Enhancing Building Point Cloud Reconstruction from RGB UAV Data with Machine-Learning-Based Image Translation
<p>Two-stage framework separated into the machine learning technique (gray) and the application in three steps (green). Firstly (gray), the CIR image is generated from RGB with image-to-image translation. Then (light green), the NDVI is calculated with the generated NIR and red band. Afterwards, (medium green), the NDVI segmentation and classification is used to match the detected features accordingly. Finally (dark green), pose estimation and triangulation are used to generate a sparse 3D point cloud.</p> "> Figure 2
<p>First stage of the two-stage workflow. (<b>a</b>) Image-to-image translation in 5 steps for RGB2CIR simulation. In general, input and pre-processing (orange), training and testing (green) and verification and validation (yellow) (<b>b</b>) Image-to-image translation training.</p> "> Figure 3
<p>Framework second stage: segmentation-driven two-view SfM algorithm. The processing steps are grouped by color, the NDVI related processing (green), the input, feature detection (orange), feature processing (yellow) and the output (blue).</p> "> Figure 4
<p>Pleiades VHR satellite imagery, with the nadir view in true color (RGB). The location of the study target is marked in orange and used for validation (see <a href="#sec3dot2dot3-sensors-24-02358" class="html-sec">Section 3.2.3</a>).</p> "> Figure 5
<p>The target for validation captured by Pleiades VHR satellite. (<b>a</b>) The target stadium; (<b>b</b>) the geolocation of the target (marked in orange in <a href="#sensors-24-02358-f004" class="html-fig">Figure 4</a>); (<b>c</b>) the target ground truth (GT) CIR image. GT NDVI of the target building and its vicinity.</p> "> Figure 6
<p>Morphological changes on the image covering the target and image tiles. (<b>a</b>) Original cropped CIR image of Pleiades Satellite Imagery (1024 × 1024 × 3). A single tile, the white rectangle in (<b>a</b>), is shown as (<b>e</b>). (<b>b</b>–<b>d</b>) and (<b>f</b>–<b>i</b>) are the morphed images of (<b>a</b>) and (<b>e</b>), respectively.</p> "> Figure 7
<p>Training over 200 epochs for model selection. The generator loss (loss GEN) plotted in orange and, in contrast, FID calculation results in blue.</p> "> Figure 8
<p>Training Pix2Pix for model selection with FID. The epochs with the best FID and CM are marked for every test run, expect overall, with colored bars respectivly. The numbers are summarized in <a href="#sensors-24-02358-t005" class="html-table">Table 5</a>.</p> "> Figure 9
<p>CIR pansharpening on the target. The high-resolution panchromatic image is used to increase the resolution of the composite CIR image while preserving spectral information. From top to bottom, (<b>a</b>) panchromatic, (<b>b</b>) color infrared created from multi-spectral bands, and (<b>c</b>) pansharpened color infrared are shown.</p> "> Figure 10
<p>Example of vegetation feature removal to the north of the stadium. (<b>a</b>) CIR images; (<b>b</b>) NDVI image with legend; (<b>c</b>) identified SURF features (yellos asterisks) within dense vegetated areas (green) using 0.6 as the threshold.</p> "> Figure 11
<p>Comparison between the prediction and the ground truth (GT) of the CIR, NIR and NDVI (incl. legend) of the main target (a stadium) and vicinity.</p> "> Figure 12
<p>Comparison between the prediction and the ground truth (GT) of the CIR, NIR and NDVI generated from a pansharpened RGB satellite sub-image.</p> "> Figure 13
<p>Histogram and visual inspection of the CIR and NDVI simulated using MS and PAN images on the target stadium. (<b>a</b>–<b>c</b>) Ground truth (GT) and NDVI predicted using one tile with the size of 256 × 256 from MS Pleiades and their histograms. (<b>d</b>–<b>f</b>) Ground truth of CIR, NIR, NDVI and predicted NIR and NDVI images from nine tiles of the PAN Pleiades images and histograms for NDVI comparison.</p> "> Figure 14
<p>Histogram and visual inspection of MS (<b>I</b>–<b>III</b>) and PAN (<b>IV</b>–<b>VI</b>) examples of Zhubei city.</p> "> Figure 15
<p>Prediction of CIR, NIR and calculated NDVI of a UAV scene: (<b>a</b>) RGB, (<b>b</b>) predicted CIR image, (<b>c</b>) the extracted NIR band of (<b>b</b>), and (<b>d</b>) calculated NDVI with NIR and red band. A close-up view of the area marked with an orange box in (<b>a</b>) is displayed as two 256 × 256 tiles in RGB (<b>e</b>) and the predicted CIR (<b>f</b>).</p> "> Figure 15 Cont.
