A Statistical Approach for the Integration of Multi-Temporal InSAR and GNSS-PPP Ground Deformation Measurements
<p>Topography and geography of the studied area. Red, blue, and purple boxes highlight the swaths of the used Sentinel-1 (descending), Sentinel-1 (ascending), and ALOS-2 SAR datasets. A zoomed in view of the height profile of the zone identified by the black rectangle in (<b>a</b>) is shown in (<b>b</b>).</p> "> Figure 2
<p>GHGNSS network. Fourteen established stations in August 2017 are colored red, and the others are colored blue. The red star represents the study area.</p> "> Figure 3
<p>(<b>a</b>–<b>c</b>) Maps of the ground deformation velocities as obtained for ALOS-2, Sentinel-1 (ascending), and Sentinel-1 (descending) SAR datasets, respectively. The insets in (<b>d</b>–<b>f</b>) show the distribution of the detected PS points highlighted by the black rectangle in (<b>a</b>–<b>c</b>).</p> "> Figure 4
<p>The graph of correlation values. Blue, green and yellow histograms refer to spatial boxes on the ground with a radius of 150 m, 200 m, and 250 m, respectively.</p> "> Figure 5
<p>The time series of GX12.</p> "> Figure 6
<p>Map of the vertical displacement rate computed over a 50 m × 50 m grid after masking the incoherent areas, interpolating PSI-derived <span class="html-italic">LOS</span> ground deformation velocity values and applying the adopted, simple combination method in [<a href="#B31-sensors-24-00043" class="html-bibr">31</a>].</p> "> Figure 7
<p>Same as <a href="#sensors-24-00043-f006" class="html-fig">Figure 6</a> for the east–west ground displacement rates of the region.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SAR Data
2.3. GNSS Observations
2.4. Analysis of the GNSS Data
2.5. Analysis of the SAR Data
3. Results and Discussion
3.1. Statistical Evaluation of InSAR and GNSS-PPP Results
3.2. Multi-Orbit/Multi-Frequency SAR Integration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aslan, G.; Cakır, Z.; Ergintav, S.; Lasserre, C.; Renard, F. Analysis of Secular Ground Motions in Istanbul from a Long-Term InSAR Time-Series (1992–2017). Remote Sens. 2018, 10, 408. [Google Scholar] [CrossRef]
- Imamoglu, M.; Kahraman, F.; Abdikan, S. Preliminary Results of Temporal Deformation Analysis in Istanbul Using Multi-Temporal Insar with Sentinel-1 Sar Data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1352–1355. [Google Scholar]
- Bayik, C.; Abdikan, S.; Ozdemir, A.; Arıkan, M.; Balik Sanli, F.; Dogan, U. Investigation of the Landslides in Beylikdüzü-Esenyurt Districts of Istanbul from InSAR and GNSS Observations. Nat. Hazards 2021, 109, 1201–1220. [Google Scholar] [CrossRef]
- Calò, F.; Abdikan, S.; Görüm, T.; Pepe, A.; Kiliç, H.; Balik Şanli, F. The Space-Borne SBAS-DInSAR Technique as a Supporting Tool for Sustainable Urban Policies: The Case of Istanbul Megacity, Turkey. Remote Sens. 2015, 7, 16519–16536. [Google Scholar] [CrossRef]
- Yagmur, N.; Erten, E.; Musaoglu, N.; Safak, E. Assessing Spatio-Temporal Dynamics of Large Airport’s Surface Stability. Geocarto Int. 2022, 37, 13734–13747. [Google Scholar] [CrossRef]
- Halicioglu, K.; Erten, E.; Rossi, C. Monitoring Deformations of Istanbul Metro Line Stations through Sentinel-1 and Levelling Observations. Environ. Earth Sci. 2021, 80, 361. [Google Scholar] [CrossRef]
