A Wearable Sandwich Heterostructure Multimode Fiber Optic Microbend Sensor for Vital Signal Monitoring
<p>Schematic diagram of the SHMF-MZI structure.</p> "> Figure 2
<p>Simulation results of the effect of (<b>a</b>) SIMMF length on the transmission spectrum when the GIMMF length is 2 cm; (<b>b</b>) GIMMF length on the transmission spectrum when the SIMMF length is 2 mm.</p> "> Figure 3
<p>(<b>a</b>) Schematic of the SHMF-MZI encapsulated by a microbend deformer; (<b>b</b>) top view and (<b>c</b>) side view of the SHMF-MZI microbend sensor integrated with the belt.</p> "> Figure 4
<p>Experimental setup for the micro-pressure experimental device.</p> "> Figure 5
<p>(<b>a</b>) Transmission spectra before and after fiber encapsulation, (<b>b</b>) spectrum evolution of the SHMF-MZI microbend sensor under different pressures, and (<b>c</b>) the corresponding intensity variation near a wavelength of 1590 nm.</p> "> Figure 6
<p>Monitoring scheme for HR and RR based on the wearable SHMF-MZI microbend sensor.</p> "> Figure 7
<p>Demonstration of vital sign signal monitoring. (<b>a</b>) Raw signal. (<b>b</b>) Separated respiratory signal. (<b>c</b>) Separated heartbeat signal.</p> "> Figure 8
<p>(<b>a</b>) Comparison between SpO2 signal and BCG signal; (<b>b</b>) a single BCG signal.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Principle of SHMF-MZI
2.2. Simulation and Optimization of SHMF-MZI
2.3. SHMF-MZI-Based Microbend Deformer Sensor
3. Experiment and Discussion
3.1. HR and RR Monitoring Experiments
3.2. Error Analysis and Discussion
3.3. BCG Signal Measurement
3.4. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.-Y.; Lee, C.-H.; Chen, P.-H.; Chung, K.-H.; Huang, S.-H.; Kuo, C.-J.; Wu, W.-C. Risk factors for early cardiovascular mortality in patients with bipolar disorder. Psychiatry Clin. Neurosci. 2017, 71, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Wise, R.A.; Chapman, K.R.; Scirica, B.M.; Schoenfeld, D.A.; Bhatt, D.L.; Daoud, S.Z.; Seoane, B.; Reisner, C.; Gil, E.G. Long-Term Evaluation of the Effects of Aclidinium Bromide on Major Adverse Cardiovascular Events and COPD Exacerbations in Patients with Moderate to Very Severe COPD: Rationale and Design of the ASCENT COPD Study. Chronic Obstr. Pulm. Dis. 2018, 5, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Lyu, W.M.; Chen, S.Y.; Tan, F.Z.; Yu, C.Y. Vital Signs Monitoring Based on Interferometric Fiber Optic Sensors. Photonics 2022, 9, 50. [Google Scholar] [CrossRef]
- Wang, F.; Tanaka, M.; Chonan, S. Development of a PVDF piezopolymer sensor for unconstrained in-sleep cardiorespiratory monitoring. In Twelfth International Conference on Adaptive Structures and Technologies; CRC Press: Boca Raton, FL, USA, 2017; pp. 298–307. [Google Scholar]
