Design Aspects for Portable LED-Based Colorimetric Characterisation Systems Targeting Liquid Analytes
<p>Prototype cross-sectional schematic view.</p> "> Figure 2
<p>LED relative intensity and RGB sensor relative sensitivity as a function of the displacement angle.</p> "> Figure 3
<p>Prototype overview: (<b>a</b>) frontside with the main PCB board, cuvette and cap, 10 mm OP; (<b>b</b>) backside with unmounted LED PCB, 10 mm OP; (<b>c</b>) frontside with the main PCB board, cuvette and cap, 40 mm OP.</p> "> Figure 4
<p>Variation in RGB sensor readings during warm-up, green channel, empty 10 mm OP prototype.</p> "> Figure 5
<p>Variation in RGB sensor readings over 30 consecutive measurements, green channel, 10 mm OP prototype filled with 0.9 mL water.</p> "> Figure 6
<p>Sensor output variations as a function of water level height in the 10 mm OP cuvette.</p> "> Figure 7
<p>Sensor output variations as a function of water level height in the 40 mm OP cuvette.</p> "> Figure 8
<p>Reflectance at the water-to-air interface.</p> "> Figure 9
<p>Schematic representation of light reflection and/or refraction at different water-to-air incidence angles.</p> "> Figure 10
<p>Malachite green solution, 1 mL; 0 mM to 0.1 mM.</p> "> Figure 11
<p>RGB sensor output signal variation with dye concentration for two dyes and two analyte heights, 10 mm OP prototype.</p> "> Figure 12
<p>RGB sensor output signal variation with dye concentration for two dyes and two analyte heights, 10 mm OP prototype, alternative output metrics.</p> "> Figure 13
<p>Water to cuvette meniscus for a new PMMA cuvette (<b>left</b>), cleaned PMMA cuvette (<b>middle</b>) and optical glass cuvette (<b>right</b>).</p> "> Figure 14
<p>Samples used for the deposit and floating particle measurements: (<b>left</b>) without floating particles, (<b>right</b>) with added floating particles.</p> "> Figure 15
<p>Impact of the deposit on the RGB sensor output for water volumes of 1 mL (<b>left part</b>) and 2.5 mL (<b>right part</b>) in the 10 mm OP prototype.</p> "> Figure 16
<p>Impact of the deposit and floating particles on the RGB sensor output for a water volume of 2.5 mL in the modified 10 mm OP prototype.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Impact of the Analyte Level in the Cuvette
3.2. Impact of Deposits and Floating Particles
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fernandes, G.M.; Silva, W.R.; Barreto, D.N.; Lamarca, R.S.; Gomez, P.C.F.L.; Petruci, J.F.d.S.; Batista, A.D. Novel approaches for colorimetric measurements in analytical chemistry—A review. Anal. Chim. Acta 2020, 1135, 187–203. [Google Scholar] [CrossRef] [PubMed]
- Biswas, P.C.; Rani, S.; Hossain, M.A.; Islam, M.R.; Canning, J. Multichannel Smartphone Spectrometer Using Combined Diffraction Orders. IEEE Sens. Lett. 2020, 4, 4500804. [Google Scholar] [CrossRef]
- Gonzalez-Moralez, D.F.; Lopez-Santos, O.; Garcia-Beltran, O. Low-Cost Spectrophotometer for In-Situ Detection of Mercury in Water. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar]
- de Carvalho Oliveira, G.; Machado, C.C.S.; Inácio, D.K.; da Silveira Petruci, J.F.; Silva, S.G. RGB color sensor for colorimetric determinations: Evaluation and quantitative analysis of colored liquid samples. Talanta 2022, 241, 123244. [Google Scholar] [CrossRef] [PubMed]
- Danh, L.V.Q.; Thien, D.C.; Binh, Q.D.; Dieu, N.T.; Hoan, T.N.K. A Low-Cost Colorimetric Sensor for On-Site Automatic Monitoring of Nitrite in Aquaculture. In Proceedings of the 2021 IEEE 7th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Bandung, Indonesia, 23–25 August 2021; pp. 117–122. [Google Scholar]
- Cadeado, A.N.; Machado, C.C.; Costa, M.Q.; Silva, S.G. A palm-sized wireless device for colorimetric nitrite determination in water. Microchem. J. 2022, 183, 108138. [Google Scholar] [CrossRef]
- Debarshi, S.; Khan, M.M. Portable and low-cost LED based Spectrophotometer for the Detection of Nitrite in simulated-Urine. In Proceedings of the 2019 International Conference on Electrical, Electronics and Computer Engineering (UPCON), Aligarh, India, 8–10 November 2019; pp. 1–4. [Google Scholar]
- Kim, J.-S.; Oh, H.-B.; Kim, A.-H.; Kim, J.-S.; Lee, E.-S.; Goh, B.-J.; Choi, J.-H.; Shin, Y.-J.; Baek, J.-Y.; Lee, K.-S.; et al. An array-Type RGB Sensor for Precision Measurement of pH. J. Opt. Soc. Korea 2015, 19, 700–704. [Google Scholar] [CrossRef]
- Stoukatch, S.; Debliquy, M.; Dupont, F.; Redouté, J.M. Low-Cost Optical pH Sensor with a Polyaniline (PANI)-Sensitive Layer Based on Commercial off-the-Shelf (COTS) Components. Micromachines 2023, 14, 2197. [Google Scholar] [CrossRef] [PubMed]
- Sampedro, O.; Salgueiro, J.R. Turbidimeter and RGB sensor for remote measurements in an aquatic medium. Measurement 2015, 68, 128–134. [Google Scholar] [CrossRef]
- Da Nobrega Gaiao, E.; Bezerra dos Santos, S.R.; Bezerra dos Santos, V.; Lima do Nascimento, E.C.; Souza Lima, R.; Ugulino de Araujo, M.C. An inexpensive, portable and microcontrolled near infrared LED-photometer for screening analysis of gasoline. Talanta 2008, 75, 792–796. [Google Scholar] [CrossRef] [PubMed]
- “Color Analysis for Pharmaceutical Products Using UV-Visible Absorption Technique”, App. Note, Thermo Scientific. Available online: https://assets.thermofisher.com/TFS-Assets/MSD/Application-Notes/color-analysis-pharmaceutical-an56364-en.pdf (accessed on 2 October 2023).
