Optimal Excitation and Readout of Resonators Used as Wireless Passive Sensors
<p>Schematic of a wireless passive sensor system of delay line or resonator type: A reader sends out a readout signal over a transducer into a wireless channel to a passive sensor node. There, this signal is picked up with the help of a second transducer and then stored in a delay line or in a high Q resonator. When the readout signal is turned off, a part of the signal, which has been stored as an excitation in the passive battery- and IC-free sensor node, will be sent out as backscattered signal, which is picked up by the reader unit and evaluated.</p> "> Figure 2
<p>Electrical circuit for analyzing a wireless readout resonator. The antenna is modeled by a voltage source <inline-formula> <mml:math id="mm969"> <mml:semantics> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:semantics> </mml:math> </inline-formula> with internal resistance <inline-formula> <mml:math id="mm970"> <mml:semantics> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:semantics> </mml:math> </inline-formula> and the resonator with a series circuit of <italic>L</italic>, <italic>C</italic>, and <inline-formula> <mml:math id="mm971"> <mml:semantics> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>D</mml:mi> </mml:msub> </mml:semantics> </mml:math> </inline-formula>.</p> "> Figure 3
<p>(<bold>a</bold>) Frequency response <inline-formula> <mml:math id="mm972"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> according to Equation (<xref ref-type="disp-formula" rid="FD14-sensors-24-01323">14</xref>) in dB, (<bold>b</bold>) zoomed-in frequency response in linear scale, and (<bold>c</bold>) impulse response <inline-formula> <mml:math id="mm973"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>h</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> according to Equation (<xref ref-type="disp-formula" rid="FD15-sensors-24-01323">15</xref>) of an example resonator. For the example resonator, the center frequency was set to 1 and the quality factor <italic>Q</italic> to 100. Electrical matching was applied (<inline-formula> <mml:math id="mm974"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>R</mml:mi> <mml:mi>D</mml:mi> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>). In graph (<bold>b</bold>), 3 markers were placed, (i) at center frequency, (ii) at the upper 3 dB band edge and (iii) at twice this frequency spacing from center frequency. The impulse response given in (<bold>c</bold>) shows in red (full line) Equation (<xref ref-type="disp-formula" rid="FD15-sensors-24-01323">15</xref>) and in blue (dashed line) the IFFT from <inline-formula> <mml:math id="mm975"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> calculated with MATLAB [<xref ref-type="bibr" rid="B29-sensors-24-01323">29</xref>], with the latter being shifted downwards by 1 dB to become visible. The impulse response would show heavy oscillations due to the 2 contributions at <inline-formula> <mml:math id="mm976"> <mml:semantics> <mml:mrow> <mml:mo>±</mml:mo> <mml:msub> <mml:mi>ω</mml:mi> <mml:mi>d</mml:mi> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>. To suppress these oscillations, only one part corresponding to <inline-formula> <mml:math id="mm977"> <mml:semantics> <mml:mrow> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>ω</mml:mi> <mml:mi>d</mml:mi> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> was used in the formula and also for Matlab. In the impulse response calculated with MATLAB we see aliasing since no weighting was applied in the frequency response before inverse Fourier transforming.</p> "> Figure 4
<p>Phase shift in degrees between the voltage applied to the resonator and the current in the resonator for three frequencies below the resonance frequency as a function of the time since the start of the stimulation. The time is measured in units of the inverse resonance frequency. The solid black line shows the phase shift for a frequency at the lower 3 dB frequency while the red dotted line and dashed blue line show the phase shifts at two and three times this frequency offset from the resonance frequency, respectively.</p> "> Figure 5
<p>Time-dependent reflection coefficient <inline-formula> <mml:math id="mm978"> <mml:semantics> <mml:msub> <mml:mi>S</mml:mi> <mml:mn>11</mml:mn> </mml:msub> </mml:semantics> </mml:math> </inline-formula> at the port between antenna and resonator, (<bold>a</bold>) for resonance frequency, (<bold>b</bold>) for a frequency at the 3 dB corner, and (<bold>c</bold>) at a frequency twice this distance from the resonance. After switching off the stimulation, the voltage and current is in phase, the resonator, however, now acts as source.</p> "> Figure 6