- Lorenzo, S.; Valerio, P.; Paola, R. A novel measurement method for respiration rate by electromagnetic frequency sweep. In Proceedings of the 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lisboa, Portugal, 11–12 June 2014. [Google Scholar]
- Xu, W.; Shen, Y.; Yu, C.; Dong, B.; Zhao, W.; Wang, Y. Long modal interference in multimode fiber and its application in vital signs monitoring. Opt. Commun. 2020, 474, 126100. [Google Scholar] [CrossRef]
- Sartiano, D.; Sales, S. Low cost plastic optical fiber pressure sensor embedded in mattress for vital signal monitoring. Sensors 2017, 17, 2900. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Li, L.; Zhang, H.; Guan, L.; Marques, C.; Savović, S.; Ortega, B.; Min, R.; Li, X. Low-cost plastic optical fiber sensor embedded in mattress for sleep performance monitoring. Opt. Fiber Technol. 2021, 64, 102541. [Google Scholar] [CrossRef]
- Tan, F.; Lyu, W.; Chen, S.; Liu, Z.; Yu, C. Contactless vital signs monitoring based on few-mode and multi-core fibers. Opto-Electron. Adv. 2020, 3, 190034-1–190034-12. [Google Scholar] [CrossRef]
- Xu, W.; Bian, S.; Dong, B.; Shen, Y.; Han, S.; Yu, C.; Zhao, W.; Wang, Y. Unobtrusive vital signs and activity monitoring based on dual mode fiber. Opt. Fiber Technol. 2021, 64, 102530. [Google Scholar] [CrossRef]
- Tan, F.; Chen, S.; Lyu, W.; Liu, Z.; Yu, C.; Lu, C.; Tam, H.-Y. Non-invasive human vital signs monitoring based on twin-core optical fiber sensors. Biomed. Opt. Express 2019, 10, 5940–5952. [Google Scholar] [CrossRef]
- Wang, S.; Ni, X.; Li, L.; Wang, J.; Liu, Q.; Yan, Z.; Zhang, L.; Sun, Q. Noninvasive monitoring of vital signs based on highly sensitive fiber optic mattress. IEEE Sens. J. 2020, 20, 6182–6190. [Google Scholar] [CrossRef]
- Chen, Z.; Lau, D.; Teo, J.T.; Ng, S.H.; Yang, X.; Kei, P.L. Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor. J. Biomed. Opt. 2014, 19, 057001. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.; Cai, Y.; Zhao, T.; Li, Z. Research on Smart Mattress Based on Fiber Unbalanced Sagnac Loop. IOP Conf. Ser. Earth Environ. Sci. 2021, 769, 042039. [Google Scholar] [CrossRef]
- Ke, C.; Cai, Y.; Zhao, T.; Li, Z. Research on intelligent mattress based on improved SMS structure sensing fiber. J. Phys. Conf. Ser. 2021, 1802, 022023. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Hee, H.I. Noninvasive measurement of heart rate and respiratory rate for perioperative infants. J. Light. Technol. 2019, 37, 2807–2814. [Google Scholar] [CrossRef]
