X-ray Induced Electric Currents in Anodized Ta2O5: Towards a Large-Area Thin-Film Sensor
<p>Ta capacitor types: (<b>A</b>) picture of a bare pellet of anodized nano-porous tantalum capacitor (NP-TaC); H<sub>p</sub>, L<sub>p</sub> and W<sub>p</sub> are the physical dimensions of the pellet. (<b>B</b>) large-area flat thin-film Ta capacitor (FTF-TaC) made by anodizing a 50 μm Ta foil; the thickness <span class="html-italic">d</span> of the Ta<sub>2</sub>O<sub>5</sub> was 170 nm; counter electrode is made of PEDOT conductive polymer. (<b>C</b>) Schematic of the experimental circuit for current–voltage measurements.</p> "> Figure 2
<p>DC dark leakage current IV-curves for different fractions of the working voltage <span class="html-italic">V<sub>W</sub></span> (after waiting time of 120 s) for various types of commercial nano-porous electrolytic tantalum capacitor (NP-TaC). The legend indicates, “capacitance value, <span class="html-italic">V<sub>W</sub></span>, counter electrode material”.</p> "> Figure 3
<p>1 μF, 10 V NP-TaC capacitor under irradiation with 120 kVp, 63 mA, 63 mAs at source-to-surface distance (SSD) of 57.5 cm, as a function of time (<b>a</b>) and for different fractions of the working voltage (<b>b</b>). In (<b>b</b>), the signal I(t) is averaged over the two X-ray pulses after subtraction of the dark current (leakage).</p> "> Figure 4
<p>(<b>a</b>) Signal as a function of the fraction <span class="html-italic">V</span>/<span class="html-italic">V<sub>W</sub></span> under irradiation with 120 kVp, 63 mA, 63 mAs at SSD = 57.5 cm, averaged over the two X-ray pulses after subtraction of the dark current (leakage) for several commercial NP-TaC capacitors. (<b>b</b>) Same data as in (<b>a</b>) but renormalized to the value at 0.9 <span class="html-italic">V</span>/<span class="html-italic">V<sub>W</sub></span> after subtraction of the internal built-in potential (<span class="html-italic">V</span> → <span class="html-italic">V</span> − <span class="html-italic">V</span><sub>0</sub>).</p> "> Figure 5
<p>Oxide thickness (<b>a</b>) and oxide volume (<b>b</b>) dependence of the signal under irradiation with 120 kVp, 63 mA, 63 mAs at SSD = 57.5 cm and with <span class="html-italic">V</span>/<span class="html-italic">V<sub>W</sub></span> = 0.7 applied on all capacitors. The active area is calculated using Equation (4), and the active volume by multiplying the oxide thickness by the active area. The red square represents the flat thin-film Ta capacitor (FTF-TaC) made by anodizing a 50 μm Ta foil at a formation voltage of <span class="html-italic">V<sub>f</sub></span> = 100 V (for FTF-TaC, the active area is the physical area).</p> "> Figure 6
<p>Flat Thin-Film tantalum foil (FTF-TaC) anodized at the formation voltage of <span class="html-italic">V<sub>f</sub></span> = 100 V. The area of the counter electrode was 0.28 cm<sup>2</sup>. Response to 120 kVp X-rays at SSD = 100 cm: (<b>a</b>) Signal as a function of time for 100 mA and different voltages applied; (<b>b</b>) current–voltage curve under irradiation; (<b>c</b>) signal as a function of time for 25 mA and different mAs at 0.9 <span class="html-italic">V</span>/<span class="html-italic">V<sub>W</sub></span>; (<b>d</b>) mA dependence for <span class="html-italic">V</span> = 0, 0.9 <span class="html-italic">V<sub>W</sub></span> (2–20 mA (dashed line) delivered in fluoroscopic mode, 25–200 mA (solid lines) in radiography mode).</p> ">
Abstract
:1. Introduction
1.1. Leakage Charge Transport
1.2. UV/X-ray Response
1.3. Ta2O5 Capacitors as a Radiation Sensor
2. Material and Methods
2.1. Fabrication
2.2. Current Voltage Measurements
2.3. Relations between Capacitor Parameters
3. Results
3.1. Nano-Porous Electrolytic Tantalum Capacitor (NP-TaC)
3.2. Accounting for Varying X-ray Absorption in Nano-Porous Ta Structure
3.3. Anodized Flat Thin-Film Capacitor Foils (FTF-TaC)
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gill, J. Basic Tantalum Capacitor Technology; AVX Internal Technical Report; KYOCERA AVX: Fountain Inn, SC, USA.
