CSINet: A Cross-Scale Interaction Network for Lightweight Image Super-Resolution
<p>Trade-off between performance and model complexity of other state-of-the-art lightweight models on the BSD100 dataset for <math display="inline"><semantics> <mrow> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math> SR. The CSINet achieves higher PSNR with fewer parameters.</p> "> Figure 2
<p>An overview of our CSINet network. (<b>a</b>) The architecture of CSINet network, (<b>b</b>) the details of the feature aggregation residual group (FARG).</p> "> Figure 3
<p>Efficient Large Kernel Attention (ELKA).</p> "> Figure 4
<p>Enhanced Spatial Attention (ESA).</p> "> Figure 5
<p>The structures of different residual modules. (<b>a</b>) Non-bt-1D [<a href="#B25-sensors-24-01135" class="html-bibr">25</a>]. (<b>b</b>) SS-nbt [<a href="#B27-sensors-24-01135" class="html-bibr">27</a>]. (<b>c</b>) Our CSIB. ‘C’ is the number of the input channels, ‘DW’ indicates a depth-wise convolution, and ‘DW-D’ denotes a depth-wise dilated convolution.</p> "> Figure 6
<p>Two different CSIB modules. (<b>a</b>) MFFB. (<b>b</b>) CDFB. ‘C’ is the number of the input channels, ‘DW’ indicates a depth-wise convolution, and ‘DW-D’ denotes a depth-wise dilated convolution.</p> "> Figure 7
<p>Visualized feature maps processed by different convolution designs. (<b>a</b>) Input feature. (<b>b</b>) Feature processed by the CDFB. (<b>c</b>) Feature processed by the MFFB. (<b>d</b>) Output feature of CSIB.</p> "> Figure 8
<p>Visualized feature maps of the four FARGs. (<b>a</b>) Visualization feature maps of the four FARGs before ELKA. (<b>b</b>) Visualization feature maps of the four FARGs after ELKA. The values are calculated by averaging the feature maps and normalized in range 0 to 1.</p> "> Figure 9
<p>Visual comparison of the Set 14 dataset for <math display="inline"><semantics> <mrow> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math> SR.</p> "> Figure 10
<p>Visual comparison on the BSD100 dataset for <math display="inline"><semantics> <mrow> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math> SR.</p> "> Figure 11
<p>Visual comparison on the Urban100 dataset for <math display="inline"><semantics> <mrow> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math> SR.</p> "> Figure 12
<p>Average running time on Set5 dataset for <math display="inline"><semantics> <mrow> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math> SR.</p> "> Figure 13
<p>Comparison of super-resolution results on real-world photos; CSINet outperforms state-of-the-art methods with embedded MEC system.</p> ">
Abstract
:1. Introduction
- We adopted a factorized convolution approach to design a Cross-Scale Interaction Block (CSIB). CSIBs employ a dual-branch structure to extract both local fine-grained features and global coarse-grained features. Furthermore, we utilize interaction operations at the end of the dual-branch structure, facilitating the integration of cross-scale contextual information;
- We designed an Efficient Large Convolutional Kernel Attention (ELKA) with limited additional computation for refining and extracting features. Ablation studies validated the effectiveness of this attention module;
- Comprehensive experiments on benchmark datasets show that our CSINet outperforms most state-of-the art lightweight SR methods.
