Dynamic Measurement of a Cancer Biomarker: Towards In Situ Application of a Fiber-Optic Ball Resonator Biosensor in CD44 Protein Detection
<p>The sequential procedure of fabricating an optical fiber ball resonator using the Fujikura LZM-100. The location in the splicer where the fiber is inserted to fabricate the ball resonator is indicated in the orange box in the bottom image. The upper image shows the schematic images of the fabrication procedures, which include aligning and splicing the optical fiber before heating and rotating it with a CO<sub>2</sub> laser. This process results in the formation of the ball resonator structure.</p> "> Figure 2
<p>Pressure characterization setup for an optical fiber ball resonator. A 499 μm resonator is placed into the tip of a burette and then systematically filled with DI water at different levels. The pressure data recorded at water column heights ranging from 16 cm to 66 cm demonstrates that changes in pressure do not alter the detected signals.</p> "> Figure 3
<p>An illustration of the setup for the dynamic measurement of the CD44 protein. The setup includes a Legato 100 KD Scientific syringe pump, which operates at a flow rate of 20 mL/min to mimic venous circulation, and a 20-gauge polyurethane cannula that protects the optical fiber ball resonator, coupled with a LUNA OBR 4600 device for accurate detection.</p> "> Figure 4
<p>Example of a calibration of a ball resonator for RI detection. (<b>a</b>) Spectrum of the ball resonator probe, for various RI values. (<b>b</b>) Inset displaying the spectrum in proximity of the detected spectral feature. (<b>c</b>) Change of intensity as a function of the refractive index.</p> "> Figure 5
<p>Analysis of pressure effects on the 499 μm optical fiber ball resonator.</p> "> Figure 6
<p>Representative images of the biosensors’ surface morphologies obtained from AFM measurements at various stages of functionalization. Images of different stages of functionalization in a 1 μm × 1 μm section of an optical fiber ball resonator’s surface are displayed: (<b>a</b>) Piranha pre-treatment, (<b>b</b>) silanization with APTMS, (<b>c</b>) heat treatment, (<b>d</b>) cross-linking with GA, (<b>e</b>) immobilization of antibodies, (<b>f</b>) blocking with mPEG-amine, and (<b>g</b>) CD44 protein detected by a ball resonator.</p> "> Figure 7
<p>Quantitative analysis of the height and surface roughness of various functionalization phases for optical fiber ball resonator biosensors. Assessing the variations in height (<b>a</b>) and RMS-roughness (<b>b</b>) at every stage of functionalization. * <span class="html-italic">p</span> ≤ 0.05, ** <span class="html-italic">p</span> ≤ 0.01, *** <span class="html-italic">p</span> ≤ 0.001, ns, <span class="html-italic">p</span> > 0.05.</p> "> Figure 8
<p>An optical fiber ball resonator biosensor’s efficacy in detecting CD44 was analyzed. The sensorgram shows the change in signal intensity over time, showing how a functionalized optical fiber ball resonator reacts to increasing amounts of CD44 in serum, ranging from 7.1 aM to 16.7 nM in diluted calf serum; results from the 497 μm diameter sensor are highlighted.</p> "> Figure 9
<p>This 3D sensorgram shows the real-time detection of CD44 using a biosensor with a 497 μm optical fiber ball resonator. The sensorgram plots the spectral intensity against wavelength and time. The color gradient change from blue to yellow visually demonstrates the biosensor’s response to increasing concentrations of CD44 in serum, which range from 7.1 aM to 16.7 nM. Each peak correlates to a specific CD44 concentration, demonstrating the sensor’s ability to measure.</p> "> Figure 10