- da Silva Magalhães, T.; Reis, B.F. A novel multicommuted flow analysis strategy for the spectrophotometric determination of cadmium in water at µg L-1 levels without using a preconcentration step. Anal. Methods 2018, 10, 900–909. [Google Scholar] [CrossRef]
- VLMW33S2V1-5K8L-08 Datasheet. Available online: https://www.vishay.com/docs/81273/vlmw33.pdf (accessed on 8 March 2024).
- VEML3328 Application Note. Available online: https://www.vishay.com/docs/80010/designingveml3328.pdf (accessed on 8 March 2024).
- Azzam, R.M.A. High-index dielectric substrates with nearly constant reflectance for incident unpolarized or circularly polarized light over a wide range of incidence angles. J. Mod. Opt. 2015, 62, 811–815. [Google Scholar] [CrossRef]
- Pope, R.M.; Fry, E.S. Absorption spectrum (380–700 nm) of pure water, I.I. Integrating cavity measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef] [PubMed]
- Martinez Gache, S.A.; Recoulat Angelini, A.A.; Sabeckis, M.L.; Gonzales Flecha, F.L. Improving the stability of the malachite green method for determination of phosphate using Pluronic P68. Anal. Biochem. 2020, 597, 113681. [Google Scholar] [CrossRef] [PubMed]
- Denman, S.; Jameel, S.; Hay, J.; Sugden, J.K. Photostability of crystal violet (CI 42555). Dye. Pigment. 1996, 30, 67–72. [Google Scholar] [CrossRef]
- Erstad, A.J.; Erstad, B.L.; Nix, D.E. Accuracy and reproducibility of small-volume injections from various-sized syringes. Am. J. Health-Syst. Pharm. 2006, 63, 748–750. [Google Scholar] [CrossRef] [PubMed]
- Goosens, J.; Vandenryt, T.; Lowdon, J.W.; van Grinsven, B.; Eersels, K.; Deferme, W.; Thoelen, R. Design of a Lab-on-Chip Cartridge for the Optical Detection of Small Molecules Based on Dye-Displacement MIPs. IEEE Trans. Instrum. Meas. 2023, 72, 9511209. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dupont, F.; Stoukatch, S.; Laurent, P.; Eersels, K.; van Grinsven, B.; Redouté, J.-M. Design Aspects for Portable LED-Based Colorimetric Characterisation Systems Targeting Liquid Analytes. Sensors 2024, 24, 1960. https://doi.org/10.3390/s24061960
Dupont F, Stoukatch S, Laurent P, Eersels K, van Grinsven B, Redouté J-M. Design Aspects for Portable LED-Based Colorimetric Characterisation Systems Targeting Liquid Analytes. Sensors. 2024; 24(6):1960. https://doi.org/10.3390/s24061960
Chicago/Turabian StyleDupont, François, Serguei Stoukatch, Philippe Laurent, Kasper Eersels, Bart van Grinsven, and Jean-Michel Redouté. 2024. "Design Aspects for Portable LED-Based Colorimetric Characterisation Systems Targeting Liquid Analytes" Sensors 24, no. 6: 1960. https://doi.org/10.3390/s24061960
APA StyleDupont, F., Stoukatch, S., Laurent, P., Eersels, K., van Grinsven, B., & Redouté, J.-M. (2024). Design Aspects for Portable LED-Based Colorimetric Characterisation Systems Targeting Liquid Analytes. Sensors, 24(6), 1960. https://doi.org/10.3390/s24061960