<p>Prediction of CIR, NIR and calculated NDVI of a UAV scene: (<b>a</b>) RGB, (<b>b</b>) predicted CIR image, (<b>c</b>) the extracted NIR band of (<b>b</b>), and (<b>d</b>) calculated NDVI with NIR and red band. A close-up view of the area marked with an orange box in (<b>a</b>) is displayed as two 256 × 256 tiles in RGB (<b>e</b>) and the predicted CIR (<b>f</b>).</p> "> Figure 16
<p>Direct comparison between without (<b>a</b>) and with vegetation segmentation (<b>b</b>). Areas of low density shown in blue, areas of high density shown in red.</p> "> Figure 17
<p>Two−view SfM 3D sparse point cloud without the application of NDVI−based vegetation removal on the target CSRSR. (<b>a</b>) Sparse point cloud with no further coloring; (<b>b</b>) point cloud colored by elevation; (<b>c</b>) density analysis and the corresponding histogram (<b>d</b>). In addition, Table (<b>e</b>) shows the accumulated number of points over the three operators (SURF, ORB and FAST) and the initial and manually cleaned and processed point cloud.</p> "> Figure 18
<p>Two−view SfM reconstructed 3D sparse point cloud with vegetation segmentation and removal process based on simulated NDVI of the target building. (<b>a</b>) Sparse point cloud with no further coloring; (<b>b</b>) point cloud colored by elevation; (<b>c</b>) density analysis and (<b>d</b>) the histogram. In addition, (<b>e</b>) lists the accumulated number of points over the three operators (SURF, ORB and FAST) after segmentation, with 0.5 NDVI as the threshold to mask vegetation in SURF and ORB, and the initial and manually cleaned point cloud.</p> ">
Abstract
:1. Introduction
2. Related Work of GAN, Vegetation Segmentation and SfM
3. Methods, Materials and Experiment
3.1. Methods and Strategy
3.1.1. The first Stage
3.1.2. The second Stage
3.2. Materials
3.2.1. RGB-NIR Training Dataset
3.2.2. UAV Dataset for Testing
3.2.3. VHR Satellite Imagery for Training and Validation
3.2.4. Study Target for Validation
3.3. Experiments
3.3.1. Preprocessing
3.3.2. Training and Model Selection
3.4. Vegetation Segmentation and Structure from Motion
4. Results and Discussions
4.1. Training and Model Testing
4.2. Color Infrared Simulation Validation
4.3. Histogram evaluation
4.4. Structure from Motion on UAV Prediction and Application
5. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. Adv. Neural Inf. Process. Syst. 2014, 3, 139–144. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–27 July 2017; pp. 1125–1134. [Google Scholar]
- Dippold, E.J.; Tsai, F. Two-View Structure-from-Motion with Multiple Feature Detector Operators. Remote Sens. 2023, 15, 605. [Google Scholar] [CrossRef]
- Iheaturu, C.; Okolie, C.; Ayodele, E.; Egogo-Stanley, A.; Musa, S.; Ifejika Speranza, C. A simplified structure-from-motion photogrammetry approach for urban development analysis. Remote Sens. Appl. Soc. Environ. 2022, 28, 100850. [Google Scholar] [CrossRef]
- Schönberger, J.L.; Frahm, J. Structure-from-Motion Revisited. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113. [Google Scholar]
- He, Y.; Song, K.; Meng, Q.; Yan, Y. An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical Features. IEEE Trans. Instrum. Meas. 2020, 69, 1493–1504. [Google Scholar] [CrossRef]
- Dippold, E.; Tsai, F. Potential Exploration of Segmentation driven Stereo Matching of very high-resolution Satellite Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B5-2022, 67–72. [Google Scholar] [CrossRef]
- Yang, Y.; Geneva, P.; Eckenhoff, K.; Huang, G. Visual-Inertial Odometry with Point and Line Features. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Venetian Macao, Macau, 3–8 November 2019; pp. 2447–2454. [Google Scholar]