<p>Driving voltage <inline-formula> <mml:math id="mm979"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in blue dashed line and response signal in black solid line of the resonator specified in <xref ref-type="fig" rid="sensors-24-01323-f003">Figure 3</xref>. The stimulating frequency was set to <inline-formula> <mml:math id="mm980"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in (<bold>a</bold>), <inline-formula> <mml:math id="mm981"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.995</mml:mn><mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in (<bold>b</bold>), and <inline-formula> <mml:math id="mm982"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.99</mml:mn><mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in (<bold>c</bold>). The stimulating signal shows a rectangular envelope in time domain and lasts <italic>Q</italic> oscillations, which start at <inline-formula> <mml:math id="mm983"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>. The response signals are calculated according to Equations (<xref ref-type="disp-formula" rid="FD22-sensors-24-01323">22</xref>) and (<xref ref-type="disp-formula" rid="FD27-sensors-24-01323">27</xref>) and are shown at a scale enlarged by a factor of 2 when compared to the scale of the driving voltage. The red dotted line shows the result of a numerical calculation with MATLAB, shifted down by 0.01 to become visible. A red marker was set in each graph at the end of the driving interval.</p> "> Figure 7
<p>Driving voltage <inline-formula> <mml:math id="mm984"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in blue dashed line and response signal in black solid line of the resonator specified in <xref ref-type="fig" rid="sensors-24-01323-f003">Figure 3</xref>. The driving signal shows a rectangular envelope in the time domain and lasts <inline-formula> <mml:math id="mm985"> <mml:semantics> <mml:mrow> <mml:mn>0.42</mml:mn><mml:mi>Q</mml:mi> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> oscillations, which start at <inline-formula> <mml:math id="mm986"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>. The driving frequency is the same as in <xref ref-type="fig" rid="sensors-24-01323-f006">Figure 6</xref> right graph, <inline-formula> <mml:math id="mm987"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.99</mml:mn><mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>.</p> "> Figure 8
<p>Active power (black solid line) and reactive power (blue dashed line) transferred into the resonator. The excitation is executed in (<bold>a</bold>) at resonance frequency, in (<bold>b</bold>) at the 3 dB frequency and in (<bold>c</bold>) at a frequency twice this distance from the resonance. The stimulating signal starts at <inline-formula> <mml:math id="mm988"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> and stops at <inline-formula> <mml:math id="mm989"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>=</mml:mo> <mml:mn>100</mml:mn> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>. After <inline-formula> <mml:math id="mm990"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>=</mml:mo> <mml:mn>100</mml:mn> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>, the power flows from the resonator to the antenna.</p> "> Figure 9
<p>Real part of the driving voltage <inline-formula> <mml:math id="mm991"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in blue dashed line and real part of the response signal in black solid line of the resonator specified in <xref ref-type="fig" rid="sensors-24-01323-f003">Figure 3</xref>, however for visualization with a quality factor of 10. The driving frequency was set to <inline-formula> <mml:math id="mm992"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in (<bold>a</bold>), the left 3 dB band edge in (<bold>b</bold>), and twice the left 3 dB band edge in (<bold>c</bold>). The driving signal shows a rectangular envelope in time domain and lasts <italic>Q</italic> oscillations, which start at <inline-formula> <mml:math id="mm993"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>. The frequency of the response signal approaches the frequency of the forced oscillation in the driven interval. The phase difference between the driving signal and the response signal in the case that the exciting frequency is not equal to the angular natural frequency of the resonator can also be seen. After switching off the driving voltage, the resonator oscillates at the natural angular frequency.</p> "> Figure 10
<p>Generation of a response signal at a frequency that was not included in the excitation spectrum: Figure (<bold>a</bold>) shows the Lorentz curve of the resonator in red and in blue the spectrum of an excitation signal at a carrier frequency of <inline-formula> <mml:math id="mm994"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>·</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mn>0.5</mml:mn><mml:mo>/</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> for a length in time domain of <inline-formula> <mml:math id="mm995"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>. Red marker was placed on the Lorentz curve at center frequency and at the 3 dB point. Figure (<bold>b</bold>) shows the response signal of the resonator to this excitation signal, i.e., the forced oscillation and the subsequent decay signal. A red mark is placed at the end of the forced oscillation. Figure (<bold>c</bold>) shows the spectrum of the decay signals alone and Figure (<bold>d</bold>) shows the combined spectrum of the response signals from the beginning and the end of the excitation. All other details corresponded to the resonator shown in <xref ref-type="fig" rid="sensors-24-01323-f003">Figure 3</xref>.</p> "> Figure 11
