Autonomous Sensor System for Low-Capacity Wind Turbine Blade Vibration Measurement
<p>Hardware disposition overview of the embedded damage detection autonomous system for WT blades.</p> "> Figure 2
<p>Overview of the nose hub and its components. They are distributed in such way that the hub maintains its balance while rotating. Most components are secured with bolts and a silicone-based glue to absorb vibrations.</p> "> Figure 3
<p>The graph shows the charge flow for both configurations. The higher consumption was due to the Wi-Fi module being used for data transmission. This led to an increase of 67.1% compared with normal operation using a base station. The lower consumption band shows the system in sleep mode, reducing consumption by 84.9%.</p> "> Figure 4
<p>Oscilloscope capture illustrating sequential activation of nine digital channels with 5 ms division intervals.</p> "> Figure 5
<p>Histogram illustrating the timing of the conducted measurements.</p> "> Figure 6
<p>Battery voltage over time. The graph displays measurements taken up until the 15th of May. In addition to the raw measurements, the graph also features a moving average and the expected values for the remaining period of the year.</p> "> Figure 7
<p>Cloud cover categories in Aysen throughout the year from [<a href="#B31-sensors-24-01733" class="html-bibr">31</a>].</p> "> Figure 8
<p>Low-capacity wind turbine installed in south Chile (WT1). (<b>a</b>) Image of the installed wind turbine. (<b>b</b>) Identified natural frequencies of three modes from mid-January to mid-March 2023.</p> "> Figure 9
<p>Vibration measurement sets for blades running at 15 r/min. (<b>a</b>) Image of the wind turbine simulation apparatus. (<b>b</b>) Healthy blade’s vibration signals from the <span class="html-italic">z</span> axis (<b>top</b>) and <span class="html-italic">x</span> axis (<b>bottom</b>). (<b>c</b>) FFTs for the <span class="html-italic">z</span> axis signal (<b>left</b>) and for the <span class="html-italic">x</span> axis signal (<b>right</b>) for the blade with no damage. (<b>d</b>) Damaged blade’s vibration signals from the <span class="html-italic">z</span> axis (<b>top</b>) and <span class="html-italic">x</span> axis (<b>bottom</b>). (<b>e</b>) FFTs for the <span class="html-italic">z</span> axis signal (<b>left</b>) and for the <span class="html-italic">x</span> axis signal (<b>right</b>) for the damaged blade.</p> "> Figure 10
<p>Acceleration measurements recorded on blades of WT2. (<b>a</b>) Image of the instrumented WT2. (<b>b</b>) The <span class="html-italic">x</span> axis acceleration of sensor A1 and <span class="html-italic">z</span> axis acceleration of sensors A2 and A3. (<b>c</b>) Zoomed-in version of signals in (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Monitoring System Overview
2.1. Microcontroller
2.2. Sensors
2.3. Energy Harvesting and Storage
3. System Deployment
3.1. Prototype Energy Assessment
3.2. System Design and Installation
4. Experimental Results
4.1. Sampling Rate Examination
4.2. Monitoring Energy Storage
4.3. File Reception Assessment
4.4. Vibration Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Renewable Energy Policy Network for the 21st Century (REN21). Renewables Global Status Report 2022. Available online: https://www.ren21.net/reports/global-status-report/ (accessed on 20 December 2022).
