (iSTS) has greater clinical relevance than the manually recorded sit-to-stand test in older adults. PLoS ONE 2016, 11, e0157968. [Google Scholar] [CrossRef]
- Howarth, S.J.; Hum, R.; Ead, L. A kinematic comparison between sit-to-stand movements and individual cycles of the 5-cycle sit-to-stand test. J. Manip. Physiol. Ther. 2021, 44, 487–496. [Google Scholar] [CrossRef]
- Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 2018, 21, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Nath, T.; Mathis, A.; Chen, A.C.; Patel, A.; Bethge, M.; Mathis, M.W. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat. Protoc. 2019, 14, 2152–2176. [Google Scholar] [CrossRef] [PubMed]
- Scappaticci, L.; Risitano, G.; Santonocito, D.; D’Andrea, D.; Milone, D. An approach to the definition of the aerodynamic comfort of motorcycle helmets. Vehicles 2021, 3, 545–556. [Google Scholar] [CrossRef]
- Ranaldi, S.; Gizzi, L.; Severini, G.; De Marchis, C. Optimal Identification of Muscle Synergies From Typical Sit-to-Stand Clinical Tests. IEEE Open J. Eng. Med. Biol. 2023, 4, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Bibbo, D.; De Marchis, C.; Schmid, M.; Ranaldi, S. Machine learning to detect, stage and classify diseases and their symptoms based on inertial sensor data: A mapping review. Physiol. Meas. 2023, 44, 12TR01. [Google Scholar] [CrossRef]
- Milone, D.; Risitano, G.; Pistone, A.; Crisafulli, D.; Alberti, F. A new approach for the tribological and mechanical characterization of a hip prosthesis trough a numerical model based on artificial intelligence algorithms and humanoid multibody model. Lubricants 2022, 10, 160. [Google Scholar] [CrossRef]
- Milone, D.; D’Andrea, D.; Santonocito, D. Smart Design of Hip Replacement Prostheses Using Additive Manufacturing and Machine Learning Techniques. Prosthesis 2023, 6, 24–40. [Google Scholar] [CrossRef]
- Cronin, N.J.; Rantalainen, T.; Ahtiainen, J.P.; Hynynen, E.; Waller, B. Markerless 2D kinematic analysis of underwater running: A deep learning approach. J. Biomech. 2019, 87, 75–82. [Google Scholar] [CrossRef]
- Boswell, M.A.; Uhlrich, S.D.; Kidziński, Ł.; Thomas, K.; Kolesar, J.; Gold, G.; Beaupre, G.; Delp, S. A neural network to predict the knee adduction moment in patients with osteoarthritis using anatomical landmarks obtainable from 2D video analysis. Osteoarthr. Cartil. 2021, 29, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Cóias, A.R.; Lee, M.H.; Bernardino, A. A low-cost virtual coach for 2D video-based compensation assessment of upper extremity rehabilitation exercises. J. Neuroeng. Rehabil. 2022, 19, 83. [Google Scholar] [CrossRef] [PubMed]
- Castelli, A.; Paolini, G.; Cereatti, A.; Della Croce, U. A 2D markerless gait analysis methodology: Validation on healthy subjects. Comput. Math. Methods Med. 2015, 2015, 186780. [Google Scholar] [CrossRef] [PubMed]
- Potempski, F.; Sabo, A.; Patterson, K.K. Quantifying music-dance synchrony during salsa dancing with a deep learning-based 2D pose estimator. J. Biomech. 2022, 141, 111178. [Google Scholar] [CrossRef] [PubMed]
- Trettenbrein, P.C.; Zaccarella, E. Controlling video stimuli in sign language and gesture research: The OpenPoseR package for analyzing OpenPose motion-tracking data in R. Front. Psychol. 2021, 12, 628728. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Ong, J.N.; Kim, R.; Park, S.m.; Choi, J.; Kim, H.J.; Jeon, B. Objective measurement of limb bradykinesia using a marker-less tracking algorithm with 2D-video in PD patients. Park. Relat. Disord. 2020, 81, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Nagashima, Y.; Mano, T.; Iwata, A.; Toda, T. Quantifying normal and parkinsonian gait features from home movies: Practical application of a deep learning–based 2D pose estimator. PLoS ONE 2019, 14, e0223549. [Google Scholar] [CrossRef]
- Haberfehlner, H.; van de Ven, S.S.; van der Burg, S.A.; Huber, F.; Georgievska, S.; Aleo, I.; Harlaar, J.; Bonouvrié, L.A.; van der Krogt, M.M.; Buizer, A.I. Towards automated video-based assessment of dystonia in dyskinetic cerebral palsy: A novel approach using markerless motion tracking and machine learning. Front. Robot. AI 2023, 10, 1108114. [Google Scholar] [CrossRef]
- Bologna, M.; Espay, A.J.; Fasano, A.; Paparella, G.; Hallett, M.; Berardelli, A. Redefining bradykinesia. Mov. Disord. 2023, 38, 551–557. [Google Scholar] [CrossRef]
- Giulietti, N.; Caputo, A.; Chiariotti, P.; Castellini, P. SwimmerNET: Underwater 2D Swimmer Pose Estimation Exploiting Fully Convolutional Neural Networks. Sensors 2023, 23, 2364. [Google Scholar] [CrossRef]
