Application of Dynamic Mode Decomposition to Characterize Temporal Evolution of Plantar Pressures from Walkway Sensor Data in Women with Cancer
<p>Contact areas and ground reaction forces from (<b>a</b>–<b>e</b>) Participant 1 and (<b>f</b>–<b>j</b>) Participant 2. The upper rows show the spatial distribution of the contact area (shaded by gray) and the center of pressure (black dot) at various times in a gait cycle stance phase [<a href="#B35-sensors-24-00486" class="html-bibr">35</a>]: (<b>a</b>,<b>f</b>) the first heel contact of the lead leg at <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>, (<b>b</b>,<b>g</b>) foot-flat, (<b>c</b>,<b>h</b>) heel-off, (<b>d</b>,<b>i</b>) contralateral heel contact [<a href="#B36-sensors-24-00486" class="html-bibr">36</a>], and (<b>e</b>,<b>j</b>) toe-off of the lead leg are presented. Below each contact area, the value of the ground reaction force on the center of pressure is marked on the ground reaction force curve (solid line).</p> "> Figure 2
<p>Footsteps generated on the Tekscan Strideway pressure mapping device indicate the spatial trajectory of the walking movement. Note that the gait events of heel-strike and toe-off always overlapped (temporally) a period of plantar contact from the contralateral foot. This defines the double-support phase of gait.</p> "> Figure 3
<p>The dynamic mode decomposition (DMD) reconstruction. Here, <math display="inline"> <semantics> <mrow> <msub> <mi>DM</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>μ</mi> <mi>k</mi> <mrow> <mn>1</mn> <mo>/</mo> <mo>Δ</mo> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mi>t</mi> </msup> <mspace width="0.166667em"/> <msub> <mi>v</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> with <math display="inline"> <semantics> <msub> <mi>μ</mi> <mi>k</mi> </msub> </semantics> </math> defined in Equation (<a href="#FD7-sensors-24-00486" class="html-disp-formula">7</a>). So, <math display="inline"> <semantics> <mrow> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>·</mo> </mrow> </semantics> </math> <math display="inline"> <semantics> <mrow> <msub> <mi>DM</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>μ</mi> <mi>k</mi> <mrow> <mn>1</mn> <mo>/</mo> <mo>Δ</mo> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mi>t</mi> </msup> <mspace width="0.166667em"/> <msub> <mi>s</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mrow> </semantics> </math>. The green circles indicate the eigenvectors <math display="inline"> <semantics> <msub> <mi>v</mi> <mi>k</mi> </msub> </semantics> </math> and <math display="inline"> <semantics> <msubsup> <mi>v</mi> <mi>k</mi> <mo>*</mo> </msubsup> </semantics> </math> at <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math>, respectively, with each <span class="html-italic">k</span>-th mode filled by the blue and red colors. The squares represent the <span class="html-italic">k</span>-th DMD mode in the state at <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> and the final state (connected to the trajectory of the blue circle).</p> "> Figure 4
<p>Results for the six dominant modes isolated from each eligible steps of (<b>a</b>) left foot and (<b>b</b>) right foot at normal walking pace and of (<b>c</b>) left foot and (<b>d</b>) right foot at fast walking pace for four participants before the chemotherapy treatment. Freq, GR, and Ini Cond denote frequency <math display="inline"> <semantics> <msub> <mi>f</mi> <mi>k</mi> </msub> </semantics> </math>, decay rate <math display="inline"> <semantics> <msub> <mi>α</mi> <mi>k</mi> </msub> </semantics> </math>, and initial condition <math display="inline"> <semantics> <msub> <mi>s</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> </semantics> </math>, respectively. Circles of the same color distinguish the same mode <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mn>6</mn> <mo>)</mo> </mrow> </semantics> </math> across steps, feet, speeds, and participants.</p> "> Figure 5