<p>Driving voltage <inline-formula> <mml:math id="mm996"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> and response signal of the resonator specified in <xref ref-type="fig" rid="sensors-24-01323-f003">Figure 3</xref>. In Figure (<bold>a</bold>), the stimulating frequency was set to <inline-formula> <mml:math id="mm997"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>, in (<bold>b</bold>) to <inline-formula> <mml:math id="mm998"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.995</mml:mn><mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>, and in (<bold>c</bold>) to <inline-formula> <mml:math id="mm999"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.99</mml:mn><mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>. The stimulating signal shows a trapezoidal envelope in the time domain with a length in the constant range of <inline-formula> <mml:math id="mm1000"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>. The linearly increasing and decreasing parts are <inline-formula> <mml:math id="mm1001"> <mml:semantics> <mml:mrow> <mml:mn>0.1</mml:mn><mml:mo>·</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>. A red marker was set in each graph at the end of the driving interval. All other details are the same as for <xref ref-type="fig" rid="sensors-24-01323-f006">Figure 6</xref>.</p> "> Figure 12
<p>Driving voltage <inline-formula> <mml:math id="mm1002"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> and response signal of the resonator specified in <xref ref-type="fig" rid="sensors-24-01323-f003">Figure 3</xref> and <xref ref-type="fig" rid="sensors-24-01323-f007">Figure 7</xref>. The driving signal was shortened in time domain, when compared to the settings for <xref ref-type="fig" rid="sensors-24-01323-f011">Figure 11</xref>, to maximize the response signal. Figure (<bold>a</bold>) shows the response signal for a driving frequency at the upper 3 dB band edge, <inline-formula> <mml:math id="mm1003"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.995</mml:mn><mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> (left graph), but here the length in the constant range was shortened to <inline-formula> <mml:math id="mm1004"> <mml:semantics> <mml:mrow> <mml:mn>0.5</mml:mn><mml:mo>·</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>, and keeping the linearly increasing and decreasing parts at <inline-formula> <mml:math id="mm1005"> <mml:semantics> <mml:mrow> <mml:mn>0.1</mml:mn><mml:mo>·</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>. Figure (<bold>b</bold>) shows the response signal for a driving frequency of <inline-formula> <mml:math id="mm1006"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.99</mml:mn><mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> and a shortened constant range of <inline-formula> <mml:math id="mm1007"> <mml:semantics> <mml:mrow> <mml:mn>0.3</mml:mn><mml:mo>·</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>. A red marker was set in each graph at the end of the driving interval.</p> "> Figure 13
<p>Driving voltage <inline-formula> <mml:math id="mm1008"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> and response signal of the resonator specified in <xref ref-type="fig" rid="sensors-24-01323-f003">Figure 3</xref>. The envelope of the driving signal is weighted in the time domain with a triangle function (Bartlett window). The driving frequency was set to <inline-formula> <mml:math id="mm1009"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in Figure (<bold>a</bold>), <inline-formula> <mml:math id="mm1010"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.995</mml:mn><mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in (<bold>b</bold>), and <inline-formula> <mml:math id="mm1011"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.99</mml:mn><mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in (<bold>c</bold>). The length of the Bartlett window was optimized of maximum response signal after switching off the driving signal. A red marker was set in each graph at the end of the driving interval. All other details are the same as in <xref ref-type="fig" rid="sensors-24-01323-f006">Figure 6</xref>.</p> "> Figure 14
<p>Driving voltage <inline-formula> <mml:math id="mm1012"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> and response signal of the resonator specified in <xref ref-type="fig" rid="sensors-24-01323-f003">Figure 3</xref>. The driving signal is weighted in the time domain according to a Tukey window with a length of <inline-formula> <mml:math id="mm1013"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in the constant range. The cosine increasing and decreasing parts are <inline-formula> <mml:math id="mm1014"> <mml:semantics> <mml:mrow> <mml:mn>0.1</mml:mn><mml:mo>·</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>. The driving frequency was set to <inline-formula> <mml:math id="mm1015"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in Figure (<bold>a</bold>), to <inline-formula> <mml:math id="mm1016"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.995</mml:mn><mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in (<bold>b</bold>), and to <inline-formula> <mml:math id="mm1017"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.99</mml:mn><mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in (<bold>c</bold>). A red marker was set in each graph at the end of the driving interval. All other details are the same as for <xref ref-type="fig" rid="sensors-24-01323-f006">Figure 6</xref>.</p> "> Figure 15