- Liu, Y.; Bao, Y. Real-time remote measurement of distance using ultra-wideband (UWB) sensors. Autom. Constr. 2023, 150, 104849. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.; Yang, L.; Hao, L.; Bao, Y. Measuring distance using ultra-wideband radio technology enhanced by extreme gradient boosting decision tree (XGBoost). Autom. Constr. 2021, 126, 103678. [Google Scholar] [CrossRef]
- Tan, X.; Mahjoubi, S.; Xingxing, Z.; Meng, W.; Bao, Y. Metaheuristic inverse analysis on interfacial mechanics of distributed fiber optic sensors undergoing interfacial debonding. Mech. Syst. Signal Process. 2023, 200, 110532. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, X.; Bao, Y. Machine learning-assisted intelligent interpretation of distributed fiber optic sensor data for automated monitoring of pipeline corrosion. Measurement 2024, 226, 114190. [Google Scholar] [CrossRef]
- Yoshii, T.; Matsumura, N.; Lin, C. Integrating UAV-SfM and Airborne Lidar Point Cloud Data to Plantation Forest Feature Extraction. Remote Sens. 2022, 14, 1713. [Google Scholar] [CrossRef]
- Grüner, E.; Astor, T.; Wachendorf, M. Biomass Prediction of Heterogeneous Temperate Grasslands Using an SfM Approach Based on UAV Imaging. Agronomy 2019, 9, 54. [Google Scholar] [CrossRef]
- Cucchiaro, S.; Fallu, D.J.; Zhang, H.; Walsh, K.; Van Oost, K.; Brown, A.G.; Tarolli, P. Multiplatform-SfM and TLS Data Fusion for Monitoring Agricultural Terraces in Complex Topographic and Landcover Conditions. Remote Sens. 2020, 12, 1946. [Google Scholar] [CrossRef]
- Govender, M.; Chetty, K.; Bulcock, H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA 2007, 33, 145–151. [Google Scholar] [CrossRef]
- Holzman, M.E.; Rivas, R.E.; Bayala, M.I. Relationship between TIR and NIR-SWIR as Indicator of Vegetation Water Availability. Remote Sens. 2021, 13, 3371. [Google Scholar] [CrossRef]
- Zhu, Q. Deep Learning for Multi-View Stereo via Plane Sweep: A Survey. arXiv 2021, arXiv:abs/2106.15328. [Google Scholar]
- Lavigne, H.; Van der Zande, D.; Ruddick, K.; Cardoso Dos Santos, J.F.; Gohin, F.; Brotas, V.; Kratzer, S. Quality-control tests for OC4, OC5 and NIR-red satellite chlorophyll-a algorithms applied to coastal waters. Remote Sens. Environ. 2021, 255, 112237. [Google Scholar] [CrossRef]
- Giovos, R.; Tassopoulos, D.; Kalivas, D.; Lougkos, N.; Priovolou, A. Remote Sensing Vegetation Indices in Viticulture: A Critical Review. Agriculture 2021, 11, 457. [Google Scholar] [CrossRef]
- Colorado, J.; Calderon, F.; Mendez, D.; Petro, E.; Rojas Bustos, J.; Correa, E.; Mondragón, I.; Rebolledo, M.; Jaramillo-Botero, A. A novel NIR-image segmentation method for the precise estimation of above-ground biomass in rice crops. PLoS ONE 2020, 15, e0239591. [Google Scholar] [CrossRef]
- Osco, L.P.; Marcato Junior, J.; Marques Ramos, A.P.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.; Pistori, H.; Gonçalves, W.N.; Li, J. A review on deep learning in UAV remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102456. [Google Scholar] [CrossRef]
- Singh, A.; Thakur, N.; Sharma, A. A Review of Supervised Machine Learning Algorithms. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016; pp. 1310–1315. [Google Scholar]
- Camps-Valls, G. Machine Learning in Remote Sensing Data Processing. In Proceedings of the 2009 IEEE International Workshop on Machine Learning for Signal Processing, Grenoble, France, 1–4 September 2009; pp. 1–6. [Google Scholar]