<p>Projection of the centroids of the dynamic mode decomposition (DMD) modes on the initial condition against frequency plane for each of 16 participants (<b>a</b>) at normal pace walks and (<b>b</b>) at fast walks. The color of the circles denotes the centroid of the <span class="html-italic">k</span>-th DMD mode (The conjugate modes are not displayed as they have negative frequencies against the same initial conditions). The participants are distinguished by circle sizes. Frequency and Ini Cond denote frequency <math display="inline"> <semantics> <msub> <mi>f</mi> <mi>k</mi> </msub> </semantics> </math> and initial condition <math display="inline"> <semantics> <msub> <mi>s</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> </semantics> </math>, respectively.</p> "> Figure 6
<p>Overview of the method for extracting gait features by the dynamic mode decomposition (DMD) on the plantar force input signal. The 2-dimensional data matrix is constructed by stacking the time-delayed coordinates, equivalent to propagation at a constant speed. The DMD modes, the eigenvalues of the Koopman operator, are complex functions flowing along their trajectories. The blue and red circles indicate the eigenvalues at each mode, while the empty green circles indicate all the eigenvalues for comparison. The black squares are the initial and final values that sum up the pair of complex conjugate modes. The eigenvalues’ frequency, decay rate, and initial condition characterize the gait features. The centroids (red squares) from the multiple sample gait cycles identify the unique feature of the walking activity.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Data Structure
2.2.1. Plantar Pressure Map
2.2.2. Temporal Signal of Plantar Pressure in a Gait Cycle
2.3. Data-Driven Model of Plantar Pressure Using DMD
2.3.1. Exact DMD
2.3.2. Augmented DMD with Hankel Matrix
2.3.3. Features for Gait Cycle
3. Results
3.1. Participants
3.2. Data Processing
3.3. Features of a Gait Cycle—Decay Rate, Frequency, and Initial Condition
3.4. Identifying Plantar Pressure Baseline
3.5. Validation of Approach
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, D.J. Automaticity of walking: Functional significance, mechanisms, measurement and rehabilitation strategies. Front. Hum. Neurosci. 2015, 9, 246. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.A.; DuMontier, C.; Murillo, A.; Hshieh, T.T.; Bean, J.F.; Soiffer, R.J.; Stone, R.M.; Abel, G.A.; Driver, J.A. Gait speed, grip strength, and clinical outcomes in older patients with hematologic malignancies. Blood 2019, 134, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Pamoukdjian, F.; Lévy, V.; Sebbane, G.; Boubaya, M.; Landre, T.; Bloch-Queyrat, C.; Paillaud, E.; Zelek, L. Slow Gait Speed Is an Independent Predictor of Early Death in Older Cancer Outpatients: Results from a Prospective Cohort Study. J. Nutr. Health Aging 2017, 21, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Su, L.; Carter, S.J.; Ndeke, J.M.; Hendryx, M. Optimal objective measurement of physical function and its predictive capacity for mortality among community-dwelling older women. Geriatr. Gerontol. Int. 2023, 23, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.J.; Khoo, I.H.; Demircan, E. A Survey of Human Gait-Based Artificial Intelligence Applications. Front. Robot AI 2022, 8, 749274. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Wang, F.; Li, X.; Hu, J.; He, Y.; Zhang, J. Characteristics of Plantar Pressure Distribution in Diabetes with or without Diabetic Peripheral Neuropathy and Peripheral Arterial Disease. J. Health Eng. 2022, 2022, 2437831. [Google Scholar] [CrossRef]
- Zou, Y.F.; Lai, Y.R.; Chiu, W.C.; Lien, C.Y.; Huang, C.C.; Cheng, B.C.; Lin, W.C.; Chen, Y.S.; Yu, C.C.; Chiang, Y.F.; et al. Clinical Utility of Plantar Pressure Measurements as Screening in Patients With Parkinson Disease With and Without Freezing of Gait History. Arch. Phys. Med. Rehabil. 2023, 104, 1091–1098. [Google Scholar] [CrossRef]
- Huang, M.H.; Blackwood, J.; Godoshian, M.; Pfalzer, L. Prevalence of self-reported falls, balance or walking problems in older cancer survivors from Surveillance, Epidemiology and End Results-Medicare Health Outcomes Survey. J. Geriatr. Oncol. 2017, 8, 255–261. [Google Scholar] [CrossRef]
