Characterization of an In-Situ Soil Organic Carbon (SOC) via a Smart-Electrochemical Sensing Approach
<p>Schematic description of ‘bottom-up’ sensor approach to dynamically track and detect soil organic carbon (SOC).</p> "> Figure 2
<p>(<b>a</b>) Gaussian representation for the interaction of RTIL-HUM-AOM pool showing distinct non-covalent interactions; (<b>b</b>) chemical structural representation of the interaction for simplification, clearly depicts all the interactions.</p> "> Figure 3
<p>Consolidated data plots—Calibration profile in spiked soil and testing of calibration curve with 2 unique samples (represented in red).</p> "> Figure 4
<p>Competitive data results between sensor and standard reference methods of validation study with 10 field soil samples of different textures and different SOC ranges. (ns: not significant).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Preparation
2.2. Sensor Testing
2.3. Soil Samples
2.4. Estimating SOC Concentrations Using Laboratory Standard Method
2.5. Statistical Analysis and Validation
3. Results and Discussion
3.1. Electrochemical Sensor Methodology
3.2. Rationale behind Sensor Chemistry
3.2.1. Chemical Composition of Soil Organic Carbon
- Alkyl Carbon
- O-Alkyl Carbon
- Aliphatic Carbon
- Aromatic groups
- Carboxyl groups
- Phenolic groups.
3.2.2. Functionalized Electrode Characteristics
3.2.3. Computational Chemistry Model of RTIL-Soil Organic Carbon Interactions
3.2.4. Material Selection and Basis of Interactions
3.3. Sensor Characterization towards Soil Organic Carbon Quantification
3.4. Sensor Performance in Soil
3.5. Correlation Study: Soc Sensor vs. Lab Standard Method
3.5.1. Properties of Soil Samples Used in This Study
3.5.2. Comparison of SOC Concentrations Determined by Reference Method and Sensor Method
3.6. Blinded Study to Determine Feasibility of Sensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Franzluebbers, A.J. Pursuing Robust Agroecosystem Functioning through Effective Soil Organic Carbon Management. Carbon Manag. 2014, 4, 43–56. [Google Scholar] [CrossRef]
- Lal, R. Soil Management and Restoration for C Sequestration to Mitigate the Accelerated Greenhouse Effect. Prog. Environ. Sci. 1999, 1, 307–326. [Google Scholar]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The Concept and Future Prospects of Soil Health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Doetterl, S.; Stevens, A.; Six, J.; Merckx, R.; Van Oost, K.; Casanova Pinto, M.; Casanova-Katny, A.; Muñoz, C.; Boudin, M.; Zagal Venegas, E.; et al. Soil Carbon Storage Controlled by Interactions between Geochemistry and Climate. Nat. Geosci. 2015, 8, 780–783. [Google Scholar] [CrossRef]
- Van Wesemael, B.; Paustian, K.; Meersmans, J.; Goidts, E.; Barancikova, G.; Easter, M. Agricultural Management Explains Historic Changes in Regional Soil Carbon Stocks. Proc. Natl. Acad. Sci. USA 2010, 107, 14926–14930. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, K.; Lal, R. Carbon Sequestration in Agricultural Ecosystems; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2018; pp. 1–392. [Google Scholar] [CrossRef]
- Sarkar, R.; Corriher-Olson, V.; Long, C.; Somenahally, A. Challenges and Potentials for Soil Organic Carbon Sequestration in Forage and Grazing Systems. Rangel. Ecol. Manag. 2020, 73, 786–795. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; de Courcelles, V.D.R.; Singh, K.; et al. The Knowns, Known Unknowns and Unknowns of Sequestration of Soil Organic Carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- England, J.R.; Rossel, R.A.V. Proximal Sensing for Soil Carbon Accounting. Soil 2018, 4, 101–122. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 3. Chemical Methods; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 2018; pp. 961–1010. [Google Scholar] [CrossRef]