<p>Driving voltage <inline-formula> <mml:math id="mm1018"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> and response signal of the resonator specified in <xref ref-type="fig" rid="sensors-24-01323-f003">Figure 3</xref>. The driving signal was shortened in the time domain when compared to the settings for <xref ref-type="fig" rid="sensors-24-01323-f014">Figure 14</xref>, to maximize the response signal. Figure (<bold>a</bold>) shows the response of the resonator for a stimulating frequency at the upper 3 dB band edge, <inline-formula> <mml:math id="mm1019"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.995</mml:mn><mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>, where the length in the constant region was shortened to <inline-formula> <mml:math id="mm1020"> <mml:semantics> <mml:mrow> <mml:mn>0.5</mml:mn><mml:mo>·</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>, but the rising and falling cosine parts of length <inline-formula> <mml:math id="mm1021"> <mml:semantics> <mml:mrow> <mml:mn>0.1</mml:mn><mml:mo>·</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> were retained. Figure (<bold>b</bold>) shows the response signal for a driving frequency of <inline-formula> <mml:math id="mm1022"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.99</mml:mn><mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> and a shortened constant range of <inline-formula> <mml:math id="mm1023"> <mml:semantics> <mml:mrow> <mml:mn>0.3</mml:mn><mml:mo>·</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>. A red marker was set in each graph at the end of the driving interval.</p> "> Figure 16
<p>Reduction in the required bandwidth and corresponding decrease in the decaying response signal of the resonator specified in <xref ref-type="fig" rid="sensors-24-01323-f003">Figure 3</xref> by appending a cosine-weighted edge as a function of the length of the cosine weighting. The resonator was stimulated in Figure (<bold>a</bold>) at resonance frequency, <inline-formula> <mml:math id="mm1024"> <mml:semantics> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:semantics> </mml:math> </inline-formula>, for a length in time domain of <inline-formula> <mml:math id="mm1025"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in the constant stimulation range. In Figure (<bold>b</bold>), the stimulation signal is set to <inline-formula> <mml:math id="mm1026"> <mml:semantics> <mml:mrow> <mml:mn>0.995</mml:mn><mml:mo>·</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> for a time of <inline-formula> <mml:math id="mm1027"> <mml:semantics> <mml:mrow> <mml:mn>0.75</mml:mn><mml:mo>·</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in the constant range, and in (<bold>c</bold>) the stimulation is at <inline-formula> <mml:math id="mm1028"> <mml:semantics> <mml:mrow> <mml:mn>0.99</mml:mn><mml:mo>·</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> for <inline-formula> <mml:math id="mm1029"> <mml:semantics> <mml:mrow> <mml:mn>0.3</mml:mn><mml:mo>·</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> in the constant range.</p> "> Figure 17
<p>Driving voltage <inline-formula> <mml:math id="mm1030"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> and response signal of the resonator specified in <xref ref-type="fig" rid="sensors-24-01323-f003">Figure 3</xref>. The driving signal is weighted according to a Hann window with a time length to maximize the response signal. The driving frequency is in Figure (<bold>a</bold>) at resonance, in Figure (<bold>b</bold>) at the upper 3 dB band edge and twice this frequency distance as for (<bold>c</bold>).</p> "> Figure 18
<p>Figure (<bold>a</bold>) shows the real part of the driving voltage generated by a stimulating chirp signal over a relative bandwidth of <inline-formula> <mml:math id="mm1031"> <mml:semantics> <mml:mrow> <mml:mn>20</mml:mn> <mml:mo>%</mml:mo> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> centered at resonance frequency <inline-formula> <mml:math id="mm1032"> <mml:semantics> <mml:msub> <mml:mi>f</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:semantics> </mml:math> </inline-formula> and a time length of 400. Figure (<bold>b</bold>) shows the integral over this driving voltage, the so-called Euler spiral or Cornu spiral. Only the center, stationary part around the resonance frequency contributes to the resonant oscillation, all other parts cancel each other out.</p> "> Figure 19
<p>Driving voltage <inline-formula> <mml:math id="mm1033"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> (in dashed blue line) and response signal (in black line) of the resonator specified in <xref ref-type="fig" rid="sensors-24-01323-f003">Figure 3</xref>. The driving signal is modulated using a linear chirp with a chirp rate resulting in <inline-formula> <mml:math id="mm1034"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:msub> <mml:mi>τ</mml:mi> <mml:mi>s</mml:mi> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> of 2 in Figure (<bold>a</bold>), 1.4 in (<bold>b</bold>), and 1 in (<bold>c</bold>). The full black line shows the response signal calculated analytically according to the approximation of stationary phase and the dotted black line shows the numerical simulation of the response signal using MATLAB. The red asterisk gives the end of the synchronous range and the blue cross the maximum of the numerical calculated response.</p> "> Figure 20
