Analytic Continuation, Phase Unwrapping, and Retrieval of the Refractive Index of Metamaterials from S-Parameters
<p>A portion of the Riemann surface <math display="inline"><semantics> <mrow> <mi mathvariant="double-struck">S</mi> <mo>(</mo> <mi mathvariant="script">L</mi> <mo>)</mo> </mrow> </semantics></math> suspended on the unitary disk <math display="inline"><semantics> <mrow> <mi mathvariant="double-struck">D</mi> <mo>∈</mo> <mover accent="true"> <mi mathvariant="double-struck">C</mi> <mo>˙</mo> </mover> </mrow> </semantics></math>.</p> "> Figure 2
<p>An array of LiTaO<sub>3</sub> spheres embedded in free space: (<b>a</b>) sketch of the considered geometry; (<b>b</b>) unit cell containing a single LiTaO<sub>3</sub> sphere (<span class="html-italic">s</span>, cell size; <math display="inline"><semantics> <msub> <mi>r</mi> <mn>0</mn> </msub> </semantics></math>, sphere radius).</p> "> Figure 3
<p>Arrays of LiTaO<sub>3</sub> spheres, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>30</mn> <mspace width="0.277778em"/> <mi mathvariant="sans-serif">μ</mi> <mrow/> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>; <b>top-left</b>: phase of the S-parameters; <b>top-right</b>: plot of <math display="inline"><semantics> <msub> <mi>n</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </semantics></math>; <b>bottom-left</b>: magnification of <math display="inline"><semantics> <msub> <mi>n</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </semantics></math> over the <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> </semantics></math> THz band; <b>bottom-right</b>: Riemann sheets’ <span class="html-italic">q</span>-values.</p> "> Figure 4
<p>Arrays of LiTaO<sub>3</sub> spheres, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>70</mn> <mspace width="0.277778em"/> <mi mathvariant="sans-serif">μ</mi> <mrow/> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>; <b>top-left</b>: phase of the S-parameters; <b>top-right</b>: plot of <math display="inline"><semantics> <msub> <mi>n</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </semantics></math>; <b>bottom-left</b>: magnification of <math display="inline"><semantics> <msub> <mi>n</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </semantics></math> over the <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> </semantics></math> THz band; <b>bottom-right</b>: Riemann sheets’ <span class="html-italic">q</span>-values.</p> "> Figure 5
<p>Arraysof LiTaO<sub>3</sub> spheres, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>130</mn> <mspace width="0.277778em"/> <mi mathvariant="sans-serif">μ</mi> <mrow/> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>; <b>top-left</b>: phase of the S-parameters; <b>top-right</b>: plot of <math display="inline"><semantics> <msub> <mi>n</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </semantics></math>; <b>bottom-left</b>: magnification of <math display="inline"><semantics> <msub> <mi>n</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> </semantics></math> over the <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> </semantics></math> THz band; <b>bottom-right</b>: Riemann sheets’ <span class="html-italic">q</span> values.</p> ">
Abstract
:1. Introduction
2. Theory
2.1. The NRW Approach for Recovering the Complex Refractive Index
2.2. Analyticity and Phase Unwrapping
Algorithm 1 Phase unwrapping |
1: ; |
2: ; |
3: ; |
4: ; |
5: for k:=1 to n do; |
6: ; |
7: ; |
8: ; |
9: ; |
10: ; |
11: end for |
Algorithm 2 Plane phase unwrapping |
1: ; |
2: ; |
3: ; |
4: ; |
5: for k:=1 to n do; |
6: ; |
7: ; |
8: ; |
9: ; |
10: end for |
11: ; |
12: s_s¬ false; |
13: for k:=1 to n do; |
14: ; |
15: if then |
16: if then |
17: |
18: else if then |
19: s_s¬ true; |
20: Stop and Re-execute; |
21: end if |
22: end if |
23: end for |
2.3. Riemann Surfaces and Phase Unwrapping
Algorithm 3 Numerical integration-like phase unwrapping |
1: ; |
2: ; |
3: ; |
4: ; |
5: for k: = 1 to n do; |
6: ; |
7: ; |
8: |
9: ; |
10: ; |
11: ; |
12: end for |
3. Numerical Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Effecive electric permittivity; | |
Effective magnetic permeability; | |
Complex refractive index; | |
Effective refractive index; | |
