CTAB-Modulated Electroplating of Copper Micropillar Arrays for Non-Enzymatic Glucose Sensing with Improved Sensitivity
"> Figure 1
<p>Schematic of silicon pillar array fabrication process (<b>a</b>), structural representation of the electrode (<b>b</b>), SEM image of the silicon pillar array (<b>c</b>).</p> "> Figure 2
<p>Schematic of experimental setup of electroplating (<b>a</b>), configuration of the electroplating setup (<b>b</b>).</p> "> Figure 3
<p>Surface morphology with varied CTAB concentrations: (<b>a1</b>–<b>a3</b>) for 0 g/L, (<b>b1</b>–<b>b3</b>) for 0.01 g/L, (<b>c1</b>–<b>c3</b>) for 0.1 g/L, (<b>d1</b>–<b>d3</b>) for 1 g/L. Columns 2 and 3 represent localized magnifications of the top and bottom of the silicon pillar in column 1, respectively.</p> "> Figure 4
<p>Schematic representation of the formation process of micelles and hollow spherical particles.</p> "> Figure 5
<p>CV curves in 0.1 M NaOH (<b>a</b>) and NaOH solution with 5 mM glucose (<b>b</b>) at 100 mV/s.</p> "> Figure 6
<p>Oxidation peak current in 5 mM glucose solution as a function of scan rate for the electrode plated with 1 g/L CTAB.</p> "> Figure 7
<p>CA plots of electrodes with varied plating solution concentrations (<b>a</b>), response curves at different glucose concentrations (<b>b</b>).</p> "> Figure 8
<p>Linear fitting for sample plated with 1 g/L CTAB solution.</p> "> Figure 9
<p>Surface morphology at different current densities: (<b>a1</b>–<b>a3</b>) for 0.3 ASD, (<b>b1</b>–<b>b3</b>) for 0.75 ASD, (<b>c1</b>–<b>c3</b>) for 1.5 ASD, (<b>d1</b>–<b>d3</b>) for 3 ASD. Columns 2 and 3 depict localized magnifications of the top and bottom of the silicon pillar in column 1, respectively.</p> "> Figure 10
<p>CA plots of electrodes plated at different current densities (<b>a</b>), response curves of each electrode at different glucose concentrations (<b>b</b>).</p> "> Figure 11
<p>Linear fitting of a sample plated at 0.75 ASD (<b>a</b>), and oxidation peak current in 5 mM glucose solution as a function of scan rate (<b>b</b>).</p> "> Figure 12
<p>Selectivity test of the sample plated at 0.75 ASD.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Fabrication Process and Electrode Structure of Silicon Pillar Array Electrodes
2.3. Experimental Setup for Electroplating Process of Silicon Pillar Array Electrodes
2.4. Electrode Surface Morphology Characterization and Glucose Detection Experiments
3. Result and Discussion
3.1. Influence of CTAB Concentration on Electroplating Morphology
3.2. The Impact of CTAB on the Performance of Copper-Plated Electrodes for Glucose Sensing
3.3. Impact of Current Density on the Morphology of Electroplated Copper Layers
3.4. Influence of Current Density on the Performance of Copper-Plated Electrode Arrays for Glucose Sensing
3.5. Selectivity Evaluation of the Glucose Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ogurtsova, K.; Guariguata, L.; Barengo, N.C.; Ruiz, P.L.D.; Sacre, J.W.; Karuranga, S.; Sun, H.; Boyko, E.J.; Magliano, D.J. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract. 2022, 183, 109118. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Qiao, Y.; Zhao, H.; Liang, J.; Li, T.; Luo, Y.; Lu, S.; Shi, X.; Lu, W.; Sun, X. Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives. Chem. Commun. 2020, 56, 14553–14569. [Google Scholar] [CrossRef] [PubMed]
- Tee, S.Y.; Teng, C.P.; Ye, E. Metal nanostructures for non-enzymatic glucose sensing. Mater. Sci. Eng. C 2017, 70, 1018–1030. [Google Scholar] [CrossRef] [PubMed]