- Wang, Y.; You, M.; Zhang, Y.; Wu, S.; Zhang, Y.; Yang, H.; Zheng, T.; Chen, X.; Chen, Z.; Xie, X. Noninvasive measurement of the vital signs of cancer patients with a dual-path microbend fiber sensor. Biomed. Opt. Express 2022, 13, 982–994. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, Z.; Elvin, C.S.M.; Janice, L.H.Y.; Ng, S.H.; Teo, J.T.; Wu, R. Textile fiber optic microbend sensor used for heartbeat and respiration monitoring. IEEE Sens. J. 2014, 15, 757–761. [Google Scholar] [CrossRef]
- Tavares, C.; Leitão, C.; Presti, D.L.; Domingues, M.; Alberto, N.; Silva, H.; Antunes, P. Respiratory and heart rate monitoring using an FBG 3D-printed wearable system. Biomed. Opt. Express 2022, 13, 2299–2311. [Google Scholar] [CrossRef] [PubMed]
- Zha, B.; Wang, Z.; Li, L.; Hu, X.; Ortega, B.; Li, X.; Min, R. Wearable cardiorespiratory monitoring with stretchable elastomer optical fiber. Biomed. Opt. Express 2023, 14, 2260–2275. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Ma, L.; Wang, Q.; Wang, H.; Leal-Junior, A.; Li, X.; Marques, C.; Min, R. Optical Microfiber Intelligent Sensor: Wearable Cardiorespiratory and Behavior Monitoring with a Flexible Wave-Shaped Polymer Optical Microfiber. ACS Appl. Mater. Interfaces 2024, 16, 8333–8345. [Google Scholar] [CrossRef]
- Wang, W.; Yiu, H.H.; Li, W.J.; Roy, V.A. The principle and architectures of optical stress sensors and the progress on the development of microbend optical sensors. Adv. Opt. Mater. 2021, 9, 2001693. [Google Scholar] [CrossRef]
- Zhao, R.; Du, L.; Zhao, Z.; Chen, X.; Sun, J.; Man, Z.; Cao, B.; Fang, Z. Accurate Estimation of Heart and Respiration Rates Based on an Optical Fiber Sensor Using Adaptive Regulations and Statistical Classifications Spectrum Analysis. Front. Digit. Health 2021, 3, 747460. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.-f.; Sun, S.-j.; Lv, R.-q.; Zhao, Y. Design and experiment of an optical fiber micro bend sensor for respiration monitoring. Sens. Actuators A Phys. 2016, 251, 126–133. [Google Scholar] [CrossRef]
- Guo, X.; Li, Z.; Yan, D. A bio-signal monitoring sensor based on the microbending effect of fiber. IOP Conf. Ser. Mater. Sci. Eng. 2019, 612, 022100. [Google Scholar] [CrossRef]
- Yang, X.; Luo, B.; Wu, D.; Fan, J.; Gu, H.; Guo, Y.; Zhao, M. Highly sensitive curvature sensor based on a sandwich multimode fiber Mach–Zehnder interferometer. Opt. Express 2022, 30, 40251–40264. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, N.; Huang, X.; Wang, M. Fiber optic transverse load sensor based on polarization properties of π-phase-shifted fiber Bragg grating. Opt. Commun. 2015, 342, 152–156. [Google Scholar] [CrossRef]
- Chen, G.Y.; Shahnia, S.; Monro, T.M.; Lancaster, D.G. Force sensors using the skew-ray-probed plastic optical fibers. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Maldonado-Hurtado, D.G.; Llera, M.; Flahaut, F.; Benoit, J.; Barrera, D. Weight Measurement and Vibration Detection Sensor Based on a Thermoplastic Polyurethane Optical Fiber. J. Light. Technol. 2023, 42, 1740–1747. [Google Scholar] [CrossRef]