- Bui, L.K.; Le, P.V.V.; Dao, P.D.; Long, N.Q.; Pham, H.V.; Tran, H.H.; Xie, L. Recent Land Deformation Detected by Sentinel-1A InSAR Data (2016–2020) over Hanoi, Vietnam, and the Relationship with Groundwater Level Change. GIScience Remote Sens. 2021, 58, 161–179. [Google Scholar] [CrossRef]
- Fabris, M.; Battaglia, M.; Chen, X.; Menin, A.; Monego, M.; Floris, M. An Integrated InSAR and GNSS Approach to Monitor Land Subsidence in the Po River Delta (Italy). Remote Sens. 2022, 14, 5578. [Google Scholar] [CrossRef]
- Wang, H.; Wright, T.J.; Liu-Zeng, J.; Peng, L. Strain Rate Distribution in South-Central Tibet From Two Decades of InSAR and GPS. Geophys. Res. Lett. 2019, 46, 5170–5179. [Google Scholar] [CrossRef]
- Li, Y.; Zuo, X.; Xiong, P.; You, H.; Zhang, H.; Yang, F.; Zhao, Y.; Yang, Y.; Liu, Y. Deformation monitoring and analysis of Kunyang phosphate mine fusion with InSAR and GPS measurements. Adv. Space Res. 2022, 69, 2637–2658. [Google Scholar] [CrossRef]
- Liu, C.; Ji, L.; Zhu, L.; Xu, C.; Zhang, W.; Qiu, J.; Xiong, G. Present-Day Three-Dimensional Deformation across the Ordos Block, China, Derived from InSAR, GPS, and Leveling Observations. Remote Sens. 2023, 15, 2890. [Google Scholar] [CrossRef]
- Yu, J.; Wang, G. Introduction to the GNSS geodetic infrastructure in the Gulf of Mexico Region. Surv. Rev. 2017, 49, 51–65. [Google Scholar] [CrossRef]
- Grinter, T.; Roberts, C. Precise Point Positioning: Where Are We Now? In Proceedings of the IGNSS Symposium, Sydney, NSW, Australia, 15–17 November 2011; Available online: https://www.spatial.nsw.gov.au/__data/assets/pdf_file/0020/165701/2011_Grinter_and_Roberts_IGNSS2011_PPP_where_are_we_now.pdf (accessed on 12 November 2023).
- Martín, A.; Anquela, A.B.; Dimas-Pagés, A.; Cos-Gayón, F. Validation of Performance of Real-Time Kinematic PPP. A Possible Tool for Deformation Monitoring. Measurement 2015, 69, 95–108. [Google Scholar] [CrossRef]
- Jasim, Z.N.; Alhamadani, O.Y.; Mohammed, M.U. Investigation the Arabian tectonic plate motion using continuously operating reference stations. Int. J. Civ. Eng. Technol. 2018, 9, 419–429. [Google Scholar]
- Jin, S.; Su, K. Co-seismic displacement and waveforms of the 2018 Alaska earthquake from high-rate GPS PPP velocity estimation. J. Geod. 2019, 93, 1559–1569. [Google Scholar] [CrossRef]
- Available online: https://alos-pasco.com/en/alos-2/ (accessed on 27 July 2023).
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Doucet, K.; Herwing, M.; Kipka, A.; Kreikenbohm, P.; Landau, H.; Leandro, R.; Pagels, C. Introducing ambiguity resolution in web-hosted global multi-GNSS Precise Point Positioning with trimble RTK-PP. In Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, USA, 17–21 September 2012; pp. 1115–1125. [Google Scholar]
- Sezer, G.; Dogan, A.H.; Erdogan, B. Investigation of the performance of the Multi-GNSS analysis with web based Trimble RTX service. J. Geod. Geoinf. 2021, 8, 30–40. (In Turkish) [Google Scholar] [CrossRef]
- Saracoglu, A.; Sanli, D.U. Effect of meteorological seasons on the accuracy of GPS positioning. Measurement 2020, 152, 107301. [Google Scholar] [CrossRef]
- Available online: https://www.sarproz.com/ (accessed on 2 August 2023).
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic: Dordrecht, The Netherlands; Boston, MA, USA, 2001. [Google Scholar] [CrossRef]
- Pope, A.J. The Statistics of Residuals and the Detection of Outliers; US Department of Commerce, National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 1976.