<p>Evaluation of optical fiber ball resonator biosensors’ specificity for CD44 in comparison to thrombin and gamma-globulin. The bar graph illustrates how biosensors with diameters varying from 492 to 497 μm responded differently to CD44, while showing minimal responses to gamma-globulin (489 μm) and thrombin (518 μm) at concentrations ranging from 9.3 fM to 16.7 nM. This indicates the biosensor’s specific affinity for CD44. Error bars represent the measurements standard deviation, emphasizing the consistency and reliability of the sensor’s specificity.</p> "> Figure 11
<p>Results for CD44 detection from three biological replicates. (<b>a</b>) The graph shows the sensor’s response percentages in a logarithmic range of CD44 concentrations, demonstrating the sensors’ consistent performance in several trials. This is visible from the overlapping data points and the shaded confidence interval. (<b>b</b>) The graph compares intensity change (dB) for three sensors with varying diameters (492 μm, 496 μm, and 497 μm) to the logarithmic concentration of CD44. It indicates that the sensors operate consistently when CD44 levels increase. Error bars are used to indicate the standard deviation, which highlights the accuracy of the sensors while taking several measurements.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optical Fiber Ball Resonator Fabrication and Calibration
2.2. Optical Fiber Ball Resonator Surface Functionalization
2.3. Dynamic Protein Measurement
2.4. The Surface Morphology Study
3. Results and Discussion
3.1. Fabrication of Optical Fiber Ball Resonators and Their Calibration in Dynamic Conditions
3.2. Surface Morphology of the Functionalized Optical Fiber Ball Resonators by AFM
3.3. CD44 and Control Proteins Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, Y.; Zuo, X.; Wei, D. Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. Stem Cells Transl. Med. 2015, 4, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Kazemi, Y.; Dehghani, S.; Nosrati, R.; Taghdisi, S.M.; Abnous, K.; Alibolandi, M.; Ramezani, M. Recent Progress in the Early Detection of Cancer Based on CD44 Biomarker; Nano-Biosensing Approaches. Life Sci. 2022, 300, 120593. [Google Scholar] [CrossRef] [PubMed]
- Nimse, S.B.; Sonawane, M.D.; Song, K.S.; Kim, T. Biomarker Detection Technologies and Future Directions. Analyst 2016, 141, 740–755. [Google Scholar] [CrossRef] [PubMed]
- Ashley, E.A. Towards Precision Medicine. Nat. Rev. Genet. 2016, 17, 507–522. [Google Scholar] [CrossRef] [PubMed]
- Natalia, A.; Zhang, L.; Sundah, N.R.; Zhang, Y.; Shao, H. Analytical Device Miniaturization for the Detection of Circulating Biomarkers. Nat. Rev. Bioeng. 2023, 1, 481–498. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Liquid Biopsies Come of Age: Towards Implementation of Circulating Tumour DNA. Nat. Rev. Cancer 2017, 17, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Vitale, I.; Shema, E.; Loi, S.; Galluzzi, L. Intratumoral Heterogeneity in Cancer Progression and Response to Immunotherapy. Nat. Med. 2021, 27, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Altug, H.; Oh, S.H.; Maier, S.A.; Homola, J. Advances and Applications of Nanophotonic Biosensors. Nat. Nanotechnol. 2022, 17, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Dizdar, L.; Fluegen, G.; van Dalum, G.; Honisch, E.; Neves, R.P.; Niederacher, D.; Neubauer, H.; Fehm, T.; Rehders, A.; Krieg, A.; et al. Detection of Circulating Tumor Cells in Colorectal Cancer Patients Using the GILUPI CellCollector: Results from a Prospective, Single-Center Study. Mol. Oncol. 2019, 13, 1548–1558. [Google Scholar] [CrossRef]
- Andratschke, M.; Chaubal, S.; Pauli, C.; Mack, B.; Hagedorn, H.; Wollenberg, B. Soluble CD44v6 Is Not a Sensitive Tumor Marker in Patients with Head and Neck Squamous Cell Cancer. Anticancer Res. 2005, 25, 2821–2826. [Google Scholar] [PubMed]
- Basakran, N.S. CD44 as a Potential Diagnostic Tumor Marker. Saudi Med. J. 2015, 36, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Franzmann, E.J.; Reategui, E.P.; Carraway, K.L.; Hamilton, K.L.; Weed, D.T.; Goodwin, W.J. Salivary Soluble CD44: A Potential Molecular Marker for Head and Neck Cancer. Cancer Epidemiol. Biomark. Prev. 2005, 14, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Imran, M.; Ahsan, H. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics 2023, 15, 1630. [Google Scholar] [CrossRef]