2. Related Work
2.1. Lightweight Image SR
2.2. Attention Mechanism of Image SR
2.3. Factorized Convolution
3. Method
3.1. Network Structure
3.2. Attention Modules
3.2.1. Efficient Large Kernel Attention (ELKA)
3.2.2. Enhanced Spatial Attention
3.3. Feature Aggregation Residual Group (FARG)
3.4. Cross-Scale Interaction Block (CSIB)
4. Experiments
4.1. Experiment Setup
4.1.1. Datasets and Metrics
4.1.2. Training Details
4.2. Ablation Study
4.2.1. Effectiveness of Dilation Rate
4.2.2. Effectiveness of CSIB
4.2.3. Effectiveness of Factorized Convolution
4.2.4. Effectiveness of ELKA and ESA
4.3. Comparison with the SOTA SR Methods
4.4. Complexity Analysis
4.5. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 391–407. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Kong, F.; Li, M.; Liu, S.; Liu, D.; He, J.; Bai, Y.; Chen, F.; Fu, L. Residual Local Feature Network for Efficient Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 766–776. [Google Scholar]
- Li, Z.; Liu, Y.; Chen, X.; Cai, H.; Gu, J.; Qiao, Y.; Dong, C. Blueprint Separable Residual Network for Efficient Image Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 833–843. [Google Scholar]
- Wang, L.; Dong, X.; Wang, Y.; Ying, X.; Lin, Z.; An, W.; Guo, Y. Exploring sparsity in image super-resolution for efficient inference. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4917–4926. [Google Scholar]
- Zhao, H.; Kong, X.; He, J.; Qiao, Y.; Dong, C. Efficient image super-resolution using pixel attention. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 56–72. [Google Scholar]
- Du, Z.; Liu, D.; Liu, J.; Tang, J.; Wu, G.; Fu, L. Fast and Memory-Efficient Network Towards Efficient Image Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 853–862. [Google Scholar]
- Wang, Y. Edge-Enhanced Feature Distillation Network for Efficient Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, New Orleans, LA, USA, 18–24 June 2022; pp. 777–785. [Google Scholar]
- Hui, Z.; Gao, X.; Yang, Y.; Wang, X. Lightweight Image Super-Resolution with Information Multi-distillation Network. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2024–2032. [Google Scholar]
- Li, W.; Zhou, K.; Qi, L.; Jiang, N.; Lu, J.; Jia, J. Lapar: Linearly-assembled pixel-adaptive regression network for single image super-resolution and beyond. Adv. Neural Inf. Process. Syst. 2020, 33, 20343–20355. [Google Scholar]
- Liu, J.; Tang, J.; Wu, G. Residual feature distillation network for lightweight image super-resolution. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 41–55. [Google Scholar]
- Ahn, N.; Kang, B.; Sohn, K.A. Fast, accurate, and lightweight super-resolution with cascading residual network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 252–268. [Google Scholar]
- Hui, Z.; Wang, X.; Gao, X. Fast and accurate single image super-resolution via information distillation network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 723–731. [Google Scholar]
- Chen, S.; Huang, K.; Li, B.; Xiong, D.; Jiang, H.; Claesen, L. Adaptive hybrid composition based super-resolution network via fine-grained channel pruning. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 119–135. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 3. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 11531–11539. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-Local Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803. [Google Scholar]
- Guo, M.H.; Lu, C.Z.; Liu, Z.N.; Cheng, M.M.; Hu, S.M. Visual attention network. Comput. Vis. Media 2023, 9, 733–752. [Google Scholar] [CrossRef]
- Feng, H.; Wang, L.; Li, Y.; Du, A. LKASR: Large kernel attention for lightweight image super-resolution. Knowl.-Based Syst. 2022, 252, 109376. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, X.; Li, L.; Meng, H.; Zhang, T.; Li, T.; Zhao, X. Large Kernel Distillation Network for Efficient Single Image Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; p. 1. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Romera, E.; Alvarez, J.M.; Bergasa, L.M.; Arroyo, R. Erfnet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 2017, 19, 263–272. [Google Scholar] [CrossRef]
- Li, G.; Yun, I.; Kim, J.; Kim, J. Dabnet: Depth-wise asymmetric bottleneck for real-time semantic segmentation. arXiv 2019, arXiv:1907.11357. [Google Scholar]
- Wang, Y.; Zhou, Q.; Liu, J.; Xiong, J.; Gao, G.; Wu, X.; Latecki, L.J. Lednet: A lightweight encoder-decoder network for real-time semantic segmentation. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1860–1864. [Google Scholar]
- Gao, G.; Xu, G.; Yu, Y.; Xie, J.; Yang, J.; Yue, D. MSCFNet: A lightweight network with multi-scale context fusion for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 2021, 23, 25489–25499. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Wei, H.; Liu, Z.; Zhan, Z.; Ren, Q. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles. arXiv 2022, arXiv:2206.02424. [Google Scholar]
- Agustsson, E.; Timofte, R. Ntire 2017 challenge on single image super-resolution: Dataset and study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 126–135. [Google Scholar]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M.L. Low-Complexity Single-Image Super-Resolution Based on Nonnegative Neighbor Embedding British Machine Vision Conference. 2012. Available online: https://api.semanticscholar.org/CorpusID:5250573 (accessed on 6 February 2024).
- Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse-representations. In Proceedings of the International Conference on Curves and Surfaces, Avignon, France, 24–30 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 711–730. [Google Scholar]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Eighth IEEE International Conference on Computer Vision. ICCV 2001, Vancouver, BC, Canada, 7–14 July 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 2, pp. 416–423. [Google Scholar]
- Huang, J.B.; Singh, A.; Ahuja, N. Single image super-resolution from transformed self-exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5197–5206. [Google Scholar]
- Matsui, Y.; Ito, K.; Aramaki, Y.; Fujimoto, A.; Ogawa, T.; Yamasaki, T.; Aizawa, K. Sketch-based manga retrieval using manga109 dataset. Multimed. Tools Appl. 2017, 76, 21811–21838. [Google Scholar] [CrossRef]
- Muqeet, A.; Hwang, J.; Yang, S.; Kang, J.; Kim, Y.; Bae, S.H. Multi-attention based ultra lightweight image super-resolution. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 103–118. [Google Scholar]
- Liu, Y.; Jia, Q.; Fan, X.; Wang, S.; Ma, S.; Gao, W. Cross-srn: Structure-preserving super-resolution network with cross convolution. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 4927–4939. [Google Scholar] [CrossRef]
- Gao, G.; Li, W.; Li, J.; Wu, F.; Lu, H.; Yu, Y. Feature distillation interaction weighting network for lightweight image super-resolution. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 22 February–1 March 2022; Volume 36, pp. 661–669. [Google Scholar]
Dilation Rate | Set5 | Set14 | BSD100 | Urban100 | Manga109 |
---|---|---|---|---|---|
PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | |
R = (1,2,2,4) | 32.26/0.8963 | 28.68/0.7845 | 27.64/0.7404 | 26.22/0.7916 | 30.58/0.9102 |
R = (1,2,2,6) | 32.26/0.8961 | 28.66/0.7840 | 27.65/0.7403 | 26.23/0.7915 | 30.59/0.9100 |
R = (1,2,4,6) | 32.29/0.8961 | 28.69/0.7843 | 27.64/0.7404 | 26.22/0.7916 | 30.55/0.9099 |
R = (1,3,5,7) | 32.32/0.8965 | 28.67/0.7841 | 27.63/0.7403 | 26.21/0.7916 | 30.56/0.9099 |
R = (1,3,5,5) | 32.29/0.8963 | 28.69/0.7844 | 27.64/0.7402 | 26.18/0.7900 | 30.58/0.9101 |
R = (1,3,3,5) | 32.34/0.8965 | 28.68/0.7845 | 27.64/0.7405 | 26.23/0.7918 | 30.58/0.9103 |
Method | Params | Multi-Adds | Set5 | Set14 | BSD100 | Urban100 | Manga109 |
---|---|---|---|---|---|---|---|
PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | |||