- Naikoo, G.A.; Awan, T.; Salim, H.; Arshad, F.; Hassan, I.U.; Pedram, M.Z.; Ahmed, W.; Faruck, H.L.; Aljabali, A.A.; Mishra, V.; et al. Fourth-generation glucose sensors composed of copper nanostructures for diabetes management: A critical review. Bioeng. Transl. Med. 2022, 7, e10248. [Google Scholar] [CrossRef] [PubMed]
- Palve, Y.P.; Jha, N. A novel bilayer of copper nanowire and carbon nanotube electrode for highly sensitive enzyme free glucose detection. Mater. Chem. Phys. 2020, 240, 122086. [Google Scholar] [CrossRef]
- Wu, S.; Liu, L.; Wang, S.; Wang, P.; Guo, H. Copper oxide-carboxylated graphene nanocrystals modified electrode for sensitive detection of glucose. Mater. Lett. 2022, 316, 132011. [Google Scholar] [CrossRef]
- Boukharouba, C.; Nacef, M.; Chelaghmia, M.L.; Kihal, R.; Drissi, W.; Fisli, H.; Affoune, A.M.; Pontie, M. Dendritic Cu(OH)2 nanostructures decorated pencil graphite electrode as a highly sensitive and selective impedimetric non-enzymatic glucose sensor in real human serum blood samples. Monatshefte Für Chem.—Chem. Mon. 2022, 153, 171–181. [Google Scholar] [CrossRef]
- Sánchez-Molas, D.; Esquivel, J.P.; Sabate, N.; Muñoz, F.X.; del Campo, F.J. High Aspect-Ratio, Fully Conducting Gold Micropillar Array Electrodes: Silicon Micromachining and Electrochemical Characterization. J. Phys. Chem. C 2012, 116, 18831–18846. [Google Scholar] [CrossRef]
- Prehn, R.; Abad, L.; Sánchez-Molas, D.; Duch, M.; Sabaté, N.; Del Campo, F.J.; Muñoz, F.X.; Compton, R.G. Microfabrication and characterization of cylinder micropillar array electrodes. J. Electroanal. Chem. 2011, 662, 361–370. [Google Scholar] [CrossRef]
- Chen, C.; Ran, B.; Liu, B.; Liu, X.; Zhang, Z.; Li, Y.; Li, H.; Lan, M.; Zhu, Y. Multiplexed detection of biomarkers using a microfluidic chip integrated with mass-producible micropillar array electrodes. Anal. Chim. Acta 2023, 1272, 341450. [Google Scholar] [CrossRef]
- Liu, B.; Lv, C.; Chen, C.; Ran, B.; Lan, M.; Chen, H.; Zhu, Y. Electrochemical Performance of Micropillar Array Electrodes in Microflows. Micromachines 2020, 11, 858. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.-Y.; Liu, X.; Pei, Y.; Gong, C.; Arumugam, P.U.; Wang, S. Dopamine sensing with robust carbon nanotube implanted polymer micropillar array electrodes fabricated by coupling micromolding and infiltration coating processes. Electrochim. Acta 2021, 368, 137632. [Google Scholar] [CrossRef]
- Movilli, J.; Kolkman, R.W.; Rozzi, A.; Corradini, R.; Segerink, L.I.; Huskens, J. Increasing the Sensitivity of Electrochemical DNA Detection by a Micropillar-Structured Biosensing Surface. Langmuir 2020, 36, 4272–4279. [Google Scholar] [CrossRef] [PubMed]
- Dervisevic, M.; Alba, M.; Esser, L.; Tabassum, N.; Prieto-Simon, B.; Voelcker, N.H. Silicon Micropillar Array-Based Wearable Sweat Glucose Sensor. ACS Appl. Mater. Interfaces 2022, 14, 2401–2410. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ran, B.; Liu, B.; Liu, X.; Liu, Y.; Lan, M.; Manasseh, R.; Zhu, Y. Development of a novel microfluidic biosensing platform integrating micropillar array electrode and acoustic microstreaming techniques. Biosens. Bioelectron. 2023, 223, 114703. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.; Zheng, M.; Hilty, B. Electroplating of Cu-NT onto metallic substrates. In Proceedings of the 60th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 1–4 June 2010. [Google Scholar]
- Wang, X.; Wang, Q.; Cai, J.; Song, C.; Hu, Y.; Zhao, Y.; Pei, Y. Preparation and Characterization of Electroplated Cu/Graphene Composite. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019; pp. 2234–2239. [Google Scholar]
