An Efficient Implementation Method for Distributed Fusion in Sensor Networks Based on CPHD Filters
<p>Schematic diagram of centralized sensor network and distributed sensor network.</p> "> Figure 2
<p>Distributed fusion processing of sensor networks.</p> "> Figure 3
<p>Common fusion strategies: (<b>a</b>) BICI integration strategy; (<b>b</b>) SICI integration strategy; (<b>c</b>) PICI integration strategy.</p> "> Figure 4
<p>Comparison results of different covariance intersection fusion algorithms.</p> "> Figure 5
<p>Comparison of PHD filtering results: (<b>a</b>) target tracking path result; (<b>b</b>) cardinal distribution results; (<b>c</b>) OSPA error results.</p> "> Figure 6
<p>Comparison of CPHD filtering results: (<b>a</b>) target tracking path result; (<b>b</b>) cardinal distribution results; (<b>c</b>) OSPA error results.</p> "> Figure 7
<p>Comparison of GM-CPHD filtering results: (<b>a</b>) target tracking path result; (<b>b</b>) cardinal distribution results; (<b>c</b>) OSPA error results.</p> "> Figure 8
<p>Comparison of running time results of three filtering methods.</p> "> Figure 9
<p>Three filtering methods used to track the running time results with different numbers of moving targets.</p> "> Figure 10
<p>Results of the ratio of running time of three filtering methods to different numbers of moving targets.</p> "> Figure 11
<p>Comparison of GM-DG-CPHD filtering results: (<b>a</b>) target tracking path result; (<b>b</b>) cardinal distribution results; (<b>c</b>) OSPA error results.</p> "> Figure 12
<p>Comparison of PICI-GM-DG-CPHD filtering results: (<b>a</b>) target tracking path result; (<b>b</b>) cardinal distribution results; (<b>c</b>) OSPA error results.</p> "> Figure 13
<p>Comparison results of several filters: (<b>a</b>) cardinal distribution results; (<b>b</b>) OSPA error results.</p> "> Figure 14
<p>Comparison results of running times of several filters.</p> ">
Abstract
:1. Introduction
2. Research Background
2.1. GM-CPHD Filter
2.1.1. CPHD Filter
- Prediction of CPHD
- 2.
- Updates to CPHD
- 3.
- The complexity of CPHD
2.1.2. GM-CPHD Filter
- Prediction of GM-CPHD
- 2.
- Update for GM-CPHD
- 3.
- The complexity of GM-CPHD
2.2. Discrete Gamma CPHD Filter
2.2.1. DG-CPHD Filter
- Prediction of DG-CPHD
- 2.
- Update of DG-CPHD
- 3.
- The complexity of DG-CPHD
2.2.2. GM-DG-CPHD Filter
- Prediction of GM-DG-CPHD
- 2.
- Update of GM-DG-CPHD
- 3.
- The complexity of GM-DG-CPHD
2.3. GCI Fusion Strategy
3. A Fast Fusion Method for Discrete Gamma CPHD Real-Time Sequences
3.1. PICI Fusion Algorithm
3.2. Implementation of PICI-GM-DG-CPHD Algorithm
Algorithm 1: PICI-GM-CPHD filtering algorithm process |
Perform GM-DG-CPHD filtering processing: Input: Prediction Step for do Define the correlation coefficients to predict the intensity of new students’ goals in Formula (40), and predict the intensity of new students’ goals for do Redefine the correlation coefficient to predict the strength of new targets in Formula (40) and predict the strength of surviving targets Predict cardinality parameters based on Formulas (34), (35), (41), (42), (44), (45) End for Measurement Update Step For do According to Formulas (43)–(48), update the intensity of newly detected targets and the prediction base parameters Output: End for |
For (L is number of sensors); Calculate PICI fusion weight using covariance intersection; Replace the covariance of the probability density a of single sensor with Different calculations ; Calculate the next level’s fusion result based on the previous level’s fusion result; Determine the PICI fusion results of multiple sensors based on Equations (64) and (65); Calculate different PICI-GM-CPHD weighting matrices End for Estimate extraction. |
4. Modeling and Simulation
4.1. Comparison Results of Multiple Filtering Methods
4.2. Comparison Results of Multiple Fusion Methods
4.3. Algorithm Complexity Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Li, S.; Battistelli, G.; Chisci, L.; Yi, W. Multi-Agent Fusion with Different Limited Fields-of-View. IEEE Trans. Signal Process. 2022, 70, 1560–1575. [Google Scholar] [CrossRef]
- Marsh, B.; Sadka, A.H.; Bahai, H. A Critical Review of Deep Learning-Based Multi-Sensor Fusion Techniques. Sensors 2022, 22, 9364. [Google Scholar] [CrossRef] [PubMed]