- Ezhilvalavan, S.; Tseng, T.Y. Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application—A review. J. Mater. Sci. Mater. Electron. 1999, 10, 9–31. [Google Scholar] [CrossRef]
- Faltus, R.; Jane, M.; Zednicek, T. Storage Capacitor Properties and Their Effect on Energy Harvester Performance; AVX Internal Technical Report; KYOCERA AVX: Fountain Inn, SC, USA, 2011. [Google Scholar]
- Sloppy, J.D.; Podraza, N.J.; Dickey, E.C.; Macdonald, D.D. Complex dielectric functions of anodic bi-layer tantalum oxide. Electrochim. Acta 2010, 55, 8751–8757. [Google Scholar] [CrossRef]
- Shah, D.R. Electrical Characterization of Thin-Film Polymer Tantalum Capacitors. All Theses. 2760. 2017. Available online: https://tigerprints.clemson.edu/all_theses/2760 (accessed on 1 December 2023).
- Sieber, I.V.; Schmuki, P. Porous Tantalum Oxide Prepared by Electrochemical Anodic Oxidation. J. Electrochem. Soc. 2005, 152, C639. [Google Scholar] [CrossRef]
- Manceau, J.P.; Bruyere, S.; Jeannot, S.; Sylvestre, A.; Gonon, P. Leakage current variation with time in Ta2O5 MIM and MIS capacitors. In Proceedings of the 2006 IEEE International Integrated Reliability Workshop Final Report, South Lake Tahoe, CA, USA, 16 October–19 September 2006; pp. 129–133. [Google Scholar] [CrossRef]
- Chaneliere, C.; Autran, J.L.; Devine, R.A.B.; Balland, B. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater. Sci. Eng. R Rep. 1998, 22, 269–322. [Google Scholar] [CrossRef]
- Holman, B. The Electrical Characterization of Tantalum Capacitors as Mis Devices. All Theses. 393. 2008. Available online: https://tigerprints.clemson.edu/all_theses/393 (accessed on 15 November 2023).
- Freeman, Y.; Alapatt, G.F.; Harrell, W.R.; Lessner, P. Electrical Characterization of High Voltage Polymer Tantalum Capacitors. J. Electrochem. Soc. 2012, 159, A1646–A1651. [Google Scholar] [CrossRef]
- Fleming, R.M.; Lang, D.V.; Jones, C.D.W.; Steigerwald, M.L.; Murphy, D.W.; Alers, G.B.; Wong, Y.H.; van Dover, R.B.; Kwo, J.R.; Sergent, A.M. Defect dominated charge transport in amorphous Ta2O5 thin films. J. Appl. Phys. 2000, 88, 850–862. [Google Scholar] [CrossRef]
- Frederickson, A.R. Radiation induced currents and conductivity in dielectrics. IEEE Trans. Nucl. Sci. 1977, 24, 2532–2539. [Google Scholar] [CrossRef]
- Martin, P.; Lopez-Calle, I.; Muñoz, E.; Domínguez, M.; Morales, M.; Núñez, D.; Lacombe, D.; Morilla, Y.; Mota, C.; Pedroso, J. Radiation characterisation for new tantalum polymer capacitors. In Proceedings of the 2016 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Bremen, Germany, 19–23 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Cramer, T.; Fratelli, I.; Barquinha, P.; Santa, A.; Fernandes, C.; D’Annunzio, F.; Loussert, C. Passive radiofrequency x-ray dosimeter tag based on flexible radiation-sensitive oxide field-effect transistor. Sci. Adv. 2018, 4, eaat1825. [Google Scholar] [CrossRef] [PubMed]
- Hwu, J.-G. C-V Hysteresis Instability in Aluminum/Tantalum Oxide/Silicon Oxide/Silicon Capacitors due to Postmetallization Annealing and Co-60 Irradiation. J. Electrochem. Soc. 1988, 135, 2808. [Google Scholar] [CrossRef]
- Trocellier, P. Behaviour of thin films and bulk oxides under microbeam irradiation. Nucl. Instrum. Methods Phys. Res. B 1995, 104, 571–575. [Google Scholar] [CrossRef]
- Dayton, M.S.; Carpenter, A.C.; Beach, M.; Ruiz, T.; Bell, P. Capacitor transient effects in a high-dose-rate environment. In Radiation Detectors in Medicine, Industry, and National Security XIX, Grim, G.P., Barber, H.B., Furenlid, L.R., Koch, J.A., Eds., SPIE: Bellingham, WA, USA, 2018; p. 32. [CrossRef]
- Xue, T.; Liang, Z.-H.; Zhang, X.-N.; Liu, C.-L. A metal-insulator-metal electron emitter based on a porous Al2O3 film. Appl. Phys. Lett. 2015, 106, 163506. [Google Scholar] [CrossRef]
- Taimuty, S.I.; Feinstein, L.; Softky, S.D. X-Ray-Induced Bulk Photovoltaic Effect in Insulators. Sci. New Ser. 1964, 144, 173–174. [Google Scholar] [CrossRef] [PubMed]
- Feates, F.S.; Knight, B. The effects of radiation on the tantalum-tantalum oxide electrode. J. Nucl. Mater. 1961, 3, 277–283. [Google Scholar] [CrossRef]
- Flanagan, T. Effects of Ionizing Radiation on Tantalum Capacitors, Final Report. 1973. Available online: https://www.osti.gov/biblio/4284013 (accessed on 2 November 2023).