- Bisutti, I.; Hilke, I.; Raessler, M. Determination of Total Organic Carbon—An Overview of Current Methods. TrAC Trends Anal. Chem. 2004, 23, 716–726. [Google Scholar] [CrossRef]
- Kerven, G.L.; Menzies, N.W.; Geyer, M.D. Analytical Methods and Quality Assurance. Soil Sci. Plant Anal. 2008, 31, 1935–1939. [Google Scholar] [CrossRef]
- Yeomans, J.C.; Bremner, J.M. A Rapid and Precise Method for Routine Determination of Organic Carbon in Soil. Commun. Soil Sci. Plant Anal. 2008, 19, 1467–1476. [Google Scholar] [CrossRef]
- Grewal, K.S.; Buchan, G.D.; Sherlock, R.R. A Comparison of Three Methods of Organic Carbon Determination in Some New Zealand Soils. J. Soil Sci. 1991, 42, 251–257. [Google Scholar] [CrossRef]
- Meersmans, J.; Van Wesemael, B.; Van Molle, M. Determining Soil Organic Carbon for Agricultural Soils: A Comparison between the Walkley & Black and the Dry Combustion Methods (North Belgium). Soil Use Manag. 2009, 25, 346–353. [Google Scholar] [CrossRef]
- Neal, R.H.; Younglove, T. The Use of a Dry Combustion Infrared Instrumental Technique to Determine Total and Organic Carbon in California Soils. Commun. Soil Sci. Plant Anal. 1993, 24, 2733–2746. [Google Scholar] [CrossRef]
- Lettens, S.; De Vos, B.; Quataert, P.; Van Wesemael, B.; Muys, B.; Van Orshoven, J. Variable Carbon Recovery of Walkley-Black Analysis and Implications for National Soil Organic Carbon Accounting. Eur. J. Soil Sci. 2007, 58, 1244–1253. [Google Scholar] [CrossRef]
- Harris, D.; Horwáth, W.R.; van Kessel, C. Acid Fumigation of Soils to Remove Carbonates Prior to Total Organic Carbon or CARBON-13 Isotopic Analysis. Soil Sci. Soc. Am. J. 2001, 65, 1853–1856. [Google Scholar] [CrossRef]
- Schmidt, A.; Smernik, R.J.; McBeath, T.M. Measuring Organic Carbon in Calcarosols: Understanding the Pitfalls and Complications. Soil Res. 2012, 50, 397–405. [Google Scholar] [CrossRef]
- Silveira, M.L.; Comerford, N.B.; Reddy, K.R.; Cooper, W.T.; El-Rifai, H. Characterization of Soil Organic Carbon Pools by Acid Hydrolysis. Geoderma 2008, 144, 405–414. [Google Scholar] [CrossRef]
- Ramnarine, R.; Voroney, R.P.; Wagner-Riddle, C.; Dunfield, K.E. Carbonate Removal by Acid Fumigation for Measuring the Δ13c of Soil Organic Carbon. Can. J. Soil Sci. 2011, 91, 247–250. [Google Scholar] [CrossRef]
- Nieuwenhuize, J.; Maas, Y.E.M.; Middelburg, J.J. Rapid Analysis of Organic Carbon and Nitrogen in Particulate Materials. Mar. Chem. 1994, 45, 217–224. [Google Scholar] [CrossRef]
- Rau, B.M.; Melvin, A.M.; Johnson, D.W.; Goodale, C.L.; Blank, R.R.; Fredriksen, G.; Miller, W.W.; Murphy, J.D.; Todd, D.E.; Walker, R.F. Revisiting Soil Carbon and Nitrogen Sampling: Quantitative Pits versus Rotary Cores. Soil Sci. 2011, 176, 273–279. [Google Scholar] [CrossRef]
- Maillard, É.; McConkey, B.G.; Angers, D.A. Increased Uncertainty in Soil Carbon Stock Measurement with Spatial Scale and Sampling Profile Depth in World Grasslands: A Systematic Analysis. Agric. Ecosyst. Environ. 2017, 236, 268–276. [Google Scholar] [CrossRef]
- Miller, B.A.; Koszinski, S.; Hierold, W.; Rogasik, H.; Schröder, B.; Van Oost, K.; Wehrhan, M.; Sommer, M. Towards Mapping Soil Carbon Landscapes: Issues of Sampling Scale and Transferability. Soil Tillage Res. 2016, 156, 194–208. [Google Scholar] [CrossRef]
- Norouzi, S.; Sadeghi, M.; Liaghat, A.; Tuller, M.; Jones, S.B.; Ebrahimian, H. Information Depth of NIR/SWIR Soil Reflectance Spectroscopy. Remote Sens. Environ. 2021, 256, 112315. [Google Scholar] [CrossRef]
- Wu, M.; Pang, D.; Chen, L.; Li, X.; Liu, L.; Liu, B.; Li, J.; Wang, J.; Ma, L. Chemical Composition of Soil Organic Carbon and Aggregate Stability along an Elevation Gradient in Helan Mountains, Northwest China. Ecol. Indic. 2021, 131, 108228. [Google Scholar] [CrossRef]