- Mundt, M.; Oberlack, H.; Goldacre, M.; Powles, J.; Funken, J.; Morris, C.; Potthast, W.; Alderson, J. Synthesising 2D video from 3D motion data for machine learning applications. Sensors 2022, 22, 6522. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Shimatani, K.; Hasegawa, M.; Kurita, Y.; Ishige, Y.; Takemura, H. Accuracy of temporo-spatial and lower limb joint kinematics parameters using OpenPose for various gait patterns with orthosis. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 2666–2675. [Google Scholar] [CrossRef] [PubMed]
- Lonini, L.; Moon, Y.; Embry, K.; Cotton, R.J.; McKenzie, K.; Jenz, S.; Jayaraman, A. Video-based pose estimation for gait analysis in stroke survivors during clinical assessments: A proof-of-concept study. Digit. Biomark. 2022, 6, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Ota, M.; Tateuchi, H.; Hashiguchi, T.; Ichihashi, N. Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm. Gait Posture 2021, 85, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Drazan, J.F.; Phillips, W.T.; Seethapathi, N.; Hullfish, T.J.; Baxter, J.R. Moving outside the lab: Markerless motion capture accurately quantifies sagittal plane kinematics during the vertical jump. J. Biomech. 2021, 125, 110547. [Google Scholar] [CrossRef] [PubMed]
- Needham, L.; Evans, M.; Cosker, D.P.; Colyer, S.L. Can markerless pose estimation algorithms estimate 3D mass centre positions and velocities during linear sprinting activities? Sensors 2021, 21, 2889. [Google Scholar] [CrossRef] [PubMed]
- Aderinola, T.B.; Younesian, H.; Whelan, D.; Caulfield, B.; Ifrim, G. Quantifying Jump Height Using Markerless Motion Capture with a Single Smartphone. IEEE Open J. Eng. Med. Biol. 2023, 4, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Washabaugh, E.P.; Shanmugam, T.A.; Ranganathan, R.; Krishnan, C. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics. Gait Posture 2022, 97, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Lee, Y.; Lee, J. Comparative study of markerless vision-based gait analyses for person Re-identification. Sensors 2021, 21, 8208. [Google Scholar] [CrossRef] [PubMed]
- Moro, M.; Marchesi, G.; Hesse, F.; Odone, F.; Casadio, M. Markerless vs. marker-based gait analysis: A proof of concept study. Sensors 2022, 22, 2011. [Google Scholar] [CrossRef]
- Boswell, M.A.; Kidziński, Ł.; Hicks, J.L.; Uhlrich, S.D.; Falisse, A.; Delp, S.L. Smartphone videos of the sit-to-stand test predict osteoarthritis and health outcomes in a nationwide study. npj Digit. Med. 2023, 6, 32. [Google Scholar] [CrossRef] [PubMed]
Layer Name | Output Size | 18-Layer | 34-Layer | 50-Layer | 101-Layer | 152-Layer |
---|---|---|---|---|---|---|
conv1 | 112 × 112 | 7 × 7, 64, stride 2 | ||||
3 × 3 max pool, stride 2 | ||||||
conv2_x | 56 × 56 | × 2 | × 3 | × 3 | × 3 | × 3 |
conv3_x | 28 × 28 | × 2 | × 4 | × 4 | × 4 | × 8 |
conv4_x | 14 × 14 | × 2 | × 6 | × 6 | × 23 | × 36 |
conv5_x | 7 × 7 | × 2 | × 3 | × 3 | × 3 | × 3 |
1 × 1 | Average pool, 1000-d fc, softmax | |||||
FLOPs |
Iter. | Train Iter. | Dataset (%) | Shuffle | Train Error (px) | Test Error (px) | p-Cut | Train Err (p-Cut) | Test Err (p-Cut) |
---|---|---|---|---|---|---|---|---|
0 | 200 k | 80 | 1 | 10.7 | 10.6 | 0.6 | 6.37 | 6.47 |
1 | 250 k | 80 | 1 | 11.45 | 11.41 | 0.6 | 7.89 | 7.68 |
2 | 300 k | 80 | 1 | 10.26 | 10.25 | 0.6 | 6.41 | 6.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milone, D.; Longo, F.; Merlino, G.; De Marchis, C.; Risitano, G.; D’Agati, L. MocapMe: DeepLabCut-Enhanced Neural Network for Enhanced Markerless Stability in Sit-to-Stand Motion Capture. Sensors 2024, 24, 3022. https://doi.org/10.3390/s24103022
Milone D, Longo F, Merlino G, De Marchis C, Risitano G, D’Agati L. MocapMe: DeepLabCut-Enhanced Neural Network for Enhanced Markerless Stability in Sit-to-Stand Motion Capture. Sensors. 2024; 24(10):3022. https://doi.org/10.3390/s24103022
Chicago/Turabian StyleMilone, Dario, Francesco Longo, Giovanni Merlino, Cristiano De Marchis, Giacomo Risitano, and Luca D’Agati. 2024. "MocapMe: DeepLabCut-Enhanced Neural Network for Enhanced Markerless Stability in Sit-to-Stand Motion Capture" Sensors 24, no. 10: 3022. https://doi.org/10.3390/s24103022
APA StyleMilone, D., Longo, F., Merlino, G., De Marchis, C., Risitano, G., & D’Agati, L. (2024). MocapMe: DeepLabCut-Enhanced Neural Network for Enhanced Markerless Stability in Sit-to-Stand Motion Capture. Sensors, 24(10), 3022. https://doi.org/10.3390/s24103022