- Zamblau, I.; Varvara, S.; Muresan, L.M. Corrosion behavior of Cu–SiO2 nanocomposite coatings obtained by electrodeposition in the presence of cetyl trimethyl ammonium bromide. J. Mater. Sci. 2011, 46, 6484–6490. [Google Scholar] [CrossRef]
- Dominguez, A.; Fernández, A.; González, N.; Iglesias, E.; Montenegro, L. Determination of Critical Micelle Concentration of Some Surfactants by Three Techniques. J. Chem. Educ. 1997, 74, 1227. [Google Scholar] [CrossRef]
- Tsagkaropoulou, G.; Allen, F.J.; Clarke, S.M.; Camp, P.J. Self-assembly and adsorption of cetyltrimethylammonium bromide and didodecyldimethylammonium bromide surfactants at the mica-water interface. Soft Matter 2019, 15, 8402–8411. [Google Scholar] [CrossRef]
- Li, W.; Zhang, M.; Zhang, J.; Han, Y. Self-assembly of cetyl trimethylammonium bromide in ethanol-water mixtures. Front. Chem. China 2006, 1, 438–442. [Google Scholar] [CrossRef]
- Xu, H.; Wang, W. Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall. Angew. Chem. Int. Ed. 2007, 46, 1489–1492. [Google Scholar] [CrossRef]
- Martín-Yerga, D.; Carrasco-Rodríguez, J.; Fierro, J.L.G.; Alonso, F.J.G.; Costa-Garcia, A. Copper-modified titanium phosphate nanoparticles as electrocatalyst for glucose detection. Electrochimica Acta 2017, 229, 102–111. [Google Scholar] [CrossRef]
- Wu, L.; Lu, Z.; Ye, J. Enzyme-free glucose sensor based on layer-by-layer electrodeposition of multilayer films of multi-walled carbon nanotubes and Cu-based metal framework modified glassy carbon electrode. Biosens. Bioelectron. 2019, 135, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Ngamaroonchote, A.; Sanguansap, Y.; Wutikhun, T.; Karn-Orachai, K. Highly branched gold-copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide. Mikrochim. Acta 2020, 187, 559. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, Q.; Zhou, K.; Le, Y.; Liu, W.; Wang, Y.; Wang, F. Effect of cetyl-trimethyl-ammonium-bromide (CTAB) and bis (3-sulfopropyl) disulfide (SPS) on the through-silicon-via (TSV) copper filling. Microelectron. Eng. 2019, 217, 111109. [Google Scholar] [CrossRef]
- Seah, C.H.; Mridha, S.; Chan, L.H. Fabrication of DC-plated nanocrystalline copper electrodeposits. J. Mater. Process. Technol. 1999, 90, 432–436. [Google Scholar] [CrossRef]
- Chen, K.W.; Wang, Y.L.; Chang, L.; Li, F.Y.; Chang, S.C. Investigation of overpotential and seed thickness on damascene copper electroplating. Surf. Coat. Technol. 2006, 200, 3112–3116. [Google Scholar] [CrossRef]
- Chang, S.C.; Shieh, J.M.; Dai, B.T.; Feng, M.S.; Li, Y.H. The effect of plating current densities on self-annealing Behaviors of electroplated copper films. J. Electrochem. Soc. 2002, 149, G535–G538. [Google Scholar] [CrossRef]
- Shieh, J.-M.; Chang, S.-C.; Dai, B.-T.; Feng, M.-S. Investigation of Carrying Agents on Microstructure of Electroplated Cu Films. Jpn. J. Appl. Phys. 2002, 41, 6347–6350. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.; Bu, Y.; Zhang, J.; Zhang, R. Copper Cobalt Sulfide Structures Derived from MOF Precursors with Enhanced Electrochemical Glucose Sensing Properties. Nanomaterials 2022, 12, 1394. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, L.; Xu, R.; Ma, Y.; Ma, L. Facile fabrication of biosensors based on Cu nanoparticles modified as-grown CVD graphene for non-enzymatic glucose sensing. J. Electroanal. Chem. 2019, 853, 113527. [Google Scholar] [CrossRef]