MFFNet | 311 K | 17.3 G | 32.17/0.8948 | 28.55/0.7812 | 27.53/0.7366 | 26.01/0.7834 | 30.32/0.9068 |
CDFNet | 343 K | 20.5 G | 32.15/0.8944 | 28.62/0.7827 | 27.60/0.7389 | 26.02/0.7859 | 30.32/0.9075 |
CSINet | 366 K | 20.5 G | 32.34/0.8965 | 28.68/0.7845 | 27.64/0.7405 | 26.23/0.7918 | 30.58/0.9103 |
Method | Params | Multi-Adds | Ave. Time | Set5 | Set14 | BSD100 | Urban100 | Manga109 |
---|---|---|---|---|---|---|---|---|
PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | ||||
w/RC | 380 K | 21.3 G | 10.08 ms | 32.27/0.8961 | 28.66/0.7837 | 27.63/0.7398 | 26.15/0.7886 | 30.60/0.9098 |
w/FC | 366 K | 20.5 G | 8.84 ms | 32.34/0.8965 | 28.68/0.7845 | 27.64/0.7405 | 26.23/0.7918 | 30.58/0.9103 |
Method | Params | Multi-Adds | Set5 | Set14 | BSD100 | Urban100 | Manga109 |
---|---|---|---|---|---|---|---|
PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | |||
w/o ELKA | 273 K | 15.3 G | 32.01/0.8927 | 28.47/0.7796 | 27.51/0.7768 | 25.81/0.7768 | 30.05/0.9030 |
w/o ESA | 343 K | 20.4 G | 32.26/0.8960 | 28.65/0.7840 | 27.63/0.7401 | 26.23/0.7914 | 30.55/0.9101 |
CSINet | 366 K | 20.5 G | 32.34/0.8965 | 28.68/0.7845 | 27.64/0.7405 | 26.23/0.7918 | 30.58/0.9103 |
Methods | Scale | Params | Multi-Adds | Set5 | Set14 | BSD100 | Urban100 | Manga109 |
---|---|---|---|---|---|---|---|---|
PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | PNSR/SSIM | ||||
Bicubic | - | - | 33.66/0.9299 | 30.24/0.8688 | 29.56/0.8431 | 26.88/0.8403 | 30.80/0.9339 | |
SRCNN [1] | 8 K | 52.7 G | 36.66/0.9542 | 32.42/0.9063 | 31.36/0.8879 | 29.50/0.8946 | 35.60/0.9663 | |
VDSR [2] | 666 K | 612.6 G | 37.53/0.9587 | 33.03/0.9124 | 31.90/0.8960 | 30.76/0.9140 | 37.22/0.9750 | |
CARN [14] | 1592 K | 222.8 G | 37.76/0.9590 | 33.52/0.9166 | 32.09/0.8978 | 31.92/0.9256 | 38.36/0.9765 | |
IDN [15] | 553 K | 124.6 G | 37.83/0.9600 | 33.30/0.9148 | 32.08/0.8985 | 31.27/0.9196 | 38.01/0.9749 | |
MAFSSRN [36] | 402 K | 77.2 G | 37.97/0.9603 | 33.49/0.9170 | 32.14/0.8994 | 31.96/0.9268 | - | |
SMMR [7] | 985 K | 131.6 G | 38.00/0.9601 | 33.64/0.9179 | 32.17/0.8990 | 32.19/0.9284 | 38.76/0.9771 | |
IMDN [11] | 694 K | 158.8 G | 38.00/0.9605 | 33.63/0.9177 | 32.19/0.8996 | 32.17/0.9283 | 38.88/0.9774 | |
PAN [8] | 261 K | 70.5 G | 38.00/0.9605 | 33.59/0.9181 | 32.18/0.8997 | 32.01/0.9273 | 38.70/0.9773 | |
LAPAR-A [12] | 548 K | 171.0 G | 38.01/0.9605 | 33.62/0.9183 | 32.19/0.8999 | 32.10/0.9283 | 38.67/0.9772 | |
RFDN [13] | 534 K | 95 G | 38.05/0.9606 | 33.68/0.9184 | 32.16/0.8994 | 32.12/0.9278 | 38.88/0.9773 | |