<p>Comparison between studied excitation signals.</p> ">
Abstract
:1. Introduction
2. Modeling the Resonator in a Wireless Readout by Using a Series RLC Circuit Model
2.1. Natural Oscillation with No External Excitation
2.2. Steady State with Sinusoidal Excitation with Constant Amplitude
2.3. Boundary Conditions, Transient Phenomenon, and Decay Properties
2.4. Analytical and Numerical Analysis
3. Switching the Readout Signal On and Off
3.1. Switching On
3.2. Switching Off
4. Increasing and Decreasing the Driving Voltage According to a Trapezoidal Window
4.1. Interval with a Linear Increase in the Amplitude of the Stimulating Signal
4.2. Interval with a Constant Stimulating Signal
4.3. Interval with a Linear Decrease in the Amplitude of the Stimulating Signal
4.4. Switching the Stimulating Signal Off
4.5. Increasing and Decreasing the Driving Voltage According to a Bartlett Window
5. Weighting the Driving Voltage by Using a Tukey Window
Weighting the Driving Voltage by Using Hann Window
6. Stimulating a Resonator by Using a Frequency-Modulated Driving Signal
7. Discussion and Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Derivation of the Descriptive Differential Equation
Appendix A.1. Analysis in Time Domain, Differential Equation
Appendix A.2. Homogeneous Differential Equation
Appendix A.3. Steady State with Sinusoidal Excitation with Constant Amplitude
Appendix A.4. Split into Two Partial Fractions
Appendix A.5. Steady-State Analysis in the Frequency Domain
Appendix B. Calculation of the Impulse Response of the Source Impedance of the Antenna, hA(t)
Appendix B.1. Proof of the Result #1: Inverse Transform
Appendix B.2. Proof of the Result #2: Stimulation with ejωt
Appendix C. Calculating the Response of the Resonator, which Is Connected to an Antenna, by Solving the Differential Equation for a Driving Voltage which Is Switched On and Off
Appendix C.1. Switching the Stimulating Signal On
Appendix C.2. Switching the Stimulating Signal Off
Appendix C.3. Proofs
Appendix D. Calculating the Response of the Resonator, which Is Connected to an Antenna, Using Impulse Response for a Driving Voltage which is Switched On and Off
Appendix D.1. Switching the Stimulating Signal On
Appendix D.2. Switching the Stimulating Signal Off
Appendix E. Increasing and Decreasing the Stimulation Voltage According to a Trapezoidal Window
Appendix E.1. General Solution for All Four Time Intervals
Range I: | , | , | ; |
Range II: | , | , | ; |
Range III: | , | , | ; |
Range IV: | , | , | . |
Appendix E.2. Interval with a Linear Increase in the Amplitude of the Stimulating Signal
Appendix E.3. Interval with a Constant Stimulating Signal
Appendix E.4. Interval with a Linear Decrease in the Amplitude of the Stimulating Signal
Appendix E.5. Switching the Stimulating Signal Off
Appendix E.6. Case of a Stimulating Signal with a Triangulum Shape
Case 1: | |||
Case 2: |
Appendix F. Calculating the Response of the Resonator for a Driving Voltage which is Switched On and Off According to a Tukey Window
Appendix F.1. General Solution for All Four Time Intervals
Range I: | , | , | ; |
Range II: | , | , | ; |
Range III: | , | , | ; |
Range IV: | , | , | . |
Appendix F.2. Interval with Cosine-Shaped Increase in the Amplitude of the Stimulation Signal
Appendix F.3. Interval with a Constant Stimulating Signal
Appendix F.4. Interval with Cosine-Shaped Decrease in the Amplitude of the Stimulation Signal
Appendix F.5. Switching the Stimulating Signal Off
Appendix F.6. Calculating the Response of the Resonator for a Cosine Windowed Stimulating Signal
Appendix G. Using a Frequency-Modulated Signal to Stimulate the Resonator
References
- Krishnamurthy, S.; Bazuin, B.J.; Atashbar, M.Z. Wireless saw sensors reader: Architecture and design. In Proceedings of the 2005 IEEE International Conference on Electro Information Technology, Lincoln, NE, USA, 22–25 May 2005; p. 6. [Google Scholar]
- Scheiblhofer, S.; Schuster, S.; Stelzer, A. Modeling and performance analysis of saw reader systems for delay-line sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2009, 56, 2292–2303. [Google Scholar] [CrossRef] [PubMed]
- Lurz, F.; Ostertag, T.; Scheiner, B.; Weigel, R.; Koelpin, A. Reader architectures for wireless surface acoustic wave sensors. Sensors 2018, 18, 1734. [Google Scholar] [CrossRef] [PubMed]
- Reindl, L.; Scholl, G.; Ostertag, T.; Scherr, H.; Wolff, U.; Schmidt, F. Theory and application of passive saw radio transponders as sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1998, 45, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Ostertag, T.; Reindl, L.; Ruile, W.; Scholl, G. Sensor system. Patent EP 677 752, 27 June 2001. Available online: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=EP000000677752B1&xxxfull=1 (accessed on 12 February 2024).