- Wang, C.; Yang, X.; Zhu, G.; Wang, T.; Yu, D.; Lu, Y.; Yu, H. One-step synthesis of copper-platinum nanoparticles modified electrode for non-enzymatic salivary glucose detection. Colloids Surf. A Physicochem. Eng. Asp. 2023, 658, 130672. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, L.; Wu, T.; Song, H.; Tang, C. Two-Dimensional Copper/Nickel Metal-Organic Framework Nanosheets for Non-Enzymatic Electrochemical Glucose Detection. Micromachines 2023, 14, 1896. [Google Scholar] [CrossRef] [PubMed]
- Ayranci, R. The Rapid and Practical Route to Cu@PCR Sensor: Modification of Copper Nanoparticles Upon Conducting Polymer for a Sensitive Non-Enzymatic Glucose Sensor. Electroanalysis 2020, 33, 268–275. [Google Scholar] [CrossRef]
- Sun, M.; Liu, J.; Wang, S.; Wang, Z.; Song, X. Solvothermal synthesis of hollow spherical CuCo2O4 as high-performance non-enzymatic glucose sensors. Ionics 2021, 27, 2257–2266. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, S.; Hu, Z.; Zhang, X.; Yi, N.; Tang, K.; Dexheimer, M.G.; Lian, X.; Wang, Q.; Yang, J.; et al. Laser-induced graphene non-enzymatic glucose sensors for on-body measurements. Biosens. Bioelectron. 2021, 193, 113606. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Su, X.; Yuan, H.; Sun, Q.; Xiao, D.; Choi, M.M. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 2008, 133, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zheng, B.; Jiang, Y.; Cai, Y.; Du, J.; Yuan, H.; Xiao, D. Improvement of sensitive CuO NFs-ITO nonenzymatic glucose sensor based on in situ electrospun fiber. Talanta 2012, 101, 24–31. [Google Scholar] [CrossRef]
Sequence | Concentration (μM) | Volume (μL) | Frequency |
---|---|---|---|
1 | 1 | 10 | 1 |
2 | 3 | 30 | 3 |
3 | 20 | 20 | 3 |
4 | 50 | 50 | 4 |
5 | 200 | 20 | 4 |
6 | 500 | 50 | 5 |
7 | 1000 | 10 | 4 |
8 | 2000 | 20 | 4 |
Linear Range (mM) | R2 | LOD (S/N = 3) (μM) | Sensitivity (μA mM−1 cm−2) | |
---|---|---|---|---|
Bare | 0.03–1.5 | 0.99717 | 10.1 | 2059 |
CTAB 0 | 0.03–1.5 | 0.99752 | 12.7 | 2101 |
CTAB 0.01 | 0.03–1.5 | 0.99662 | 6.6 | 2909 |
CTAB 0.1 | 0.03–1.5 | 0.9983 | 6.3 | 2985 |
CTAB 1 | 0.03–1.5 | 0.99744 | 7.4 | 3409 |
0.3 ASD | 0.03–1.5 | 0.99559 | 9.3 | 2338 |
0.75 ASD | 0.03–1.5 | 0.99864 | 15.9 | 3314 |
1.5 ASD | 0.03–1.5 | 0.99689 | 13.7 | 3104 |
3 ASD | 0.03–1.5 | 0.99648 | 15.0 | 2865 |
Electrode | Sensing Material | Sensitivity (μA·mM−1·cm−2) | Linear Range (mM) | Detection Limit (μM) | Reference |
---|---|---|---|---|---|
GCE | Cu-Co sulfide microparticles | 1475.97 | 0.001–3.66 | 0.1 | [31] |
copper foil | CuNPS-graphene | 379.31 | 0.02–2.3 | 1.39 | [32] |
GCE | Cu-Pt NPs | 2209 | 0.01–0.75 | 1.8 | [33] |
GCE | CuNi-MOFNs | 702 | 0.01–4 | 3.33 | [34] |
graphite electrode | Cu@PCR | 847 | 0.01–7.5 | 0.043 | [35] |
GCE | hollow spherical CuCo2O4 | 2929.4 | 2–1.8 | 0.27 | [36] |
LIG | Au/Ni layer | 3500 | 0–30 | 1.5 | [37] |
Micropillar array | Cu | 3409 | 0.03–1.5 | 7.4 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, W.; He, H.; Wang, F. CTAB-Modulated Electroplating of Copper Micropillar Arrays for Non-Enzymatic Glucose Sensing with Improved Sensitivity. Sensors 2024, 24, 1603. https://doi.org/10.3390/s24051603
Yao W, He H, Wang F. CTAB-Modulated Electroplating of Copper Micropillar Arrays for Non-Enzymatic Glucose Sensing with Improved Sensitivity. Sensors. 2024; 24(5):1603. https://doi.org/10.3390/s24051603
Chicago/Turabian StyleYao, Wenhao, Hu He, and Fuliang Wang. 2024. "CTAB-Modulated Electroplating of Copper Micropillar Arrays for Non-Enzymatic Glucose Sensing with Improved Sensitivity" Sensors 24, no. 5: 1603. https://doi.org/10.3390/s24051603
APA StyleYao, W., He, H., & Wang, F. (2024). CTAB-Modulated Electroplating of Copper Micropillar Arrays for Non-Enzymatic Glucose Sensing with Improved Sensitivity. Sensors, 24(5), 1603. https://doi.org/10.3390/s24051603