- McAfee, M.; Kariminejad, M.; Weinert, A.; Huq, S.; Stigter, J.D.; Tormey, D. State Estimators in Soft Sensing and Sensor Fusion for Sustainable Manufacturing. Sustainability 2022, 14, 3635. [Google Scholar] [CrossRef]
- Jin, X.-B.; Yu, X.-H.; Su, T.-L.; Yang, D.-N.; Bai, Y.-T.; Kong, J.-L.; Wang, L. Distributed Deep Fusion Predictor for a Multi-Sensor System Based on Causality Entropy. Entropy 2021, 23, 219. [Google Scholar] [CrossRef] [PubMed]
- Fantacci, C.; Vo, B.-T.; Battistelli, G.; Chisci, L. Robust Fusion for Multisensor Multiobject Tracking. IEEE Signal Process. Lett. 2018, 25, 640–644. [Google Scholar] [CrossRef]
- Wang, P.; Ji, H.; Liu, L. Consistent fusion method with uncertainty elimination for distributed multi-sensor systems. Inf. Sci. Int. J. 2022, 595, 378–394. [Google Scholar] [CrossRef]
- Chai, L.; Yi, W.; Kong, L. Joint sensor registration and multi-object tracking with PHD filter in distributed multi-sensor networks. Signal Process. 2023, 206, 108909. [Google Scholar] [CrossRef]
- Yu, H.; Dai, K.; Li, Q.; Li, H.; Zhang, H. Optimal Distributed Finite-Time Fusion Method for Multi-Sensor Networks under Dynamic Communication Weight. Sensors 2023, 23, 7397. [Google Scholar] [CrossRef]
- Senel, N.; Kefferpütz, K.; Doycheva, K.; Elger, G. Multi-Sensor Data Fusion for Real-Time Multi-Object Tracking. Processes 2023, 11, 501. [Google Scholar] [CrossRef]
- Liu, P.; Zhou, S.; Zhang, P.; Li, M. Distributed State Fusion Estimation of Multi-Source Localization Nonlinear Systems. Sensors 2023, 23, 698. [Google Scholar] [CrossRef]
- Su, L.; Yu, J.; Hua, Y.; Li, Q.; Dong, X.; Ren, Z. Multi-target Distributed Tracking with Probability Hypothesis Density in Large-scale Sensor Networks. IEEE Sens. J. 2023, 24, 31061–31071. [Google Scholar] [CrossRef]
- Pal, Y.; Mohan, R.; Rao, G.R.K.; Rastogi, R.; Shah, M.A. Underwater Wireless Sensor Networks Using Distributed Fusion of Optimally Quantized Estimations from Local Trackers. In Proceedings of the 2023 3rd International Conference on Pervasive Computing and Social Networking (ICPCSN), Salem, India, 19–20 June 2023; pp. 916–921. [Google Scholar] [CrossRef]
- Li, C.; Yang, Q.; Cao, Y.; Rao, H.; Xu, Y. Sequential Covariance Intersection Based on the Upper Bound of Correlation Coefficient. In Proceedings of the 2022 13th Asian Control Conference (ASCC), Jeju, Republic of Korea, 4–7 May 2022; pp. 1704–1709. [Google Scholar] [CrossRef]
- Noack, B.; Sijs, J.; Hanebeck, U.D. Inverse Covariance Intersection: New Insights and Properties. In Proceedings of the 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017. [Google Scholar]
- Chen, H.; Wang, J.; Wang, C.; Shan, J.; Xin, M. Distributed diffusion unscented Kalman filtering based on covariance intersection with intermittent measurements. Automatica 2021, 132, 109769. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kang, C.H.; Song, J.W. 1-point RANSAC UKF with Inverse Covariance Intersection for Fault Tolerance. Sensors 2020, 20, 353. [Google Scholar] [CrossRef] [PubMed]
- Park, W.J.; Park, C.G. Multi-target Tracking Based on Gaussian Mixture Labeled Multi-Bernoulli Filter with Adaptive Gating. In Proceedings of the 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand, 16–18 January 2019; pp. 226–229. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B. Multi-Extended Target Tracking Algorithm Based on VBEM-CPHD. Int. J. Pattern Recognit. Artif. Intell. 2022, 36, 2250026. [Google Scholar] [CrossRef]
- Sun, T.; Xin, M. Inverse-Covariance-Intersection-Based Distributed Estimation and Application in Wireless Sensor Network. IEEE Trans. Ind. Inform. 2023, 19, 10079–10090. [Google Scholar] [CrossRef]
- Liu, Q.; Shang, T.; Chen, L.; Yu, K.; Gao, Y.; Huo, Y.; Doul, Y. Sequential Inverse Covariance Intersection Fusion Kalman Filter for Multi-sensor Systems with Packet Dropouts. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 3543–3548. [Google Scholar] [CrossRef]
- Sun, T.; Xin, M. Distributed Estimation with Iterative Inverse Covariance Intersection. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 1645–1649. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, B.; Zhang, A.W.; Yu, L. Enhanced Hierarchical and Sequential Covariance Intersection Fusion. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 7888–7893. [Google Scholar] [CrossRef]