- Benaim, S.; Wolf, L. One-Sided Unsupervised Domain Mapping. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Gan, Z.; Chen, L.; Wang, W.; Pu, Y.; Zhang, Y.; Liu, H.; Li, C.; Carin, L. Triangle Generative Adversarial Networks. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Zhu, J.-Y.; Zhang, R.; Pathak, D.; Darrell, T.; Efros, A.; Wang, O.; Shechtman, E. Toward Multimodal Image-to-Image Translation. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Zheng, C.; Cham, T.-J.; Cai, J. T2Net: Synthetic-to-Realistic Translation for Solving Single-Image Depth Estimation Tasks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 798–814. [Google Scholar]
- Yang, B.; Wen, H.; Wang, S.; Clark, R.; Markham, A.; Trigoni, N. 3D Object Reconstruction from a Single Depth View with Adversarial Learning. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–27 October 2017; pp. 679–688. [Google Scholar]
- Gadelha, M.; Maji, S.; Wang, R. 3D Shape Induction from 2D Views of Multiple Objects. In Proceedings of the International Conference on 3D Vision (3DV), Qingdao, China, 10–12 October 2017; pp. 402–411. [Google Scholar]
- Sønderby, C.; Caballero, J.; Theis, L.; Shi, W.; Huszár, F. Amortised MAP Inference for Image Super-resolution. arXiv 2016, arXiv:1610.04490. [Google Scholar]
- Liu, S.; John, V.; Blasch, E.; Liu, Z.; Huang, Y. IR2VI: Enhanced Night Environmental Perception by Unsupervised Thermal Image Translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1234–12347. [Google Scholar]
- Huang, Z.; Wu, J.; Van Gool, L. Manifold-valued Image Generation with Wasserstein Adversarial Networks. Proc. AAAI Conf. Artif. Intell. 2017, 33. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Xing, E. Generative Semantic Manipulation with Contrasting GAN. arXiv 2017, arXiv:1708.00315. [Google Scholar]
- Xiao, T.; Hong, J.; Ma, J. DNA-GAN: Learning Disentangled Representations from Multi-Attribute Images. arXiv 2017, arXiv:1711.05415. [Google Scholar]
- Zhao, J.; Mathieu, M.; Lecun, Y. Energy-based Generative Adversarial Network. arXiv 2016, arXiv:1609.03126. [Google Scholar]
- Taigman, Y.; Polyak, A.; Wolf, L. Unsupervised Cross-Domain Image Generation. arXiv 2016, arXiv:1611.02200. [Google Scholar]
- Wang, P.; Patel, V. Generating High Quality Visible Images from SAR Images Using CNNs. In Proceedings of the IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 0570–0575. [Google Scholar]
- Park, J.E.; Kim, G.; Hong, S. Green Band Generation for Advanced Baseline Imager Sensor Using Pix2Pix With Advanced Baseline Imager and Advanced Himawari Imager Observations. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6415–6423. [Google Scholar] [CrossRef]
- Picon, A.; Bereciartua-Perez, A.; Eguskiza, I.; Romero-Rodriguez, J.; Jimenez-Ruiz, C.J.; Eggers, T.; Klukas, C.; Navarra-Mestre, R. Deep convolutional neural network for damaged vegetation segmentation from RGB images based on virtual NIR-channel estimation. Artif. Intell. Agric. 2022, 6, 199–210. [Google Scholar] [CrossRef]
- Aslahishahri, M.; Stanley, K.G.; Duddu, H.; Shirtliffe, S.; Vail, S.; Bett, K.; Pozniak, C.; Stavness, I. From RGB to NIR: Predicting of Near Infrared Reflectance from Visible Spectrum AERIAL Images of Crops. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 1312–1322. [Google Scholar]
- Illarionova, S.; Shadrin, D.; Trekin, A.; Ignatiev, V.; Oseledets, I. Generation of the NIR Spectral Band for Satellite Images with Convolutional Neural Networks. Sensors 2021, 21, 5646. [Google Scholar] [CrossRef]
- Sa, I.; Lim, J.; Ahn, H.; MacDonald, B. deepNIR: Datasets for Generating Synthetic NIR Images and Improved Fruit Detection System Using Deep Learning Techniques. Sensors 2022, 22, 4721. [Google Scholar] [CrossRef] [PubMed]