Free space wavenumber; | |
d | MM thickness; |
R | Reflection coefficient; |
z | Effective impedance; |
Scattering parameters; | |
Complex logarithm; | |
Principal logarithm function; | |
Natural logarithm function; | |
Absolute value function; | |
Principal argument function; | |
p | Branch index; |
Complex exponential function; | |
Right inverse function; | |
Global analytic logarithm; | |
Cauchy principal value; | |
Complex plane; | |
Complex punctured plane; | |
Riemann surface of . |
Appendix A. Analytic Continuation, Phase Unwrapping, and Homomorphic Systems
References
- Neelakanta, P.S. Handbook of Electromagnetic Materials: Monolithic and Composite Versions and Their Applications; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Tong, X.C. Advanced Materials and Design for Electromagnetic Interference Shielding; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Chen, L.F.; Ong, C.K.; Neo, C.P.; Varadan, V.V.; Varadan, V.K. Microwave Electronics: Measurement and Materials Characterization; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Xiaojian, F.; Cui, T.-J. Recent progress on metamaterials: From effective medium model to real-time information processing system. Prog. Quantum Electron. 2019, 67, 100223. [Google Scholar]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000, 84, 4184. [Google Scholar] [CrossRef]
- Smith, D.R.; Schultz, S.; Markoš, P.; Soukoulis, C.M. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 2002, 65, 195104. [Google Scholar] [CrossRef]
- Vineetha, K.V.; Madhav, B.T.P.; Kumar, M.S.; Das, S.; Islam, T.; Alathbah, M. Development of Compact Bandpass Filter Using Symmetrical Metamaterial Structures for GPS, ISM, Wi-MAX, and WLAN Applications. Symmetry 2023, 15, 2058. [Google Scholar] [CrossRef]
- Hossain, M.B.; Faruque, M.R.I.; Islam, M.T.; Khandaker, M.U.; Tamam, N.; Sulieman, A. Modified coptic cross shaped split-ring resonator based negative permittivity metamaterial for quad band satellite applications with high effective medium ratio. Materials 2022, 15, 3389. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.N.A.; Wang, Y.; Fei, S.; Yan, Z.; Yu, L.; Chen, J.; Liu, F. Dual ultrahigh-Q Fano Resonances of 3D gap metamaterials for slow light from ultraviolet to visible range. Opt. Commun. 2023, 549, 129811. [Google Scholar] [CrossRef]
- Alam, M.J.; Latif, S.I. Double-Split Rectangular Dual-Ring DNG Metamaterial for 5G Millimeter Wave Applications. Electronics 2022, 12, 174. [Google Scholar] [CrossRef]
- Pallavi, M.; Kumar, P.; Ali, T.; Shenoy, S.B. Modeling of a negative refractive index metamaterial unit-cell and array for aircraft surveillance applications. IEEE Access 2022, 10, 99790–99812. [Google Scholar] [CrossRef]
- Angiulli, G.; Versaci, M.; Calcagno, S.; Di Barba, P. Quick retrieval of effective electromagnetic metamaterial parameters by using a Multi-fidelity Surrogate Modelling approach. Eur. Phys. J. Appl. Phys. 2020, 90, 20901. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Y.; Wu, Q. All dielectric terahertz left-handed metamaterial based on mie resonance coupling effects. IEEE Access 2019, 7, 94882–94887. [Google Scholar]
- Zhang, S.; Arya, R.K.; Whittow, W.G.; Cadman, D.; Mittra, R.; Vardaxoglou, J.C. Ultra-wideband flat metamaterial GRIN lenses assisted with additive manufacturing technique. IEEE Trans. Antennas Propag. 2020, 69, 3788–3799. [Google Scholar] [CrossRef]
- Simovski, C.R. Material parameters of metamaterials (a review). Opt. Spectrosc. 2009, 107, 726–753. [Google Scholar] [CrossRef]
- Simovski, C.R. On electromagnetic characterization and homogenization of nanostructured metamaterials. J. Opt. 2010, 13, 013001. [Google Scholar] [CrossRef]
- Simovski, C.R. Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices. Metamaterials 2007, 1, 62–80. [Google Scholar] [CrossRef]
- Arslanagić, S.; Hansen, T.V.; Mortensen, N.A.; Gregersen, A.H.; Sigmund, O.; Ziolkowski, R.W.; Breinbjerg, O. A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization. IEEE Antennas Propag. Mag. 2013, 55, 91–106. [Google Scholar] [CrossRef]