- Dobbelaere, T.; Vereecken, P.M.; Detavernier, C. A USB-controlled potentiostat/galvanostat for thin-film battery characterization. HardwareX 2017, 2, 34–49. [Google Scholar] [CrossRef]
- Franklin, R.W. Analysis of Solid Tantalum Capacitor Leakage Current; AVX Internal Technical Report; KYOCERA AVX: Fountain Inn, SC, USA, 1996. [Google Scholar]
- Hubbell, J.H.; Seltzer, S.M. Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (Version 1.4). p. 2004. Available online: http://physics.nist.gov/xaamdi (accessed on 15 October 2023).
- Poludniowski, G.; Landry, G.; DeBlois, F.; Evans, P.M.; Verhaegen, F. SpekCalc: A program to calculate photon spectra from tungsten anode X-ray tubes. Phys. Med. Biol. 2009, 54, N433–N438. [Google Scholar] [CrossRef] [PubMed]
- Brivio, D.; Ada, E.; Sajo, E.; Zygmanski, P. Effective Contact Potential of Thin Film Metal-Insulator Nanostructures and Its Role in Self-Powered Nanofilm X-ray Sensors. ACS Appl. Mater. Interfaces 2017, 9, 11258–11265. [Google Scholar] [CrossRef] [PubMed]
- Zygmanski, P.; Sajo, E. A self-powered thin-film radiation detector using intrinsic high-energy current. Med. Phys. 2016, 43, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Zygmanski, P.; Shrestha, S.; Briovio, D.; Karellas, A.; Sajo, E. Prototypes of self-powered radiation detectors employing intrinsic high-energy current. Med. Phys. 2016, 43, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Brivio, D.; Albert, S.; Gagne, M.P.; Freund, E.; Sajo, E.; Zygmanski, P. Nanoporous aerogel-based periodic high-energy electron current X-ray sensors. J. Phys. D Appl. Phys. 2020, 53, 2020. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brivio, D.; Gagne, M.; Freund, E.; Sajo, E.; Zygmanski, P. X-ray Induced Electric Currents in Anodized Ta2O5: Towards a Large-Area Thin-Film Sensor. Sensors 2024, 24, 2544. https://doi.org/10.3390/s24082544
Brivio D, Gagne M, Freund E, Sajo E, Zygmanski P. X-ray Induced Electric Currents in Anodized Ta2O5: Towards a Large-Area Thin-Film Sensor. Sensors. 2024; 24(8):2544. https://doi.org/10.3390/s24082544
Chicago/Turabian StyleBrivio, Davide, Matt Gagne, Erica Freund, Erno Sajo, and Piotr Zygmanski. 2024. "X-ray Induced Electric Currents in Anodized Ta2O5: Towards a Large-Area Thin-Film Sensor" Sensors 24, no. 8: 2544. https://doi.org/10.3390/s24082544
APA StyleBrivio, D., Gagne, M., Freund, E., Sajo, E., & Zygmanski, P. (2024). X-ray Induced Electric Currents in Anodized Ta2O5: Towards a Large-Area Thin-Film Sensor. Sensors, 24(8), 2544. https://doi.org/10.3390/s24082544