Cross-SRN [37] | - | - | 38.03/0.9606 | 33.62/0.9180 | 32.19/0.8997 | 32.28/0.9290 | 38.75/0.92773 | |
FDIWN-M [38] | - | - | - | - | - | - | - | |
RFLN [5] | 527 K | - | 38.07/0.9607 | 33.72/0.9187 | 32.22/0.9000 | 32.33/0.9299 | - | |
BSRN [6] | 332 K | 73.0 G | 38.10/0.9610 | 33.74/0.9193 | 32.24/0.9006 | 32.34/0.9303 | 39.14/0.9782 | |
CSINet-S (ours) | 248 K | 54.6 G | 38.06/0.9608 | 33.82/0.9200 | 32.26/0.9009 | 32.40/0.9313 | 39.08/0.9780 | |
CSINet (ours) | 348 K | 77.7 G | 38.08/0.9608 | 33.77/0.9205 | 32.27/0.9009 | 32.45/0.9318 | 39.00/0.9779 | |
Bicubic | - | - | 30.39/0.8682 | 27.55/0.7742 | 27.21/0.7385 | 24.46/0.7349 | 26.95/0.8556 | |
SRCNN [1] | 8 K | 52.7 G | 32.75/0.9090 | 29.30/0.8215 | 28.41/0.7863 | 26.24/0.7989 | 30.48/0.9117 | |
VDSR [2] | 666 K | 612.6 G | 33.66/0.9213 | 29.77/0.8314 | 28.82/0.7976 | 27.14/0.8279 | 32.01/0.9340 | |
CARN [14] | 1592 K | 118.8 G | 34.29/0.9255 | 30.29/0.8407 | 29.06/0.8034 | 28.06/0.8493 | 33.50/0.9440 | |
IDN [15] | 553 K | 57.0 G | 34.11/0.9253 | 29.99/0.8354 | 28.95/0.8013 | 27.42/0.8359 | 32.71/0.9381 | |
MAFSSRN [36] | 418 K | 34.2 G | 34.32/0.9269 | 30.35/0.8429 | 29.09/0.8052 | 28.13/0.8521 | - | |
SMMR [7] | 993 K | 67.8 G | 34.40/0.9270 | 30.33/0.8412 | 29.10/0.8050 | 28.25/0.8536 | 33.68/0.9445 | |
IMDN [11] | 703 K | 71.5 G | 34.36/0.9270 | 30.32/0.8417 | 29.09/0.8046 | 28.17/0.8519 | 33.61/0.9445 | |
PAN [8] | 261 K | 39 G | 34.40/0.9271 | 30.36/0.8423 | 29.11/0.8050 | 28.11/0.8511 | 33.61/0.9448 | |
LAPAR-A [12] | 544 K | 114 G | 34.36/0.9267 | 30.34/0.8421 | 29.11/0.8054 | 28.15/0.8523 | 33.51/0.9441 | |
RFDN [13] | 541 K | 42.2 G | 34.41/0.9273 | 30.34/0.8420 | 29.09/0.8050 | 28.21/0.8525 | 33.67/0.9449 | |
Cross-SRN [37] | - | - | 32.43/0.9275 | 30.33/0.8417 | 29.09/0.8050 | 28.23/0.8535 | 33.65/0.9448 | |
FDIWN-M [38] | 446 K | 35.9 G | 34.46/0.9274 | 30.35/0.8423 | 29.10/0.8051 | 28.16/0.8528 | - | |
RFLN [5] | - | - | - | - | - | - | - | |
BSRN [6] | 340 K | 33.3 G | 32.46/0.9277 | 30.47/0.8449 | 29.18/0.8068 | 28.39/0.8567 | 34.05/0.9471 | |
CSINet-S (ours) | 255 K | 25.1 G | 34.47/0.9275 | 30.46/0.8449 | 29.18/0.8076 | 28.37/0.8573 | 33.91/0.9464 | |
CSINet (ours) | 356 K | 35.3 G | 34.49/0.9279 | 30.49/0.8453 | 29.19/0.8077 | 28.40/0.8577 | 33.93/0.9464 | |
Bicubic | - | - | 28.42/0.8104 | 26.00/0.7027 | 25.96/0.6675 | 23.14/0.6577 | 24.89/0.7866 | |
SRCNN [1] | 57 K | 52.7 G | 30.48/0.8626 | 27.50/0.7513 | 26.90/0.7101 | 24.52/0.7221 | 27.58/0.8555 | |