- Raju, R.; Bridges, G.E. A compact wireless passive harmonic sensor for packaged food quality monitoring. IEEE Trans. Microw. Theory Tech. 2022, 70, 2389–2397. [Google Scholar] [CrossRef]
- Cole, P.H.; Vaughn, R. Electronic surveillance system. US Patent 3 707 711, 26 December 1972. Available online: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=US000003707711A&xxxfull=1 (accessed on 12 February 2024).
- Kenji, I. Remote measuring thermometer. Patent JP000S60 203 828A, 15 October 1985. Available online: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=JP000S60203828A&xxxfull=1 (accessed on 12 February 2024).
- Takeshi, O. Non-contact temperature//pressure detection method by ultrasonic wave. Patent JP000H01 119 729A, 11 May 1989. Available online: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=JP000H01119729A&xxxfull=1 (accessed on 12 February 2024).
- Schaechtle, T.; Aftab, T.; Reindl, L.M.; Rupitsch, S.J. Wireless passive sensor technology through electrically conductive media over an acoustic channel. Sensors 2023, 23, 2043. [Google Scholar] [CrossRef]
- Nopper, R.; Has, R.; Reindl, L. A wireless sensor readout system—Circuit concept, simulation, and accuracy. IEEE Trans. Instrum. Meas. 2011, 60, 2976–2983. [Google Scholar] [CrossRef]
- Bhadra, S.; Tan, D.S.Y.; Thomson, D.J.; Freund, M.S.; Bridges, G.E. A wireless passive sensor for temperature compensated remote ph monitoring. IEEE Sensors J. 2013, 13, 2428–2436. [Google Scholar] [CrossRef]
- Dominic, D.; Krafft, S.; Safdari, N.; Bhadra, S. Multiresonator-based printable chipless rfid for relative humidity sensing. Proceedings 2017, 1, 367. [Google Scholar]
- Schueler, M.; Mandel, C.; Puentes, M.; Jakoby, R. Metamaterial inspired microwave sensors. IEEE Microw. Mag. 2012, 13, 57–68. [Google Scholar] [CrossRef]
- Thomson, D.J.; Card, D.; Bridges, G.E. Rf cavity passive wireless sensors with time-domain gating-based interrogation for shm of civil structures. IEEE Sensors J. 2009, 9, 1430–1438. [Google Scholar] [CrossRef]
- Chuang, J.; Thomson, D.J.; Bridges, G.E. Embeddable wireless strain sensor based on resonant rf cavities. Rev. Sci. Instruments 2005, 76, 094703. [Google Scholar] [CrossRef]
- Weng, Y.F.; Cheung, S.W.; Yuk, T.I.; Liu, L. Design of chipless uwb rfid system using a cpw multi-resonator. IEEE Antennas Propag. Mag. 2013, 55, 13–31. [Google Scholar] [CrossRef]
- Amirkabiri, A.; Idoko, D.; Bridges, G.E.; Kordi, B. Contactless air-filled substrate-integrated waveguide (claf-siw) resonator for wireless passive temperature sensing. IEEE Trans. Microw. Theory Tech. 2022, 70, 3724–3731. [Google Scholar] [CrossRef]
- Lonsdale, A.; Lonsdale, B. Method and apparatus for measuring strain. Patent US5 585 571, 17 December 1969. Available online: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=US000005585571A&xxxfull=1 (accessed on 12 February 2024).