- Bao, T.; Basal, C.; Seluzicki, C.; Li, S.Q.; Seidman, A.D.; Mao, J.J. Long-term chemotherapy-induced peripheral neuropathy among breast cancer survivors: Prevalence, risk factors, and fall risk. Breast Cancer Res. Treat. 2016, 159, 327–333. [Google Scholar] [CrossRef]
- Winters-Stone, K.M.; Horak, F.; Jacobs, P.G.; Trubowitz, P.; Dieckmann, N.F.; Stoyles, S.; Faithfull, S. Falls, Functioning, and Disability Among Women with Persistent Symptoms of Chemotherapy-Induced Peripheral Neuropathy. J. Clin. Oncol. 2017, 35, 2604–2612. [Google Scholar] [CrossRef]
- Al-Angari, H.M.; Khandoker, A.H.; Lee, S.; Almahmeed, W.; Al Safar, H.S.; Jelinek, H.F.; Khalaf, K. Novel dynamic peak and distribution plantar pressure measures on diabetic patients during walking. Gait Posture 2017, 51, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Eils, E.; Nolte, S.; Tewes, M.; Thorwesten, L.; Völker, K.; Rosenbaum, D. Modified pressure distribution patterns in walking following reduction of plantar sensation. J. Biomech. 2002, 35, 1307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wong, D.W.-C.; Wong, I.K.-K.; Chen, T.L.-W.; Hong, T.T.-H.; Peng, Y.; Wang, Y.; Tan, Q.; Zhang, M. Plantar Pressure Variability and Asymmetry in Elderly Performing 60-Minute Treadmill Brisk-Walking: Paving the Way towards Fatigue-Induced Instability Assessment Using Wearable In-Shoe Pressure Sensors. Sensors 2021, 21, 3217. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, L.; Tanner, L. Gait Patterns in Children With Cancer and Vincristine Neuropathy. Pediatr. Phys. Ther. 2016, 28, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Marshall, T.F.; Zipp, G.P.; Battaglia, F.; Moss, R.; Bryan, S. Chemotherapy-induced-peripheral neuropathy, gait and fall risk in older adults following cancer treatment. J. Cancer Res. Pract. 2017, 4, 134–138. [Google Scholar] [CrossRef]
- Hsieh, K.L.; Trinh, L.; Sosnoff, J.J. Gait variability is altered in cancer survivors with self-reported neuropathy. Gait Posture 2019, 72, 206–210. [Google Scholar] [CrossRef]
- Zahiri, M.; Chen, K.M.; Zhou, H.; Nguyen, H.; Workeneh, B.T.; Yellapragada, S.V.; Sada, Y.H.; Schwenk, M.; Najafi, B. Using wearables to screen motor performance deterioration because of cancer and chemotherapy-induced peripheral neuropathy (CIPN) in adults - Toward an early diagnosis of CIPN. J. Geriatr. Oncol. 2019, 10, 960–967. [Google Scholar] [CrossRef]
- Thaler-Kall, K.; Peters, A.; Thorand, B.; Grill, E.; Autenrieth, C.S.; Horsch, A.; Meisinger, C. Description of spatio-temporal gait parameters in elderly people and their association with history of falls: Results of the population-based cross-sectional KORA-Age study. BMC Geriatr. 2015, 15, 32. [Google Scholar] [CrossRef]
- Gaßner, H.; Jensen, D.; Marxreiter, F.; Kletsch, A.; Bohlen, S.; Schubert, R.; Muratori, L.M.; Eskofier, B.; Klucken, J.; Winkler, J.; et al. Gait variability as digital biomarker of disease severity in Huntington’s disease. J. Neurol. 2020, 267, 1594–1601. [Google Scholar] [CrossRef]
- Pulido-Valdeolivas, I.; Gómez-Andrés, D.; Martín-Gonzalo, J.A.; Rodríguez-Andonaegui, I.; López-López, J.; Pascual-Pascual, S.I.; Rausell, E. Gait phenotypes in pediatric hereditary spastic paraplegia revealed by dynamic time warping analysis and random forests. PLoS ONE 2018, 13, e0192345. [Google Scholar] [CrossRef]
- Koopman, B.O. Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. USA 1931, 17, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Koopman, B.O.; von Neumann, J. Dynamical systems of continuous spectra. Proc. Natl. Acad. Sci. USA 1932, 18, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.J.; Sesterhenn, J. Dynamic mode decomposition of numerical and experimental data. In Proceedings of the 61st Annual Meeting of the APS Division of Fluid Dynamics, San Antonio, TX, USA, 23–25 November 2008. [Google Scholar]
- Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5. [Google Scholar] [CrossRef]
