An Analog Multilayer Perceptron Neural Network for a Portable Electronic Nose
<p>Block diagram of the proposed 4-4-1 MLPNN.</p> ">
<p>Detailed block diagrams of HS, HN, OS, and ON.</p> ">
<p>Schematic of Chible's multiplier.</p> ">
<p>Schematic of Gilbert's multiplier.</p> ">
<p>The weight unit. (<b>a</b>) Training phase; (<b>b</b>) Classifying phase.</p> ">
<p>Activation function circuit and its differentiation.</p> ">
<p>Schematic of Delta block.</p> ">
<p>The photo of the components in the experiment. (<b>a</b>) Equipment for odor data collection; (<b>b</b>) PCB for bias generation; (<b>c</b>) socket and PCB with a designed chip inside.</p> ">
<p>Fruit pattern of (<b>a</b>) banana; (<b>b</b>) lemon; and (<b>c</b>) lychee odors.</p> ">
Abstract
:1. Introduction
2. Architecture and Implementation
2.1. Synapses
2.2. Neurons
3. Results and Discussion
3.1. Experiment Setup
3.2. Odor Classification by MLPNN Chip
3.2.1. Training
3.2.2. Testing
4. Conclusions
Acknowledgments
References
- Brezmes, J.; Fructuoso, M.L.L.; Llobet, E.; Vilanova, X.; Recasens, I.; Orts, J.; Saiz, G.; Correig, X. Evaluation of an electronic nose to assess fruit ripness. IEEE Sens. J. 2005, 5, 97–108. [Google Scholar]
- Blatt, R.; Bonarini, A.; Calabro, E.; Della Torre, M.; Matteucci, M.; Pastorino, U. Lung Cancer Identification by an Electronic based on an Array of MOS Sensors. Proceedings of the International Joint Conference on Neural Networks, Orlando, FL, USA, 12–17 August 2007; pp. 1423–1428.
- Lin, Y.J.; Guo, H.R.; Chang, Y.H.; Kao, M.T.; Wang, H.H.; Hong, R.I. Application of the electronic nose for uremia diagnosis. Sens. Actuators B Chem. 2001, 76, 177–180. [Google Scholar]
- Wang, L.C.; Tang, K.T.; Kuo, C.T.; Ho, C.L.; Lin, S.R.; Sung, Y.; Chang, C.P. Portable electronic nose system with chemiresistor sensors to detect and distinguish chemical warfare agents. J. Micro/Nanolith. MEMS MOEMS 2010. [Google Scholar] [CrossRef]
- Hong, H.K.; Kwon, C.H.; Kim, S.R.; Yun, D.H.; Lee, K.; Sung, Y.K. Portable electronic nose system with gas sensor array and artificial neural network. Sens. Actuators B Chem. 2000, 66, 49–52. [Google Scholar]
- Boilot, P.; Hines, E.L.; Gardner, J.W.; Pitt, R.; John, S.; Mitchell, J.; Morgan, D.W. Classification of bacateria responsible for ENT and eye infections using the Cyranose system. IEEE Sens. J. 2002, 2, 247–253. [Google Scholar]
- Koickal, T.J.; Hamilton, A.; Tan, S.L.; Covington, J.A.; Gardner, J.W.; Pearce, T.C. Analog VLSI circuit implementation of an adaptive neuromorphic olfaction chip. IEEE Trans. Circuit. Syst. I 2007, 54, 60–73. [Google Scholar]
- Ng, K.; Boussaid, F.; Bermak, A. A CMOS single-chip gas recognition circuit for metal oxide gas sensor arrays. IEEE Trans. Circuit. Syst. I 2011, 58, 1569–1580. [Google Scholar]
- Hsieh, H.Y.; Tang, K.T. VLSI implementation of a bio-inspired olfactory spiking neural network. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1065–1073. [Google Scholar]
- Hopfield, J.J.; Tank, D.W. Computing with neural circuits: A model. Science 1986, 233, 625–633. [Google Scholar]
- Morrie, T.; Amemiya, Y. An all-analog expandable neural network LSI with on-chip back propagation learning. IEEE J. Solid State Circuits 1994, 29, 1086–1093. [Google Scholar]
- Lu, C.; Shi, B. Circuit realization of a programmable neuron transfer function and its derivative. Proceedings of the IEEE -INNS-ENNS International Joint Conference on Neural Networks, Como, Italy, 24–27 July 2000; pp. 47–50.