VDSR [2] | 666 K | 612.6 G | 31.35/0.8838 | 28.01/0.7674 | 27.29/0.7251 | 25.18/0.7524 | 28.83/0.8770 | |
CARN [14] | 1592 K | 90.9 G | 32.13/0.8937 | 28.60/0.7806 | 27.58/0.7349 | 26.07/0.7837 | 30.47/0.9084 | |
IDN [15] | 553 K | 32.3 G | 31.82/0.8903 | 28.25/0.7730 | 27.41/0.7297 | 25.41/0.7632 | 29.41/0.8942 | |
MAFSSRN [36] | 441 K | 19.3 G | 32.18/0.8948 | 28.58/0.7812 | 27.57/0.7361 | 26.04/0.7848 | - | |
SMMR [7] | 1006 K | 41.6 G | 32.12/0.8932 | 28.55/0.7808 | 27.55/0.7351 | 26.11/0.7868 | 30.54/0.9085 | |
IMDN [11] | 715 K | 40.9 G | 32.21/0.8948 | 28.58/0.7811 | 27.56/0.7353 | 26.04/0.7838 | 30.45/0.9075 | |
PAN [8] | 272 K | 28.2 G | 32.13/0.8948 | 28.61/0.7822 | 27.59/0.7363 | 26.11/0.7854 | 30.51/0.9095 | |
LAPAR-A [12] | 548 K | 94 G | 32.15/0.8944 | 28.61/0.7818 | 27.61/0.7366 | 26.14/0.7871 | 30.42/0.9074 | |
RFDN [13] | 550 K | 23.9 G | 32.24/0.8952 | 28.61/0.7819 | 27.57/0.7360 | 26.11/0.7858 | 30.58/0.9089 | |
Cross-SRN [37] | - | - | 32.24/0.8954 | 28.59/0.7817 | 27.58/0.7364 | 26.17/0.7881 | 30.53/0.9088 | |
FDIWN-M [38] | 454 K | 19.6 G | 32.17/0.8941 | 28.55/0.7806 | 27.58/0.7364 | 26.02/0.7844 | - | |
RFLN [5] | 543 K | - | 32.24/0.8952 | 28.62/0.7813 | 27.60/0.7364 | 26.17/0.7877 | - | |
BSRN [6] | 352 K | 19.4 G | 32.35/0.8962 | 28.73/0.7847 | 27.65/0.7387 | 26.27/0.7908 | 30.84/0.9123 | |
CSINet-S (ours) | 266 K | 14.7 G | 32.24/0.8959 | 28.72/0.7839 | 27.64/0.7385 | 26.22/0.7901 | 30.68/0.9097 | |
CSINet (ours) | 366 K | 20.5 G | 32.37/0.8971 | 28.78/0.7857 | 27.69/0.7398 | 26.35/0.7932 | 30.85/0.9117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, G.; Lo, S.-L.; Zou, H.; Liu, Y.-F.; Chen, Z.-Q.; Wang, J.-K. CSINet: A Cross-Scale Interaction Network for Lightweight Image Super-Resolution. Sensors 2024, 24, 1135. https://doi.org/10.3390/s24041135
Ke G, Lo S-L, Zou H, Liu Y-F, Chen Z-Q, Wang J-K. CSINet: A Cross-Scale Interaction Network for Lightweight Image Super-Resolution. Sensors. 2024; 24(4):1135. https://doi.org/10.3390/s24041135
Chicago/Turabian StyleKe, Gang, Sio-Long Lo, Hua Zou, Yi-Feng Liu, Zhen-Qiang Chen, and Jing-Kai Wang. 2024. "CSINet: A Cross-Scale Interaction Network for Lightweight Image Super-Resolution" Sensors 24, no. 4: 1135. https://doi.org/10.3390/s24041135
APA StyleKe, G., Lo, S. -L., Zou, H., Liu, Y. -F., Chen, Z. -Q., & Wang, J. -K. (2024). CSINet: A Cross-Scale Interaction Network for Lightweight Image Super-Resolution. Sensors, 24(4), 1135. https://doi.org/10.3390/s24041135