- Blaabjerg, F.; Ma, K. Wind Energy Systems. Proc. IEEE 2017, 105, 2116–2131. [Google Scholar]
- Blaabjerg, F.; Yang, Y.; Kim, K.A.; Rodriguez, J. Power Electronics Technology for Large-Scale Renewable Energy Generation. Proc. IEEE 2023, 111, 335–355. [Google Scholar] [CrossRef]
- Dao, C.; Kazemtabrizi, B.; Crabtree, C. Wind turbine reliability data review and impacts on levelised cost of energy. Wind Energy 2019, 22, 1848–1871. [Google Scholar] [CrossRef]
- Jaramillo, F.; Gutiérrez, J.M.; Orchard, M.; Guarini, M.; Astroza, R. A Bayesian approach for fatigue damage diagnosis and prognosis of wind turbine blades. Mech. Syst. Signal Process. 2022, 174, 109067. [Google Scholar] [CrossRef]
- Spinato, F. Reliability of wind turbine subassemblies. IET Renew. Power Gener. 2009, 3, 387–401. [Google Scholar] [CrossRef]
- Muñoz Ferreras, J.M.; Peng, Z.; Tang, Y.; Gómez-García, R.; Liang, D.; Li, C. Short-Range Doppler-Radar Signatures from Industrial Wind Turbines: Theory, Simulations, and Measurements. IEEE Trans. Instrum. Meas. 2016, 65, 2108–2119. [Google Scholar] [CrossRef]
- Zonzini, F.; Aguzzi, C.; Gigli, L.; Sciullo, L.; Testoni, N.; De Marchi, L.; Di Felice, M.; Cinotti, T.S.; Mennuti, C.; Marzani, A. Structural Health Monitoring and Prognostic of Industrial Plants and Civil Structures: A Sensor to Cloud Architecture. IEEE Instrum. Meas. Mag. 2020, 23, 21–27. [Google Scholar] [CrossRef]
- Häckell, M.W.; Rolfes, R.; Kane, M.B.; Lynch, J.P. Three-Tier Modular Structural Health Monitoring Framework Using Environmental and Operational Condition Clustering for Data Normalization: Validation on an Operational Wind Turbine System. Proc. IEEE 2016, 104, 1632–1646. [Google Scholar] [CrossRef]
- Moradi, M.; Sivoththaman, S. MEMS Multisensor Intelligent Damage Detection for Wind Turbines. IEEE Sens. J. 2015, 15, 1437–1444. [Google Scholar] [CrossRef]
- Bao, C.; Zhang, T.; Hu, Z.; Feng, W.; Liu, R. Wind Turbine Condition Monitoring Based on Improved Active Learning Strategy and KNN Algorithm. IEEE Access 2023, 11, 13545–13553. [Google Scholar] [CrossRef]
- Fremmelev, M.A.; Ladpli, P.; Orlowitz, E.; Bernhammer, L.O.; McGugan, M.; Branner, K. Structural health monitoring of 52-meter wind turbine blade: Detection of damage propagation during fatigue testing. Data-Centric Eng. 2022, 3, e22. [Google Scholar] [CrossRef]
- Gómez Muñoz, C.Q.; García Márquez, F.P. A new fault location approach for acoustic emission techniques in wind turbines. Energies 2016, 9, 40. [Google Scholar] [CrossRef]
- Garcia Marquez, F.P.; Gomez Munoz, C.Q. A new approach for fault detection, location and diagnosis by ultrasonic testing. Energies 2020, 13, 1192. [Google Scholar] [CrossRef]
- Weber, S.; Kissinger, T.; Chehura, E.; Staines, S.; Barrington, J.; Mullaney, K.; Fragonara, L.Z.; Petrunin, I.; James, S.; Lone, M.; et al. Application of fibre optic sensing systems to measure rotor blade structural dynamics. Mech. Syst. Signal Process. 2021, 158, 107758. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, D.; Yu, Q.; Jiang, Y.; Arola, D. Health monitoring of wind turbine blades in operation using three-dimensional digital image correlation. Mech. Syst. Signal Process. 2019, 130, 470–483. [Google Scholar] [CrossRef]
- Yuan, K.; Zhu, W. Identification of modal parameters of a model turbine blade with a curved surface under random excitation with a three-dimensional continuously scanning laser Doppler vibrometer system. Measurement 2023, 214, 112759. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, G.; Hong, H.; Zhu, X. Remote Structural Health Monitoring for Industrial Wind Turbines Using Short-Range Doppler Radar. IEEE Trans. Instrum. Meas. 2021, 70, 8002609. [Google Scholar] [CrossRef]
- Grundkötter, E.; Melbert, J. Precision blade deflection measurement system using wireless inertial sensor nodes. Wind Energy 2022, 25, 432–449. [Google Scholar] [CrossRef]
- Tcherniak, D.; Mølgaard, L.L. Active vibration-based structural health monitoring system for wind turbine blade: Demonstration on an operating Vestas V27 wind turbine. Struct. Health Monit. 2017, 16, 536–550. [Google Scholar] [CrossRef]
- Noel, A.B.; Abdaoui, A.; Elfouly, T.; Ahmed, M.H.; Badawy, A.; Shehata, M.S. Structural health monitoring using wireless sensor networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2017, 19, 1403–1423. [Google Scholar] [CrossRef]
- Di Nuzzo, F.; Brunelli, D.; Polonelli, T.; Benini, L. Structural health monitoring system with narrowband IoT and MEMS sensors. IEEE Sens. J. 2021, 21, 16371–16380. [Google Scholar] [CrossRef]
- Gutierrez, J. Wind Turbine Blades: Design and Implementation of a Testing System and Modal Identification. Bachelor’s Thesis, Universidad de los Andes, Santiago, Chile, 2019. [Google Scholar]
- Analog Devices. ADXL345 Datasheet. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/adxl345.pdf (accessed on 18 December 2022).