- Rousseeuw, P.J.; Leroy, A.M. Robust Regression and Outlier Detection; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Hampel, F.R.; Ronchetti, E.M.; Rousseeuw, P.J.; Stahel, W.A. Robust Statistics; Wiley Series in Probability and Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Koch, K.R. Parameter Estimation and Hypothesis Testing in Linear Models; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Shirzaei, M. A seamless multitrack multitemporal InSAR algorithm. Geochem. Geophys. Geosyst. 2015, 16, 1656–1669. [Google Scholar] [CrossRef]
- Samsonov, S.; d’Oreye, N. Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province. Geophys. J. Int. 2012, 191, 1095–1108. [Google Scholar]
- Pepe, A.; Solaro, G.; Dema, C. A minimum curvature combination method for the generation of multi-platform DInSAR deformation timeseries. In Proceedings of the Fringe Symposium, Frascati, Italy, 23–27 March 2015. [Google Scholar]
- Dai, K.; Liu, G.; Li, Z.; Li, T.; Yu, B.; Wang, X.; Singleton, A. Extracting Vertical Displacement Rates in Shanghai (China) with Multi-Platform SAR Images. Remote Sens. 2015, 7, 9542–9562. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H. New, improved version of Generic Mapping Tools released. Eos Trans. Am. Geophys. Union 1998, 79, 579. [Google Scholar] [CrossRef]
Sentinel-1A | ALOS-2 | ||
---|---|---|---|
Orbit pass | Ascending | Descending | Ascending |
Wavelength | 5.5 cm | 24 cm | |
Acquisition mode | IW | SM3 | |
Incidence angle (deg) | 39.3274 | 38.9379 | 36.2940 |
Polarimetry | VV | HH | |
Period | September 2015–December 2020 | October 2015–March 2020 | |
Primary date | 2 June 2018 | 2 April 2018 | 23 July 2017 |
Number of images | 62 | 61 | 28 |
Campaign | Date | Day of Year (DOY) | Measured Sites |
---|---|---|---|
1 | August 2017 | 226–227 | GH01, GH02, GH04, GH05, GH06, GH07, GH11, GH12, GH13, GH15, GH18, GH19, GH22, IGNA |
2 | November 2017 | 322–323 | GH01, GH02, GH04, GH05, GH06, GH07, GH11, GH12, GH13, GH15, GH18, GH19, GH22, IGNA |
3 | March 2018 | 83–84 | GH01, GH02, GH04, GH05, GH06, GH07, GH11, GH13, GH15, GH18, GH19, GH22, GX12, IGNA |
4 | July 2018 | 181–182 | GH01, GH02, GH04, GH05, GH06, GH07, GH11, GH13, GH15, GH18, GH19, GH22, GX12, IGNA |
5 | November 2018 | 314–315 | GH01, GH02, GH04, GH05, GH06, GH07, GH13, GH15, GH18, GH19, GH22, GX12, IGNA |
6 | November 2019 | 327–328 | GH01, GH02, GH05, GH06, GH07, GH13, GH14, GH15, GH17, GH22, GX12, IGNA |
7 | March 2020 | 67–68 | GH01, GH02, GH04, GH05, GH06, GH07, GH13, GH14, GH15, GH17, GH22, GX12, IGNA |
ALOS-2 | |||||
---|---|---|---|---|---|
Station | 50 m | 100 m | 150 m | 200 m | 250 m |
GH02 | 1 | 6 | 15 | 26 | 39 |
GH04 | 0 | 3 | 13 | 26 | 37 |
GH05 | 1 | 5 | 14 | 32 | 52 |
GH06 | 0 | 0 | 3 | 8 | 21 |
GH07 | 0 | 3 | 8 | 13 | 29 |
GH13 | 2 | 14 | 44 | 66 | 100 |
GH19 | 2 | 11 | 27 | 48 | 70 |
GX12 | 0 | 1 | 16 | 44 | 78 |
IGNA | 0 | 3 | 9 | 19 | 28 |
Average | 0.7 | 5.1 | 16.6 | 31.3 | 50.4 |
Station | Sentinel-1 Ascending | Sentinel-1 Descending | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