- Zhao, T.; Fu, X.; Zhan, J.; Chen, K.; Li, Z. Vital signs monitoring using the macrobending small-core fiber sensor. Opt. Lett. 2021, 46, 4228–4231. [Google Scholar] [CrossRef]
- ANSI/AAMI EC13: 2002; Cardiac Monitors, Heart Rate Meters, and Alarms. American National Standards Institute: Fort Belvoir, VA, USA, 2002.
- Setiawan, A.W. Study on Mobile Apps-based Heart Rate Measurement: Female and Male. In Proceedings of the 2021 Fourth International Conference on Vocational Education and Electrical Engineering (ICVEE), Surabaya, Indonesia, 2–3 October 2021; pp. 1–5. [Google Scholar]
- Etiwy, M.; Akhrass, Z.; Gillinov, L.; Alashi, A.; Wang, R.; Blackburn, G.; Gillinov, S.M.; Phelan, D.; Gillinov, A.M.; Houghtaling, P.L. Accuracy of wearable heart rate monitors in cardiac rehabilitation. Cardiovasc. Diagn. Ther. 2019, 9, 262. [Google Scholar] [CrossRef]
- Gordon, J. Certain molar movements of the human body produced by the circulation of the blood. J. Anat. Physiol. 1877, 11, 533. [Google Scholar] [PubMed]
- Lou, B.; Li, C.; Deng, J.; Zhu, L.; Yang, C.; Chen, W. Low-voltage distribution network topology verification method based on Revised Pearson correlation coefficient. J. Phys. Conf. Ser. 2020, 1633, 012084. [Google Scholar] [CrossRef]
Fiber Type | ncore/nclad | Diameter (μm) |
---|---|---|
SMF | 1.451/1.444 | 8.3/125 |
SIMMF | 1.458/1.444 | 105/125 |
GIMMF | 1.458 × sqrt (1 − 0.019 × (r/25)2)/1.444 | 50/125 |
Subject No. | Gender | Age | Weight (kg) | Height (cm) |
---|---|---|---|---|
1 | Female | 25 | 51 | 160 |
2 | Female | 24 | 60 | 158 |
3 | Female | 24 | 58 | 175 |
4 | Female | 25 | 50 | 165 |
5 | Female | 23 | 51 | 167 |
6 | Male | 23 | 62 | 160 |
7 | Male | 24 | 65 | 165 |
8 | Male | 24 | 55 | 158 |
9 | Male | 25 | 60 | 175 |
10 | Male | 24 | 70 | 185 |
Index | Error of HR (Mean ± SD) | Error of RR (Mean ± SD) | ||||
---|---|---|---|---|---|---|
ME (bpm) | MAE (bpm) | MAPE (%) | ME (bpm) | MAE (bpm) | MAPE (%) | |
Female1 | −1.4 ± 5.2 | 4.1 ± 3.4 | 5.7 ± 4.9 | 0.5 ± 1.6 | 1.4 ± 0.9 | 7.2 ± 4.8 |
Female2 | −1.9 ± 6.3 | 4.9 ± 4.4 | 6.0 ± 5.5 | 0.4 ± 1.8 | 1.3 ± 1.3 | 5.5 ± 4.5 |
Female3 | −2.0 ± 6.1 | 4.7 ± 4.3 | 6.5 ± 6.6 | −0.6 ± 2.4 | 1.7 ± 1.8 | 11.6 ± 14.1 |
Female4 | −0.9 ± 6.1 | 4.8 ± 3.8 | 6.9 ± 5.7 | 0.7 ± 1.7 | 1.4 ± 1.2 | 5.8 ± 5.1 |
Female5 | −1.0 ± 4.5 | 3.3 ± 3.3 | 4.2 ± 4.4 | −0.5 ± 2.7 | 2.1 ± 1.7 | 15 ± 13.9 |
Male1 | 0.4 ± 2.9 | 2.0 ± 2.0 | 3.5 ± 3.4 | 0.7 ± 1.3 | 1.2 ± 0.9 | 5.3 ± 3.9 |
Male2 | 2.3 ± 5.3 | 4.4 ± 3.7 | 6.0 ± 5.3 | 0.3 ± 1.3 | 1.1 ± 0.7 | 5.0 ± 3.1 |
Male3 | −1.7 ± 2.8 | 2.4 ± 2.3 | 3.3 ± 3.2 | 0.1 ± 1.1 | 0.8 ± 0.8 | 4.8 ± 4.4 |