- Nie, P.; Dong, T.; He, Y.; Qu, F. Detection of Soil Nitrogen Using Near Infrared Sensors Based on Soil Pretreatment and Algorithms. Sensors 2017, 17, 1102. [Google Scholar] [CrossRef] [PubMed]
- Nocita, M.; Stevens, A.; Noon, C.; van Wesemael, B. Prediction of Soil Organic Carbon for Different Levels of Soil Moisture Using Vis-NIR Spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Olale, K.; Yenesew, A.; Jamnadass, R.; Sila, A.; Aynekulu, E.; Kuyah, S.; Shepherd, K. Limitations to Use of Infrared Spectroscopy for Rapid Determination of Carbon-Nitrogen and Wood Density for Tropical Species. Adv. Anal. Chem. 2013, 2013, 21–28. [Google Scholar] [CrossRef]
- Dauphin-Ducharme, P.; Netzahualcóyotl, N.; Currás, A.-C.; Kurnik, M.; Ortega, G.; Li, H.; Plaxco, K.W. Simulation-Based Approach to Determining Electron Transfer Rates Using Square-Wave Voltammetry. Langmuir 2017, 33, 7. [Google Scholar] [CrossRef]
- Ramaley, L.; Krause, M.S. Theory of Square Wave Voltammetry. Anal. Chem. 1969, 41, 1362–1365. [Google Scholar] [CrossRef]
- Scott, K. Electrochemical Principles and Characterization of Bioelectrochemical Systems. In Microbial Electrochemical and Fuel Cells: Fundamentals and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 29–66. [Google Scholar] [CrossRef]
- Singh, M.; Patkar, R.; Vinchurkar, M.; Baghini, M.S. Voltammetry Based Handheld Measurement System for Soil PH. J. Electroanal. Chem. 2021, 885, 115086. [Google Scholar] [CrossRef]
- Scandurra, A.; Mirabella, S. Square Wave Anodic Stripping Voltammetry Applied to a Nano-Electrode for Trace Analysis of Pb(II) and Cd(II) Ions in Solution. IEEE Sens. J. 2021, 21, 22134–22142. [Google Scholar] [CrossRef]
- Eldeeb, M.A.; Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. Espial: Electrochemical Soil PH Sensor for In Situ Real-Time Monitoring. Micromachines 2023, 14, 2188. [Google Scholar] [CrossRef]
- Sardesai, A.U.; Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. Design and Electrochemical Characterization of Spiral Electrochemical Notification Coupled Electrode (SENCE) Platform for Biosensing Application. Micromachines 2020, 11, 333. [Google Scholar] [CrossRef]
- Deng, J.; Zhu, W.; Zhou, Y.; Yin, Y. Soil Organic Carbon Chemical Functional Groups under Different Revegetation Types Are Coupled with Changes in the Microbial Community Composition and the Functional Genes. Forests 2019, 10, 240. [Google Scholar] [CrossRef]
- Margenot, A.J.; Calderón, F.J.; Bowles, T.M.; Parikh, S.J.; Jackson, L.E. Soil Organic Matter Functional Group Composition in Relation to Organic Carbon, Nitrogen, and Phosphorus Fractions in Organically Managed Tomato Fields. Soil Sci. Soc. Am. J. 2015, 79, 772–782. [Google Scholar] [CrossRef]
- García-Díaz, A.; Marqués, M.J.; Sastre, B.; Bienes, R. Labile and Stable Soil Organic Carbon and Physical Improvements Using Groundcovers in Vineyards from Central Spain. Sci. Total Environ. 2018, 621, 387–397. [Google Scholar] [CrossRef]
- Yue, X.; Li, S.; Hussain, Q.; Jin, S.; Liu, Q.; Cui, D.; Song, X. Transformation of Humic Substances and Functional Groups of Soil Organic Carbon after Wildfire. Arch. Agron. Soil Sci. 2019, 67, 29–37. [Google Scholar] [CrossRef]
- Hayes, M.H.B.; Mylotte, R.; Swift, R.S. Humin: Its Composition and Importance in Soil Organic Matter. Adv. Agron. 2017, 143, 47–138. [Google Scholar] [CrossRef]
- Schaeffer, A.; Nannipieri, P.; Kästner, M.; Schmidt, B.; Botterweck, J. From Humic Substances to Soil Organic Matter–Microbial Contributions. In Honour of Konrad Haider and James P. Martin for Their Outstanding Research Contribution to Soil Science. J. Soils Sediments 2015, 15, 1865–1881. [Google Scholar] [CrossRef]