50 m | 100 m | 150 m | 200 m | 250 m | 50 m | 100 m | 150 m | 200 m | 250 m | |
GH02 | 0 | 1 | 6 | 16 | 33 | 0 | 6 | 15 | 27 | 46 |
GH04 | 0 | 1 | 4 | 6 | 16 | 5 | 8 | 9 | 20 | 31 |
GH05 | 1 | 2 | 11 | 21 | 42 | 0 | 2 | 17 | 40 | 57 |
GH06 | 0 | 2 | 5 | 10 | 24 | 0 | 0 | 6 | 18 | 32 |
GH07 | 0 | 5 | 7 | 9 | 17 | 1 | 4 | 7 | 13 | 22 |
GH13 | 1 | 3 | 17 | 37 | 63 | 3 | 8 | 10 | 25 | 55 |
GH19 | 1 | 3 | 13 | 36 | 58 | 0 | 3 | 12 | 43 | 70 |
GX12 | 0 | 0 | 5 | 12 | 38 | 1 | 2 | 7 | 17 | 31 |
IGNA | 0 | 4 | 7 | 11 | 23 | 3 | 4 | 10 | 14 | 23 |
Average | 0.3 | 2.3 | 8.3 | 17.6 | 34.9 | 1.4 | 4.1 | 10.3 | 24.1 | 40.8 |
Station | ||||||
---|---|---|---|---|---|---|
GH04 | −11.84 | 0.28 | −11.22 | 0.33 | −9.12 | 0.12 |
GH05 | −8.07 | 0.27 | −10.00 | 2.02 | −9.97 | 1.04 |
GH06 | −5.13 | 1.34 | −4.70 | 0.23 | −1.41 | 0.09 |
GH07 | −6.46 | 0.24 | −7.42 | 0.16 | −3.94 | 0.18 |
GH19 | 1.57 | 0.25 | −0.70 | 0.09 | −0.80 | 0.06 |
GX12 | −19.06 | 1.02 | −17.07 | 0.28 | −20.10 | 0.22 |
Station | ||||||
---|---|---|---|---|---|---|
GH04 | −8.48 | 3.38 | −8.02 | 3.24 | −9.63 | 3.17 |
GH05 | −10.85 | 3.65 | −10.33 | 3.50 | −11.98 | 3.37 |
GH06 | −15.59 | 4.87 | −14.94 | 4.69 | −16.11 | 4.42 |
GH07 | −7.11 | 3.89 | −6.74 | 3.74 | −7.62 | 3.69 |
GH19 | −27.40 | 4.46 | −26.00 | 4.35 | −31.75 | 3.35 |
GX12 | −20.94 | 3.33 | −19.97 | 3.15 | −22.34 | 4.03 |
Station | Critical Value | |||
---|---|---|---|---|
GH04 | 0.99 | 0.98 | 0.16 | 3.75 |
GH05 | 0.76 | 0.08 | 0.57 | 3.36 |
GH06 | 2.07 | 2.18 | 3.32 | 3.36 |
GH07 | 0.17 | 0.18 | 1.00 | 3.36 |
GH19 | 6.49 | 5.82 | 9.24 | 4.54 |
GX12 | 0.54 | 0.92 | 0.56 | 4.54 |
Station | ||
---|---|---|
GH04 | −13.71 | −11.70 |
GH05 | −12.21 | −14.46 |
GH06 | −4.86 | −19.75 |
GH07 | −7.86 | −9.50 |
GH19 | −0.27 | −37.59 |
GX12 | −23.58 | −27.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delen, A.; Sanli, F.B.; Abdikan, S.; Dogan, A.H.; Durdag, U.M.; Ocalan, T.; Erdogan, B.; Calò, F.; Pepe, A. A Statistical Approach for the Integration of Multi-Temporal InSAR and GNSS-PPP Ground Deformation Measurements. Sensors 2024, 24, 43. https://doi.org/10.3390/s24010043
Delen A, Sanli FB, Abdikan S, Dogan AH, Durdag UM, Ocalan T, Erdogan B, Calò F, Pepe A. A Statistical Approach for the Integration of Multi-Temporal InSAR and GNSS-PPP Ground Deformation Measurements. Sensors. 2024; 24(1):43. https://doi.org/10.3390/s24010043
Chicago/Turabian StyleDelen, Ahmet, Fusun Balik Sanli, Saygin Abdikan, Ali Hasan Dogan, Utkan Mustafa Durdag, Taylan Ocalan, Bahattin Erdogan, Fabiana Calò, and Antonio Pepe. 2024. "A Statistical Approach for the Integration of Multi-Temporal InSAR and GNSS-PPP Ground Deformation Measurements" Sensors 24, no. 1: 43. https://doi.org/10.3390/s24010043
APA StyleDelen, A., Sanli, F. B., Abdikan, S., Dogan, A. H., Durdag, U. M., Ocalan, T., Erdogan, B., Calò, F., & Pepe, A. (2024). A Statistical Approach for the Integration of Multi-Temporal InSAR and GNSS-PPP Ground Deformation Measurements. Sensors, 24(1), 43. https://doi.org/10.3390/s24010043