Male4 | 2.1 ± 5.3 | 3.6 ± 4.4 | 3.9 ± 4.5 | 1.1 ± 1.7 | 1.6 ± 1.2 | 9.4 ± 7.5 |
Male5 | 1.2 ± 5.3 | 4.0 ± 3.7 | 4.5 ± 4.1 | 0.6 ± 2.3 | 1.7 ± 1.7 | 10.6 ± 12.5 |
Sit | 0.8 ± 5.4 | 4.0 ± 3.7 | 4.9 ± 4.5 | 0.3 ± 1.8 | 1.3 ± 1.4 | 7.1 ± 10.2 |
Stand | −0.1 ± 5.7 | 4.0 ± 3.9 | 4.7 ± 4.6 | 0.6 ± 2.1 | 1.6 ± 1.4 | 8.9 ± 8.9 |
Lie | −1.0 ± 4.7 | 3.3 ± 3.5 | 5.2 ± 5.5 | 0.1 ± 1.8 | 1.4 ± 1.2 | 8.3 ± 8.4 |
Summarize | −0.1 ± 5.3 | 3.8 ± 3.7 | 4.9 ± 4.9 | 0.3 ± 1.9 | 1.4 ± 1.3 | 8.1 ± 9.2 |
Device | ME (bpm) | MAE (bpm) | MAPE (%) | Cost | Length (mm) | Technology | Ref. |
---|---|---|---|---|---|---|---|
SHMF-MZI | −0.1 ± 5.3 | 3.8 ± 3.7 | 4.9 ± 4.9 | Low | 22 | Intensity | This work |
FBG | 0.8 ± 5.9 | 3.8 ± 4.6 | 0.6 ± 7.6 | High | 5 | Wavelength | [20] |
Apple Watch | −1.7 ± 10 | 5.0 ± 9.0 | 5.5 ± 9.4 | High | - | PPG | [34] |
BCG (bpm) | SpO2 (bpm) | Absolute Error (bpm) | ME (bpm) | MAE (bpm) | MAPE (%) |
---|---|---|---|---|---|
63 | 62 | 1 | |||
63 | 63 | 0 | |||
61 | 61 | 0 | |||
62 | 63 | 1 | |||
62 | 64 | 2 | |||
65 | 65 | 0 | |||
64 | 67 | 3 | |||
66 | 66 | 0 | |||
68 | 69 | 1 | |||
67 | 67 | 0 | |||
65 | 66 | 1 | |||
64 | 64 | 0 | |||
68 | 70 | 2 | |||
62 | 62 | 0 | |||
65 | 65 | 0 | |||
66 | 65 | 1 | |||
66 | 65 | 1 | |||
65 | 66 | 1 | |||
67 | 69 | 2 | |||
65 | 66 | 1 | |||
(mean ± SD) | 0.55 ± 1.07 | 0.85 ± 0.85 | 1.28 ± 1.27 |
Index | rX,Y of HR | rX,Y of RR |
---|---|---|
Female1 | 0.91 | 0.88 |
Female2 | 0.77 | 0.74 |
Female3 | 0.85 | 0.64 |
Female4 | 0.69 | 0.84 |
Female5 | 0.94 | 0.75 |
Male1 | 0.62 | 0.87 |
Male2 | 0.79 | 0.86 |
Male3 | 0.86 | 0.83 |
Male4 | 0.93 | 0.65 |
Male5 | 0.76 | 0.75 |
Sit | 0.85 | 0.91 |
Stand | 0.89 | 0.87 |
Lie | 0.77 | 0.91 |
Summarize | 0.92 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Luo, B.; Zou, X.; Zou, C.; Wu, D.; Wang, Z.; Bai, Y.; Zhao, M. A Wearable Sandwich Heterostructure Multimode Fiber Optic Microbend Sensor for Vital Signal Monitoring. Sensors 2024, 24, 2209. https://doi.org/10.3390/s24072209
Zhou F, Luo B, Zou X, Zou C, Wu D, Wang Z, Bai Y, Zhao M. A Wearable Sandwich Heterostructure Multimode Fiber Optic Microbend Sensor for Vital Signal Monitoring. Sensors. 2024; 24(7):2209. https://doi.org/10.3390/s24072209
Chicago/Turabian StyleZhou, Fumin, Binbin Luo, Xue Zou, Chaoke Zou, Decao Wu, Zhijun Wang, Yunfang Bai, and Mingfu Zhao. 2024. "A Wearable Sandwich Heterostructure Multimode Fiber Optic Microbend Sensor for Vital Signal Monitoring" Sensors 24, no. 7: 2209. https://doi.org/10.3390/s24072209
APA StyleZhou, F., Luo, B., Zou, X., Zou, C., Wu, D., Wang, Z., Bai, Y., & Zhao, M. (2024). A Wearable Sandwich Heterostructure Multimode Fiber Optic Microbend Sensor for Vital Signal Monitoring. Sensors, 24(7), 2209. https://doi.org/10.3390/s24072209