- Tu, J.H.; Rowley, C.W.; Luchtenburg, D.M.; Brunton, S.L.; Kutz, J.N. On dynamic mode decomposition: Theory and applications. J. Comput. Dyn. 2014, 1, 391–421. [Google Scholar] [CrossRef]
- Arbabi, H.; Mezic, I. Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator. SIAM J. Appl. Dyn. Syst. 2017, 16, 2096. [Google Scholar] [CrossRef]
- Berger, E.; Sastuba, M.; Vogt, D.; Jung, B.; Amor, H.B. Dynamic mode decomposition for perturbation estimation in human robot interaction. In Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication, Edinburgh, Scotland, 25–29 August 2014; pp. 593–600. [Google Scholar]
- Brunton, B.W.; Johnson, L.A.; Ojemann, J.G.; Kutz, J.N. Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. J. Neurosci. Methods 2016, 258, 1–15. [Google Scholar] [CrossRef]
- Kutz, J.N.; Fu, X.; Brunton, S.L. Multiresolution dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 2016, 15, 713. [Google Scholar] [CrossRef]
- Proctor, J.L.; Brunton, S.L.; Kutz, J.N. Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 2016, 15, 142. [Google Scholar] [CrossRef]
- Parmar, N.; Refai, H.; Runolfsson, T. A Survey on the Methods and Results of Data-Driven Koopman Analysis in the Visualization of Dynamical Systems. IEEE Trans. Big Data 2022, 8, 723–738. [Google Scholar] [CrossRef]
- Boudali, A.M.; Sinclair, P.J.; Smith, R.; Manchester, I.R. Human locomotion analysis: Identifying a dynamic mapping between upper and lower limb joints using the Koopman operator. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; pp. 1889–1892. [Google Scholar]
- Barth, J.; Oberndorfer, C.; Pasluosta, C.; Schülein, S.; Gaßner, H.; Reinfelder, S.; Kugler, P.; Schuldhaus, D.; Winkler, J.; Klucken, J.; et al. Stride segmentation during free walk movements using multi-dimensional subsequence dynamic time warping on inertial sensor data. Sensors 2015, 15, 6419. [Google Scholar] [CrossRef]
- Rampp, A.; Barth, J.; Schülein, S.; Gaßmann, K.G.; Klucken, J.; Eskofier, B.M. Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients. IEEE Trans. Biomed. Eng. 2015, 62, 1089. [Google Scholar] [CrossRef] [PubMed]
- Levine, D.; Richards, J.; Whittle, M.W. Whittle’s Gait Analysis, 4th ed.; Elsevier: London, UK, 2007. [Google Scholar]
- Ben-Gal, O.; Benady, A.; Zadik, S.; Doniger, G.M.; Beeri, M.S.; Plotnik, M. Using the loading response peak for defining gait cycle timing: A novel solution for the double-belt problem. J. Biomech. 2020, 110, 109963. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Ge, Y.; Song, Q. A human identification method based on dynamic plantar pressure distribution. In Proceedings of the 2011 IEEE International Conference on Information and Automation, Shenzhen, China, 6–8 June 2011; pp. 329–332. [Google Scholar]
- Franco, P.S.; Moro, C.F.; Figueiredo, M.M.; Azevedo, R.R.; Ceccon, F.G.; Carpes, F.P. Within and between-days repeatability and variability of plantar pressure measurement during walking in children, adults and older adults. Adv. Rheumatol. 2019, 58, 15. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, K.; Refai, H.H.; Hile, E.S. Application of Dynamic Mode Decomposition to Characterize Temporal Evolution of Plantar Pressures from Walkway Sensor Data in Women with Cancer. Sensors 2024, 24, 486. https://doi.org/10.3390/s24020486
Seo K, Refai HH, Hile ES. Application of Dynamic Mode Decomposition to Characterize Temporal Evolution of Plantar Pressures from Walkway Sensor Data in Women with Cancer. Sensors. 2024; 24(2):486. https://doi.org/10.3390/s24020486
Chicago/Turabian StyleSeo, Kangjun, Hazem H. Refai, and Elizabeth S. Hile. 2024. "Application of Dynamic Mode Decomposition to Characterize Temporal Evolution of Plantar Pressures from Walkway Sensor Data in Women with Cancer" Sensors 24, no. 2: 486. https://doi.org/10.3390/s24020486
APA StyleSeo, K., Refai, H. H., & Hile, E. S. (2024). Application of Dynamic Mode Decomposition to Characterize Temporal Evolution of Plantar Pressures from Walkway Sensor Data in Women with Cancer. Sensors, 24(2), 486. https://doi.org/10.3390/s24020486