- Buff, W.; Klett, S.; Rusko, M.; Ehrenpfordt, J.; Goroli, M. Passive remote sensing for temperature and pressure using saw resonator devices. IEEE TRansactions Ultrason. Ferroelectr. Freq. Control. 1998, 45, 1388–1392. [Google Scholar] [CrossRef]
- Jeltiri, P.; Al-Mahmoud, F.; Boissière, R.; Paulmier, B.; Makdissy, T.; Elmazria, O.; Nicolay, P.; Hage-Ali, S. Wireless strain and temperature monitoring in reinforced concrete using surface acoustic wave sensors. IEEE Sensors Lett. 2023, 7, 2504304. [Google Scholar] [CrossRef]
- Cunha, M.P.D. High-temperature harsh-environment saw sensor technology. In Proceedings of the 2023 IEEE International Ultrasonics Symposium (IUS), Montreal, QC, Canada, 3–8 September 2023; pp. 1–10. [Google Scholar]
- Beckley, J.; Kalinin, V.; Lee, M.; Voliansky, K. Non-contact torque sensors based on saw resonators. In Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (Cat. No.02CH37234), New Orleans, LA, USA, 31 May 2002; pp. 202–213. [Google Scholar]
- Bhadra, S.; Thomson, D.J.; Bridges, G.E. A wireless embedded passive sensor for monitoring the corrosion potential of reinforcing steel. Smart Mater. Struct. 2013, 22, 075019. [Google Scholar] [CrossRef]
- Raju, R.; Bridges, G.E.; Bhadra, S. Wireless passive sensors for food quality monitoring: Improving the safety of food products. IEEE Antennas Propag. Mag. 2020, 62, 76–89. [Google Scholar] [CrossRef]
- Merkulov, A.A.; Ignat’ev, N.O.; Shvetsov, A.S.; Zhgoon, S.A.; Lipshits, K.E. Optimization of interrogation signal for saw-resonator-based vibration sensor. In Proceedings of the 2022 4th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), Moscow, Russia, 17–19 March 2022; pp. 1–6. [Google Scholar]
- Merkulov, A.; Shvetsov, A.; Zhgoon, S.; Paulmier, B.; Hage-Ali, S.; Elmazria, O. Peculiarities of wireless interrogation of saw-resonator vibration sensor by rf pulse-signal. In Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 7–11 September 2020; pp. 1–4. [Google Scholar]
- Varshney, P.; Panwar, B.S.; Rathore, P.; Ballandras, S.; François, B.; Martin, G.; Friedt, J.-M.; Rétornaz, T. Theoretical and experimental analysis of high q saw resonator transient response in a wireless sensor interrogation application. In Proceedings of the 2012 IEEE International Frequency Control Symposium Proceedings, Baltimore, MD, USA, 21–24 May 2012; pp. 1–6. [Google Scholar]
- MathWorks Inc. Matlab Version: 9.13.0 (r2022b); MathWorks: Natick, MA, USA, 2022; Available online: https://www.mathworks.com (accessed on 12 February 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reindl, L.M.; Aftab, T.; Gidion, G.; Ostertag, T.; Luo, W.; Rupitsch, S.J. Optimal Excitation and Readout of Resonators Used as Wireless Passive Sensors. Sensors 2024, 24, 1323. https://doi.org/10.3390/s24041323
Reindl LM, Aftab T, Gidion G, Ostertag T, Luo W, Rupitsch SJ. Optimal Excitation and Readout of Resonators Used as Wireless Passive Sensors. Sensors. 2024; 24(4):1323. https://doi.org/10.3390/s24041323
Chicago/Turabian StyleReindl, Leonhard M., Taimur Aftab, Gunnar Gidion, Thomas Ostertag, Wei Luo, and Stefan Johann Rupitsch. 2024. "Optimal Excitation and Readout of Resonators Used as Wireless Passive Sensors" Sensors 24, no. 4: 1323. https://doi.org/10.3390/s24041323
APA StyleReindl, L. M., Aftab, T., Gidion, G., Ostertag, T., Luo, W., & Rupitsch, S. J. (2024). Optimal Excitation and Readout of Resonators Used as Wireless Passive Sensors. Sensors, 24(4), 1323. https://doi.org/10.3390/s24041323