- Wang, B.; Yi, W.; Hoseinnezhad, R.; Li, S.; Kong, L.; Yang, X. Distributed Fusion with Multi-Bernoulli Filter Based on Generalized Covariance Intersection. IEEE Trans. Signal Process. 2017, 65, 242–255. [Google Scholar] [CrossRef]
- Wang, L.; Chen, G.; Chen, G. Gaussian Mixture Cardinalized Probability Hypothesis Density (GM-CPHD): A Distributed Filter Based on the Intersection of Parallel Inverse Covariances. Sensors 2023, 23, 2921. [Google Scholar] [CrossRef]
- Park, W.J.; Park, C.G. Distributed GM-CPHD Filter Based on Generalized Inverse Covariance Intersection. IEEE Access 2021, 9, 94078–94086. [Google Scholar] [CrossRef]
- Li, G.; Yi, W.; Kong, L. A real-time fusion algorithm for asynchronous sensor system with PHD filter. In Proceedings of the 2017 International Conference on Control, Automation and Information Sciences (ICCAIS), Chiang Mai, Thailand, 31 October–1 November 2017; pp. 134–139. [Google Scholar] [CrossRef]
- Li, G.; Yi, W.; Kong, L. A fast implementation of distributed fusion with CPHD filter. In Proceedings of the 2017 International Conference on Control, Automation and Information Sciences (ICCAIS), Chiang Mai, Thailand, 31 October–1 November 2017; pp. 123–127. [Google Scholar] [CrossRef]
- Li, G.; Battistelli, G.; Chisci, L.; Gao, L. Distributed Multi-Agent Joint Time Alignment and State Estimation. In Proceedings of the 2020 European Control Conference (ECC), St. Petersburg, Russia, 12–15 May 2020; pp. 923–928. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, B.; Yi, W. Trajectory PHD and CPHD Filters with Unknown Detection Profile. IEEE Trans. Veh. Technol. 2022, 71, 8042–8058. [Google Scholar] [CrossRef]
- Li, G.; Li, G.; He, Y. Distributed GGIW-CPHD-Based Extended Target Tracking Over a Sensor Network. IEEE Signal Process. Lett. 2022, 29, 842–846. [Google Scholar] [CrossRef]
- Yu, B.; Li, T.; Ge, S.; Gu, H. Robust CPHD Fusion for Distributed Multitarget Tracking Using Asynchronous Sensors. IEEE Sens. J. 2022, 22, 1030–1040. [Google Scholar] [CrossRef]
- De Melo, F.E.; Maskell, S. A CPHD Approximation Based on a Discrete-Gamma Cardinality Model. IEEE Trans. Signal Process. 2019, 67, 336–350. [Google Scholar] [CrossRef]
- Campbell, M.A.; Clark, D.E.; de Melo, F. An Algorithm for Large-Scale Multitarget Tracking and Parameter Estimation. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2053–2066. [Google Scholar] [CrossRef]
- Balthasar, M.R.; Zoubir, A.M. Multi-target tracking in distributed sensor networks using particle PHD filters. Signal Process 2019, 159, 130–146. [Google Scholar] [CrossRef]
Target | Initial State | Appearing Frame | Disappearing Frame |
---|---|---|---|
1 | [0; 0; 400; −12] | 1 | 70 |
2 | [−500; 5; 400; −9] | 1 | 100 |
3 | [−400; 6; −500; 10] | 1 | 70 |
4 | [400; −8; −600; 10] | 10 | 120 |
5 | [−500; 5; 400; −9] | 10 | 70 |
6 | [50; 0; 400; −10] | 10 | 70 |
7 | [−450; 7; 400; −6] | 10 | 50 |
8 | [−450; 7; −450; 10] | 20 | 60 |
9 | [400; 6; −500; 11] | 20 | 90 |
10 | [−500; 6; 500; −5] | 20 | 120 |
11 | [0; 4; 350; −8] | 20 | 80 |
12 | [−400; 4; 500; −10] | 20 | 100 |
13 | [−400; 9; −400; 12] | 30 | 80 |
14 | [350; 11; −400; 8] | 30 | 60 |
15 | [−600; 8; 500; −9] | 30 | 60 |
16 | [0; 5; 350; −12] | 30 | 60 |
17 | [−400; 5; 300; −10] | 30 | 80 |
18 | [−500; 0; −400; 8] | 30 | 120 |
19 | [500; −9; −600; 12] | 30 | 60 |
20 | [−450; 10; 400; −6] | 30 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Chen, G. An Efficient Implementation Method for Distributed Fusion in Sensor Networks Based on CPHD Filters. Sensors 2024, 24, 117. https://doi.org/10.3390/s24010117
Wang L, Chen G. An Efficient Implementation Method for Distributed Fusion in Sensor Networks Based on CPHD Filters. Sensors. 2024; 24(1):117. https://doi.org/10.3390/s24010117
Chicago/Turabian StyleWang, Liu, and Guifen Chen. 2024. "An Efficient Implementation Method for Distributed Fusion in Sensor Networks Based on CPHD Filters" Sensors 24, no. 1: 117. https://doi.org/10.3390/s24010117
APA StyleWang, L., & Chen, G. (2024). An Efficient Implementation Method for Distributed Fusion in Sensor Networks Based on CPHD Filters. Sensors, 24(1), 117. https://doi.org/10.3390/s24010117