- Parikh, S.J.; Goyne, K.W.; Margenot, A.J.; Mukome, F.N.D.; Calderón, F.J.; Parikh, S.J.; Goyne, K.W.; Margenot, A.J.; Mukome, F.N.D. Soil Chemical Insights Provided through Vibrational Spectroscopy. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2014; Volume 126. [Google Scholar] [CrossRef]
- Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. DENSE: DiElectric Novel Soil Evaluation System to Electrochemically Profile Soil Matrices. J. Electrochem. Soc. 2022, 169, 067511. [Google Scholar] [CrossRef]
- Chagas, J.K.M.; de Figueiredo, C.C.; Ramos, M.L.G. Biochar Increases Soil Carbon Pools: Evidence from a Global Meta-Analysis. J. Environ. Manag. 2022, 305, 114403. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Chen, X.; Jiang, Z.; Ding, J.; Sun, X.; Xu, J. Effects of Biochar Application on Soil Organic Carbon Composition and Enzyme Activity in Paddy Soil under Water-Saving Irrigation. Int. J. Environ. Res. Public Health 2020, 17, 333. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Kashyap, N.; Kalita, S.; Bora, D.B.; Borah, R. A Brief Insight into the Physicochemical Properties of Room-Temperature Acidic Ionic Liquids and Their Catalytic Applications in CC Bond Formation Reactions. Adv. Phys. Org. Chem. 2020, 54, 1–98. [Google Scholar] [CrossRef]
- Peuravuori, J.; Lehtonen, T.; Pihlaja, K. Sorption of Aquatic Humic Matter by DAX-8 and XAD-8 Resins: Comparative Study Using Pyrolysis Gas Chromatography. Anal. Chim. Acta 2002, 471, 219–226. [Google Scholar] [CrossRef]
- Lamar, R.T.; Olk, D.C.; Mayhew, L.; Bloom, P.R. A New Standardized Method for Quantification of Humic and Fulvic Acids in Humic Ores and Commercial Products. J. AOAC Int. 2014, 97, 721–730. [Google Scholar] [CrossRef]
Compound | EE+ Free Energy (Hartree) | EE+ Enthalpy (Hartree) |
---|---|---|
BMIMBF4 | −0.387219 | −0.317910 |
BMIMBF4-HUM | −0.928802 | −0.747894 |
BMIMBF4-HUM-AOM | −3302.814 | −3302.653 |
Absorption Peaks (cm−1) | ||
---|---|---|
BMIMBF4 | BMIMBF4-HUM | BMIMBF4-HUM-AOM |
399 (B-F stretching) | 1174 (BMIMC-H bending) | 1275 (BMIM-C-H bending) |
758 (BMIM -C-H stretching asymmetric) | 1447 (Humic C-H bending) | 1784 (Fulvic-H-F of BF4) |
1206 (BMIM -C-H bending) | 1934 (-C=O stretching) | 1845 (Humic C=C) |
1232 (N-B interaction) | 3386 (Fulvic -C-H stretching) | 1948 (-C=O stretching) |
2624 (BMIM -C-H stretching symmetric) | 3549 (-O-H stretching) | 3044 (-C-H carboxylic) |
Sample ID | Reference Method (mg/kg) | Sensor Method (mg/kg) | % Difference between the Methods |
---|---|---|---|
T1 | 4438 (±339 ¥) | 4341.6 | 2.2 |
T2 | 7100 (±107) | 7346.0 | 3.5 |
T3 | 1072 (±42) | 973.0 | 9.2 |
T4 | 19,273 (±166) | 17,104.5 | 11.3 |
T5 | 9919 (±299) | 9636.9 | 2.8 |
T6 | 6693 (±75) | 7091.4 | 6 |
T7 | 30,228 (±542) | 28,590.7 | 5.4 |
T8 | 4850 (±62) | 4777.0 | 1.5 |
T9 | 5972 (±79) | 5849.5 | 2.1 |
T10 | 5427 (±44) | 5203.7 | 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhamu, V.N.; Somenahally, A.C.; Paul, A.; Muthukumar, S.; Prasad, S. Characterization of an In-Situ Soil Organic Carbon (SOC) via a Smart-Electrochemical Sensing Approach. Sensors 2024, 24, 1153. https://doi.org/10.3390/s24041153
Dhamu VN, Somenahally AC, Paul A, Muthukumar S, Prasad S. Characterization of an In-Situ Soil Organic Carbon (SOC) via a Smart-Electrochemical Sensing Approach. Sensors. 2024; 24(4):1153. https://doi.org/10.3390/s24041153
Chicago/Turabian StyleDhamu, Vikram Narayanan, Anil C Somenahally, Anirban Paul, Sriram Muthukumar, and Shalini Prasad. 2024. "Characterization of an In-Situ Soil Organic Carbon (SOC) via a Smart-Electrochemical Sensing Approach" Sensors 24, no. 4: 1153. https://doi.org/10.3390/s24041153
APA StyleDhamu, V. N., Somenahally, A. C., Paul, A., Muthukumar, S., & Prasad, S. (2024). Characterization of an In-Situ Soil Organic Carbon (SOC) via a Smart-Electrochemical Sensing Approach. Sensors, 24(4), 1153. https://doi.org/10.3390/s24041153