- Gatet, L.; Tap, B.H.; Lescure, M. Analog neural network implementation for a real-time surface classification application. IEEE Sens. J. 2008, 8, 1413–1421. [Google Scholar]
- Lu, C.; Shi, B.; Chen, L. An on-chip BP learning Neural network with ideal neuron characteristics and learning rate adaption. Analog Integr. Circuit. Signal Process. 2002, 31, 55–62. [Google Scholar]
- Mead, C.A. Analog VlSI and Neural Systems; Addison-Wesley: Reading, MA, USA, 1989. [Google Scholar]
- Chible, H. Analog Circuit for Synapse Neural Networks VLSI Implementation, Electronics, Circuits and Systems. Proceedings of the 7th IEEE International Conference on Electronics, Circuits and Systems, Jounieh, Lebanon, 17–20 December 2000; pp. 1004–1007.
- Chiblé, H. OTANPS synapse linear relation multiplier circuit. Leb. Sci. J. 2008, 9, 91–103. [Google Scholar]
- Coue, D.; Wilson, G. A four quadrant subthreshold mode multiplier for analog neural-network applications. IEEE Trans. Neural Netw. 1996, 7, 1212–1219. [Google Scholar]
- Lont, J.B.; Guggenbuhl, W. Analog CMOS implementation of a multilayer perceptron with nonlinear synapses. IEEE Trans. Neural Netw. 1992, 3, 457–465. [Google Scholar]
- Milev, M.; Hrstov, M. Analog implementation of ANN with inherent quadratic nonlinearity of the synapses. IEEE Trans. Neural Netw. 2003, 14, 1187–1200. [Google Scholar]
- Rumelhart, D.; Hinton, G.; Williams, R. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar]
- Lu, C.; Shi, B.X.; Chen, L. An on-chip BP learning neural network with ideal neuron characteristics and learning rate adaption. Analog Integr. Circuit. Signal Process. 2002, 31, 55–62. [Google Scholar]
- Morie, T.; Amemiya, Y. An all-analog expandable neural network LSI with on-chip backpropagation learning. IEEE J. Solid-State Circuits 1994, 29, 1086–1093. [Google Scholar]
- Tang, K.T.; Chiu, S.W.; Pan, C.H.; Hsieh, H.Y.; Liang, Y.S.; Liu, S.C. Development of a portable electronic nose system for the detection and classification of fruity odors. Sensors 2010, 10, 9179–9193. [Google Scholar]
- Murray, A.; Edwards, P. Enhanced MLP performance and fault tolerance resulting from synaptic weight noise during training. IEEE Trans. Neural Netw. 1994, 5, 792–802. [Google Scholar]
Spec. | Value |
---|---|
Input Range (V) | 0.85–0.95 |
Output Range (V) | 0.82– 0.98 |
Power Consumption (mW) | 0.553 |
Chip Size (mm2) | 1.36 × 1.36 |
Accuracy (%) | 91.7 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pan, C.-H.; Hsieh, H.-Y.; Tang, K.-T. An Analog Multilayer Perceptron Neural Network for a Portable Electronic Nose. Sensors 2013, 13, 193-207. https://doi.org/10.3390/s130100193
Pan C-H, Hsieh H-Y, Tang K-T. An Analog Multilayer Perceptron Neural Network for a Portable Electronic Nose. Sensors. 2013; 13(1):193-207. https://doi.org/10.3390/s130100193
Chicago/Turabian StylePan, Chih-Heng, Hung-Yi Hsieh, and Kea-Tiong Tang. 2013. "An Analog Multilayer Perceptron Neural Network for a Portable Electronic Nose" Sensors 13, no. 1: 193-207. https://doi.org/10.3390/s130100193
APA StylePan, C. -H., Hsieh, H. -Y., & Tang, K. -T. (2013). An Analog Multilayer Perceptron Neural Network for a Portable Electronic Nose. Sensors, 13(1), 193-207. https://doi.org/10.3390/s130100193