- Cao, Z.X.; Yuan, F.G.; Li, L.H. An automated phase correction algorithm for retrieving permittivity and permeability of electromagnetic metamaterials. AIP Adv. 2014, 4, 067115. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Z.Y.; Li, L.; Liang, C.H. An electromagnetic parameters extraction method for metamaterials based on phase unwrapping technique. Waves Random Complex Media 2016, 26, 417. [Google Scholar] [CrossRef]
- Singh, H.; Singh Sohi, B.; Gupta, A. Thickness invariant parameter retrieval techniques for permittivity and permeability measurement. J. Microw. Power Electromagn. Energy 2018, 52, 215. [Google Scholar] [CrossRef]
- Angiulli, G.; Versaci, M. Retrieving the effective parameters of an electromagnetic metamaterial using the Nicolson–Ross–Weir method: An analytic continuation problem along the path determined by scattering parameters. IEEE Access 2021, 9, 77511. [Google Scholar] [CrossRef]
- Angiulli, G.; Versaci, M. Extraction of the electromagnetic parameters of a metamaterial using the Nicolson–Ross–Weir method: An analysis based on global analytic functions and Riemann surfaces. Appl. Sci. 2022, 12, 11121. [Google Scholar] [CrossRef]
- Rothwell, E.J.; Cloud, M.J. Electromagnetics; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Markushevich, A.I. Theory of Functions of a Complex Variable, 2nd ed.; Chelsea Publishing Company: New York, NY, USA, 1985. [Google Scholar]
- Mowlaee, P.; Kulmer, J.; Stahl, J.; Mayer, F. Single Channel Phase-Aware Signal Processing in Speech Communication: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Kaplan, S.T.; Ulrych, T.J. Phase unwrapping: A review of methods and a novel technique. In Proceedings of the CSPG CSEG Convention, Calgary, AB, Canada, 14–16 May 2007; pp. 534–537. [Google Scholar]
- Varadan, V.V.; Ro, R. Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality. IEEE Trans. Microw. Theory Tech. 2007, 55, 2224. [Google Scholar] [CrossRef]
- Szabó, Z.; Park, G.; Hedge, R.; Li, S.L. A unique extraction of metamaterial parameters based on Kramers–Kronig relationship. IEEE Trans. Microw. Theory Tech. 2010, 58, 2646–2653. [Google Scholar] [CrossRef]
- Yoo, S.; Lee, S.; Choe, J.H.; Park, Q.H. Causal homogenization of metamaterials. Nanophotonics 2019, 8, 1063–1069. [Google Scholar] [CrossRef]
- Peiponen, K.E.; Vartiainen, E.M.; Asakura, T. Dispersion, Complex Analysis and Optical Spectroscopy: Classical Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998; Volume 147. [Google Scholar]
- Peiponen, K.E.; Lucarini, V.; Vartiainen, E.M.; Saarinen, J.J. Kramers–Kronig relations and sum rules of negative refractive index media. Eur. Phys. J. Condens. Matter Complex Syst. 2004, 41, 61–65. [Google Scholar] [CrossRef]
- Wheeler, M.S.; Aitchison, J.S.; Mojahedi, M. Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies. Phys. Rev. B 2005, 72, 193103. [Google Scholar] [CrossRef]
- Ohta, K.; Ishida, H. Comparison among several numerical integration methods for Kramers–Kronig transformation. Appl. Spectrosc. 1988, 42, 952–957. [Google Scholar] [CrossRef]
- Oppenheim, A.; Schafer, R.W. Discrete Time Signal Processing; Prentice-Hall: Kent, OH, USA, 2009. [Google Scholar]
Alg1 | Alg2 | Alg3 | K-K(B) | |
---|---|---|---|---|
512 |
Alg1 | Alg2 | Alg3 | K-K(B) | |
---|---|---|---|---|
1024 |
Alg1 | Alg2 | Alg3 | K-K(B) | |
---|---|---|---|---|
8192 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angiulli, G.; Versaci, M.; Calcagno, S.; Di Barba, P. Analytic Continuation, Phase Unwrapping, and Retrieval of the Refractive Index of Metamaterials from S-Parameters. Sensors 2024, 24, 912. https://doi.org/10.3390/s24030912
Angiulli G, Versaci M, Calcagno S, Di Barba P. Analytic Continuation, Phase Unwrapping, and Retrieval of the Refractive Index of Metamaterials from S-Parameters. Sensors. 2024; 24(3):912. https://doi.org/10.3390/s24030912
Chicago/Turabian StyleAngiulli, Giovanni, Mario Versaci, Salvatore Calcagno, and Paolo Di Barba. 2024. "Analytic Continuation, Phase Unwrapping, and Retrieval of the Refractive Index of Metamaterials from S-Parameters" Sensors 24, no. 3: 912. https://doi.org/10.3390/s24030912
APA StyleAngiulli, G., Versaci, M., Calcagno, S., & Di Barba, P. (2024). Analytic Continuation, Phase Unwrapping, and Retrieval of the Refractive Index of Metamaterials from S-Parameters. Sensors, 24(3), 912. https://doi.org/10.3390/s24030912