- Nagano, O.; Murakami, D.; Hartmann, D.; De Strooper, B.; Saftig, P.; Iwatsubo, T.; Nakajima, M.; Shinohara, M.; Saya, H. Cell-Matrix Interaction via CD44 Is Independently Regulated by Different Metalloproteinases Activated in Response to Extracellular Ca2+ Influx and PKC Activation. J. Cell Biol. 2004, 165, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Wöhner, B.; Li, W.; Hey, S.; Drobny, A.; Werny, L.; Becker-Pauly, C.; Lucius, R.; Zunke, F.; Linder, S.; Arnold, P. Proteolysis of CD44 at the Cell Surface Controls a Downstream Protease Network. Front. Mol. Biosci. 2023, 10, 1026810. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, G.; Wang, X.; Jin, D.; Wu, M.; Ma, J.; Sy, M. Potential use of soluble CD44 in serum as indicator of tumor burden and metastasis in patients with gastric or colon cancer. Cancer Res. 1994, 54, 422–426. [Google Scholar]
- Zeimet, A.; Widschwendter, M.; Uhl-Steidi, M.; Muller-Holzner, E.; Daxenbichier, G.; Marth, C. High Serum Levels of Soluble CD44 Variant Isoform v5 Are Associated with Favourable Clinical Outcome in Ovarian Cancer. Br. J. Cancer 1997, 76, 1646–1651. [Google Scholar] [CrossRef]
- Wang, C.Y.; Huang, C.S.; Yang, Y.P.; Liu, C.Y.; Liu, Y.Y.; Wu, W.W.; Lu, K.H.; Chen, K.H.; Chang, Y.L.; Lee, S.D.; et al. The Subpopulation of CD44-Positive Cells Promoted Tumorigenicity and Metastatic Ability in Lung Adenocarcinoma. J. Chin. Med. Assoc. 2019, 82, 196–201. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, R.; Hao, Y.; Yang, P. A CD44-Biosensor for Evaluating Metastatic Potential of Breast Cancer Cells Based on Quartz Crystal Microbalance. Sci. Bull. 2017, 62, 923–930. [Google Scholar] [CrossRef]
- Chang, S.M.; Xing, R.D.; Zhang, F.M.; Duan, Y.Q. Serum Soluble CD44v6 Levels in Patients with Oral and Maxillofacial Malignancy. Oral. Dis. 2009, 15, 570–572. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, M.P.; Rao, L.; Gennerich, A. Covalent Immobilization of Microtubules on Glass Surfaces for Molecular Motor Force Measurements and Other Single-Molecule Assays. In Mitosis: Methods and Protocols; Humana Press: New York, NY, USA, 2014; Volume 1136, pp. 137–169. [Google Scholar]
- Fan, B.; Fan, Q.; Cui, M.; Wu, T.; Wang, J.; Ma, H.; Wei, Q. Photoelectrochemical Biosensor for Sensitive Detection of Soluble CD44 Based on the Facile Construction of a Poly(Ethylene Glycol)/Hyaluronic Acid Hybrid Antifouling Interface. ACS Appl. Mater. Interfaces 2019, 11, 24764–24770. [Google Scholar] [CrossRef] [PubMed]
- Seyedmajidi, S.; Seyedmajidi, M.; Foroughi, R.; Zahedpasha, A.; Saravi, Z.Z.; Pourbagher, R.; Bijani, A.; Motallebnejad, M.; Shabestani, A.M.; Mostafazadeh, A. Comparison of Salivary and Serum Soluble CD44 Levels between Patients with Oral SCC and Healthy Controls. Asian Pac. J. Cancer Prev. 2018, 19, 3059–3063. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhi, X.; Su, H.; Wang, K.; Yan, Z.; He, N.; Zhang, J.; Chen, D.; Cui, D. A Novel Electrochemical Microfluidic Chip Combined with Multiple Biomarkers for Early Diagnosis of Gastric Cancer. Nanoscale Res. Lett. 2015, 10, 477. [Google Scholar] [CrossRef] [PubMed]
- Lubken, R.M.; de Jong, A.M.; Prins, M.W.J. Real-Time Monitoring of Biomolecules: Dynamic Response Limits of Affinity-Based Sensors. ACS Sens. 2022, 7, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Kumar, S.; Kaushik, B.K. Recent Advancements in Optical Biosensors for Cancer Detection. Biosens. Bioelectron. 2022, 197, 113805. [Google Scholar] [CrossRef]
- Sypabekova, M.; Amantayeva, A.; Vangelista, L.; González-Vila, Á.; Caucheteur, C.; Tosi, D. Ultralow Limit Detection of Soluble HER2 Biomarker in Serum with a Fiber-Optic Ball-Tip Resonator Assisted by a Tilted FBG. ACS Meas. Sci. Au 2022, 2, 309–316. [Google Scholar] [CrossRef]