- Sun, M.; Li, Q.; Han, X. Investigation of long-term modal properties of a supertall building under environmental and operational variations. J. Build. Eng. 2022, 62, 105439. [Google Scholar] [CrossRef]
- Astroza, R.; Ebrahimian, H.; Conte, J.P.; Restrepo, J.I.; Hutchinson, T.C. Statistical analysis of the modal properties of a seismically-damaged five-story RC building identified using ambient vibration data. J. Build. Eng. 2022, 52, 104411. [Google Scholar] [CrossRef]
- Ramírez, E.I.; Figueroa, C.G.; Romero, J.L.; Ramos, E.; Schouwenaars, R.; Ortiz, A. Stress corrosion cracking of the slip-ring connectors of a 2 MW wind turbine. Eng. Fail. Anal. 2022, 141, 106732. [Google Scholar] [CrossRef]
- Bouendeu, E.; Greiner, A.; Smith, P.J.; Korvink, J.G. A low-cost electromagnetic generator for vibration energy harvesting. IEEE Sens. J. 2010, 11, 107–113. [Google Scholar] [CrossRef]
- Ballerini, M.; Polonelli, T.; Brunelli, D.; Magno, M.; Benini, L. NB-IoT versus LoRaWAN: An experimental evaluation for industrial applications. IEEE Trans. Ind. Inform. 2020, 16, 7802–7811. [Google Scholar] [CrossRef]
- Polonelli, T.; Müller, H.; Kong, W.; Fischer, R.; Benini, L.; Magno, M. Aerosense: A Self-Sustainable And Long-Range Bluetooth Wireless Sensor Node for Aerodynamic and Aeroacoustic Monitoring on Wind Turbines. IEEE Sens. J. 2022, 23, 715–723. [Google Scholar] [CrossRef]
- Weather Spark. Cloud Cover Categories in Coihaique. Available online: https://weatherspark.com (accessed on 22 December 2023).
- Van Overschee, P.; De Moor, B. Subspace Identification for Linear Systems: Theory, Implementation, Applications; Kluwer Academic Publishers: Norwell, MA, USA, 1996. [Google Scholar]
Month | Logged Minutes | Files Delayed | Anomalies | Files Expected | Files Received |
---|---|---|---|---|---|
November 2022 | 15,450 | 4 | 3 | 1549 | 1545 |
December 2022 | 22,250 | 4 | 7 | 2232 | 2225 |
January 2023 | 22,090 | 8 | 8 | 2232 | 2219 |
February 2023 | 20,060 | 6 | 7 | 2016 | 2006 |
March 2023 | 22,250 | 5 | 6 | 2232 | 2225 |
April 2023 | 21,350 | 8 | 7 | 2160 | 2151 |
May 2023 | 10,270 | 2 | 1 | 1030 | 1027 |
Total | 133,980 | 37 | 39 | 13,451 | 13,398 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muxica, D.; Rivera, S.; Orchard, M.E.; Ahumada, C.; Jaramillo, F.; Bravo, F.; Gutiérrez, J.M.; Astroza, R. Autonomous Sensor System for Low-Capacity Wind Turbine Blade Vibration Measurement. Sensors 2024, 24, 1733. https://doi.org/10.3390/s24061733
Muxica D, Rivera S, Orchard ME, Ahumada C, Jaramillo F, Bravo F, Gutiérrez JM, Astroza R. Autonomous Sensor System for Low-Capacity Wind Turbine Blade Vibration Measurement. Sensors. 2024; 24(6):1733. https://doi.org/10.3390/s24061733
Chicago/Turabian StyleMuxica, Diego, Sebastian Rivera, Marcos E. Orchard, Constanza Ahumada, Francisco Jaramillo, Felipe Bravo, José M. Gutiérrez, and Rodrigo Astroza. 2024. "Autonomous Sensor System for Low-Capacity Wind Turbine Blade Vibration Measurement" Sensors 24, no. 6: 1733. https://doi.org/10.3390/s24061733
APA StyleMuxica, D., Rivera, S., Orchard, M. E., Ahumada, C., Jaramillo, F., Bravo, F., Gutiérrez, J. M., & Astroza, R. (2024). Autonomous Sensor System for Low-Capacity Wind Turbine Blade Vibration Measurement. Sensors, 24(6), 1733. https://doi.org/10.3390/s24061733