- Sarlin, P.E.; Lindenberger, P.; Larsson, V.; Pollefeys, M. Pixel-Perfect Structure-From-Motion With Featuremetric Refinement. In IEEE Transactions on Pattern Analysis and Machine Intelligence; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Cui, H.; Gao, X.; Shen, S. MCSfM: Multi-Camera-Based Incremental Structure-From-Motion. IEEE Trans. Image Process. 2023, 32, 6441–6456. [Google Scholar] [CrossRef] [PubMed]
- Protopapadakis, E.; Doulamis, A.; Doulamis, N.; Maltezos, E. Stacked Autoencoders Driven by Semi-Supervised Learning for Building Extraction from near Infrared Remote Sensing Imagery. Remote Sens. 2021, 13, 371. [Google Scholar] [CrossRef]
- Fawcett, D.; Kho, L.K.; Hill, T.; Bennie, J.; Azlan, B.; Anderson, K. Unmanned aerial vehicle (UAV) derived structure-from-motion photogrammetry point clouds for oil palm (Elaeis guineensis) canopy segmentation and height estimation. Int. J. Remote Sens. 2019, 40, 7538–7560. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, W.; Liu, X.; Wan, Y.; Zhu, X.; Tan, Y. Unsupervised Building Instance Segmentation of Airborne LiDAR Point Clouds for Parallel Reconstruction Analysis. Remote Sens. 2021, 13, 1136. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, Z.; Cai, Y.; Zhao, B. Research on Vegetation Information Extraction from Visible UAV Remote Sensing Images. In Proceedings of the 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Xi’an, China, 18–20 June 2018; pp. 1–5. [Google Scholar]
- Bassine, F.Z.; Errami, A.; Khaldoun, M. Vegetation Recognition Based on UAV Image Color Index. In Proceedings of the 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Genova, Italy, 11–14 June 2019; pp. 1–4. [Google Scholar]
- Wang, S.; Liu, X.; Zhang, Y.; Li, J.; Zou, S.; Wu, J.; Tao, C.; Liu, Q.; Cai, G. Semantic-guided 3D building reconstruction from triangle meshes. Int. J. Appl. Earth Obs. Geoinf. 2023, 119, 103324. [Google Scholar] [CrossRef]
- Xu, C.; Ye, Z.; Mei, L.; Yang, W.; Hou, Y.; Shen, S.; Ouyang, W.; Ye, Z. Progressive Context-Aware Aggregation Network Combining Multi-Scale and Multi-Level Dense Reconstruction for Building Change Detection. Remote Sens. 2023, 15, 1958. [Google Scholar] [CrossRef]
- Mao, Y.; Chen, K.; Zhao, L.; Chen, W.; Tang, D.; Liu, W.; Wang, Z.; Diao, W.; Sun, X.; Fu, K. Elevation Estimation-Driven Building 3-D Reconstruction From Single-View Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–18. [Google Scholar] [CrossRef]
- Brown, M.; Süsstrunk, S. Multi-Spectral SIFT for Scene Category Recognition. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 177–184. [Google Scholar]
- Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion. IEEE Trans. Geosci. Remote Sens. 2012, 50, 528–537. [Google Scholar] [CrossRef]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In Proceedings of the Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Nakano, G. Minimal Solutions to Uncalibrated Two-view Geometry with Known Epipoles. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; pp. 13315–13324. [Google Scholar]
- Wang, L.; Lan, C.; Wu, B.; Gao, T.; Wei, Z.; Yao, F. A Method for Detecting Feature-Sparse Regions and Matching Enhancement. Remote Sens. 2022, 14, 6214. [Google Scholar] [CrossRef]
- Barroso-Laguna, A.; Brachmann, E.; Prisacariu, V.A.; Brostow, G.J.; Turmukhambetov, D. Two-View Geometry Scoring without Correspondences. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 8979–8989. [Google Scholar]
- Miao, X.; Xiao, G.; Wang, S.; Yu, J. BCLNet: Bilateral Consensus Learning for Two-View Correspondence Pruning. arXiv 2024, arXiv:2401.03459. [Google Scholar] [CrossRef]