- Rakhimbekova, A.; Seitkamal, K.; Kudaibergenov, B.; Nazir, F.; Pham, T.; Blanc, W.; Vangelista, L.; Tosi, D. Fiber-Optic Semi-Distributed Fabry-Perot Interferometer for Low-Limit Label-Free Detection of CCL5 Cancer Biomarker. Opt. Laser Technol. 2024, 168, 109953. [Google Scholar] [CrossRef]
- Rashidova, G.; Tilegen, M.; Pham, T.T.; Bekmurzayeva, A.; Tosi, D. Functionalized Optical Fiber Ball-Shaped Biosensor for Label-Free, Low-Limit Detection of IL-8 Protein. Biomed. Opt. Express 2024, 15, 185. [Google Scholar] [CrossRef]
- Hu, J.; Song, E.; Liu, Y.; Yang, Q.; Sun, J.; Chen, J.; Meng, Y.; Jia, Y.; Yu, Z.; Ran, Y.; et al. Fiber Laser-Based Lasso-Shaped Biosensor for High Precision Detection of Cancer Biomarker-CEACAM5 in Serum. Biosensors 2023, 13, 674. [Google Scholar] [CrossRef]
- Ribaut, C.; Loyez, M.; Larrieu, J.-C.; Chevineau, S.; Lambert, P.; Remmelink, M.; Wattiez, R.; Caucheteur, C. Cancer Biomarker Sensing Using Packaged Plasmonic Optical Fiber Gratings: Towards in Vivo Diagnosis. Biosens. Bioelectron. 2017, 92, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Bekmurzayeva, A.; Ashikbayeva, Z.; Myrkhiyeva, Z.; Nugmanova, A.; Shaimerdenova, M.; Ayupova, T.; Tosi, D. Label-Free Fiber-Optic Spherical Tip Biosensor to Enable Picomolar-Level Detection of CD44 Protein. Sci. Rep. 2021, 11, 19583. [Google Scholar] [CrossRef] [PubMed]
- Bekmurzayeva, A.; Ashikbayeva, Z.; Assylbekova, N.; Myrkhiyeva, Z.; Dauletova, A.; Ayupova, T.; Shaimerdenova, M.; Tosi, D. Ultra-Wide, Attomolar-Level Limit Detection of CD44 Biomarker with a Silanized Optical Fiber Biosensor. Biosens. Bioelectron. 2022, 208, 114217. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Du, J. Atomic Force Microscopy (AFM) and Its Applications to Bone-Related Research. Prog. Biophys. Mol. Biol. 2022, 176, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Rostamabadi, H.; Falsafi, S.R.; Assadpour, E.; Jafari, S.M. Evaluating the Structural Properties of Bioactive-Loaded Nanocarriers with Modern Analytical Tools. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3266–3322. [Google Scholar] [CrossRef] [PubMed]
- Shaimi, R.; Low, S.C. Prolonged Protein Immobilization of Biosensor by Chemically Cross-Linked Glutaraldehyde on Mixed Cellulose Membrane. J. Polym. Eng. 2016, 36, 655–661. [Google Scholar] [CrossRef]
Sensor Diameter | Sensitivity in Static Condition | Sensitivity in Dynamic Condition |
---|---|---|
527 μm | −83 dB/RIU R2 0.99 | −83 dB/RIU R2 0.95 |
514 μm | −86 dB/RIU R2 0.99 | −85 dB/RIU R2 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myrkhiyeva, Z.; Kantoreyeva, K.; Bekmurzayeva, A.; Gomez, A.W.; Ashikbayeva, Z.; Tilegen, M.; Pham, T.T.; Tosi, D. Dynamic Measurement of a Cancer Biomarker: Towards In Situ Application of a Fiber-Optic Ball Resonator Biosensor in CD44 Protein Detection. Sensors 2024, 24, 1991. https://doi.org/10.3390/s24061991
Myrkhiyeva Z, Kantoreyeva K, Bekmurzayeva A, Gomez AW, Ashikbayeva Z, Tilegen M, Pham TT, Tosi D. Dynamic Measurement of a Cancer Biomarker: Towards In Situ Application of a Fiber-Optic Ball Resonator Biosensor in CD44 Protein Detection. Sensors. 2024; 24(6):1991. https://doi.org/10.3390/s24061991
Chicago/Turabian StyleMyrkhiyeva, Zhuldyz, Kanagat Kantoreyeva, Aliya Bekmurzayeva, Anthony W. Gomez, Zhannat Ashikbayeva, Meruyert Tilegen, Tri T. Pham, and Daniele Tosi. 2024. "Dynamic Measurement of a Cancer Biomarker: Towards In Situ Application of a Fiber-Optic Ball Resonator Biosensor in CD44 Protein Detection" Sensors 24, no. 6: 1991. https://doi.org/10.3390/s24061991
APA StyleMyrkhiyeva, Z., Kantoreyeva, K., Bekmurzayeva, A., Gomez, A. W., Ashikbayeva, Z., Tilegen, M., Pham, T. T., & Tosi, D. (2024). Dynamic Measurement of a Cancer Biomarker: Towards In Situ Application of a Fiber-Optic Ball Resonator Biosensor in CD44 Protein Detection. Sensors, 24(6), 1991. https://doi.org/10.3390/s24061991