Category | Category | Category | |||
---|---|---|---|---|---|
Country | 104 (52) | Indoor | 112 (56) | Street | 100 (50) |
Field | 102 (51) | Mountain | 110 (55) | Urban | 116 (58) |
Forest | 106 (53) | OldBuilding | 102 (51) | Water | 102 (51) |
View | Date | Incident Angle |
---|---|---|
Nadir | 2019-08-27T | 12.57° |
9:18:44.807 | ||
Forward | 2019-08-27T | 17.71° |
08:43:17.817 | ||
Backward | 2019-08-27T | 16.62° |
08:47:06.900 |
Pleiades | MS | PAN | ||||||
---|---|---|---|---|---|---|---|---|
Size | Sliced | Tiles 1 | Tiles 2 | Total | Size | Sliced | ||
Img1 (70) | 5285 × 5563 | 462 | 1386 | 7392 | 9240 | 21,140 × 22,250 | 7221 | |
Img2 (74) | 5228 × 5364 | 441 | 1322 | 7498 | 8820 | 20,912 × 21,452 | 6888 | |
Img3 (93) | 5189 × 5499 | 462 | 1386 | 7392 | 9240 | 20,756 × 21,992 | 7052 | |
EPFL | ||||||||
Images | Tiles 1 | Tiles 2 | Tiles total | |||||
369 | 4452 | 17,808 | 22,260 |
EPFL | Training 9 | Training 1 | Training 2 |
---|---|---|---|
Images | 369 | 16 | 32 |
Tiles 1 | 4452 | 240 | 480 |
Tiles 2 | 17,808 | 768 | 1536 |
Tiles Total | 22,260 | 3840 | 7680 |
Time | 50 h 48 min | 6 h 42 min | 13 h 1 min |
Overall | Streets | Streets, Forest | Streets, Forest, MS and PAN | |
---|---|---|---|---|
Training Tiles | 22,260 | 3840 | 7680 | 15,360 |
Numb. Categories | 9 | 1 | 2 | 4 |
Time | 50 h 48 min | 6 h 42 min | 13 h 1 min | 25 h 51 min |
EPFL RGB-NIR | 9 categories | 1 category | 2 categories | 2 categories |
MS | × | × | × | 1 image |
PAN | × | × | × | 1 image |
Street | Street and Forest | Street, Forest, MS and PAN | |||
---|---|---|---|---|---|
Model | 89 | 98 | 94 | 83 | 64 |
CM | |||||
Accuracy | 0.8136 | 0.5781 | 0.7645 | 0.6830 | 0.7125 |
Precision | 0.7285 | 0.5423 | 0.6798 | 0.6120 | 0.6349 |
F1-score | 0.8429 | 0.7033 | 0.8093 | 0.3660 | 0.4251 |
Kappa | 0.6273 | 0.1563 | 0.5290 | 0.7593 | 0.7767 |
FID | 1.132 | 3.057 | 0.839 | 1.663 | 1.905 |
Pleiades | Accuracy | Recall | F1-Score | Kappa |
---|---|---|---|---|
MS74 | 0.5886 | 0.5486 | 0.7085 | 0.1772 |
MS93 | 0.5956 | 0.5528 | 0.7120 | 0.1912 |
AVG MS | 0.59 | 0.55 | 0.71 | 0.18 |
PAN74 | 0.9466 | 0.9035 | 0.9493 | 0.8932 |
PAN93 | 0.9024 | 0.8366 | 0.8048 | 0.9110 |
AVG PAN | 0.92 | 0.87 | 0.88 | 0.90 |
Diff abs | 0.33 | 0.32 | 0.17 | 0.72 |
Diff % | 35.9 | 36.8 | 19.3 | 80 |
Features | Initial | After | Difference | |
---|---|---|---|---|
Image 1 | 148,717 | 133,186 | 15,531 | 10.44% |
Image 2 | 149,646 | 134,430 | 15,216 | 10.17% |
AVG | 149,181 | 133,808 | 15,373.5 | 10.31% |
PCL | without NDVI | with NDVI | Difference | |||
---|---|---|---|---|---|---|
Initial | 77,909 | 72,643 | 5266 | |||
Difference | 51,236 | 65.76% | 50,275 | 69.21% | 781 | 15.83% |
Cleaned | 26,673 | 22,188 | 4485 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dippold, E.J.; Tsai, F. Enhancing Building Point Cloud Reconstruction from RGB UAV Data with Machine-Learning-Based Image Translation. Sensors 2024, 24, 2358. https://doi.org/10.3390/s24072358
Dippold EJ, Tsai F. Enhancing Building Point Cloud Reconstruction from RGB UAV Data with Machine-Learning-Based Image Translation. Sensors. 2024; 24(7):2358. https://doi.org/10.3390/s24072358
Chicago/Turabian StyleDippold, Elisabeth Johanna, and Fuan Tsai. 2024. "Enhancing Building Point Cloud Reconstruction from RGB UAV Data with Machine-Learning-Based Image Translation" Sensors 24, no. 7: 2358. https://doi.org/10.3390/s24072358
APA StyleDippold, E. J., & Tsai, F. (2024). Enhancing Building Point Cloud Reconstruction from RGB UAV Data with Machine-Learning-Based Image Translation. Sensors, 24(7), 2358. https://doi.org/10.3390/s24072358