FPGA-Based Fused Smart-Sensor for Tool-Wear Area Quantitative Estimation in CNC Machine Inserts
">
<p>a) Types of tool-wear in carbide tools, b) Flank-wear area (<span class="html-italic">A<sub>f</sub></span>), width of flank wear (<span class="html-italic">VB</span>) and <span class="html-italic">VB</span><sub><span class="html-italic">ma</span>x</sub> in zone <span class="html-italic">B</span>, notch wear (<span class="html-italic">VN</span>) in zone <span class="html-italic">N</span>, and nose wear (<span class="html-italic">VC</span>) in zone <span class="html-italic">C</span>.</p> ">
<p>Block diagram of the proposed smart-sensor.</p> ">
<p>Block diagram of the FPGA-based HSP unit.</p> ">
<p>Vibration and current signal processing.</p> ">
<p>Experimental setup. (a) Retrofitted to CNC lathe. (b) Encased accelerometer. (c) Top and bottom view of the accelerometer board. (d) Servoamplifier. (e) FPGA-based signal processing unit.</p> ">
<p>Exploration of weighting function parameters.</p> ">
<p>Flank-wear area estimation based on current signal, showing the micrograph of selected inserts and their corresponding tool-wear area.</p> ">
<p>Flank-wear area estimation based on vibration signals.</p> ">
<p>Flank-wear area estimation based on the fused smart-sensor methodology.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Tool-Wear
2.2. Tool-Wear Area Monitoring
2.3. Fused-Sensor Approach
3. Smart-Sensor
3.1. Proposed Methodology
3.2. Signal Processing
4. Experimental Setup
4.1. Weighting Function Parameters
4.2. Machining Parameters in the Weighting Function
5. Results and Discussion
5.1. Current-Based Estimation
5.2. Vibration-Based Estimation
5.3. Fused Current-Vibration Estimation
5.4. Discussion
6. Conclusions
Acknowledgments
References
- Mekid, S.; Pruschek, P.; Hernandez, J. Beyond intelligent manufacturing: A new generation of flexible intelligent NC machines. Mech. Mach. Theory 2009, 44, 466–476. [Google Scholar]
- Weckenmann, A.; Nalbantic, K. Precision measurement of cutting tools with two matched optical 3D-sensors. CIRP Ann. Manuf. Techn 2003, 52, 443–446. [Google Scholar]
- Kalpakjian, S.; Schmid, S.R. Manufacturing Engineering and Technology, 5th ed; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Liang, S.Y.; Hecker, R.L.; Landers, R.G. Machining process monitoring and control: The state of the art. J. Manuf. Sci. Eng 2004, 126, 297–310. [Google Scholar]
- Choudhury, S.K.; Kishore, K.K. Tool wear measurement in turning using force ratio. Int. J. Mach. Tools Manuf 2000, 40, 899–909. [Google Scholar]
- Kopac, J.; Sali, S. Tool wear monitoring during the turning process. J. Mat. Proc. Tech 2001, 113, 312–316. [Google Scholar]
- Dimla, D.E.; Lister, P.M. Sr. On-line metal cutting tool condition monitoring II: tool-state classification using multi-layer perceptron neural networks. Int. J. Mach. Tools Manuf 2000, 40, 769–781. [Google Scholar]
- Cakan, A.; Ozkaner, V.; Yildirim, M.M. Quantifying cutting and wearing behaviors of TiN- and CrNCoated AISI 1070 steel. Sensors 2008, 8, 6984–6998. [Google Scholar]
- Salgado, D.R.; Alonso, F.J. An approach based on current and sound signals for in-process tool wear monitoring. Int. J. Mach. Tools Manuf 2007, 47, 2140–2152. [Google Scholar]
- Scheffer, C.; Kratz, H.; Heyns, P.S.; Klocke, F. Development of a tool wear-monitoring system for hard turning. Int. J. Mach. Tools Manuf 2003, 43, 973–985. [Google Scholar]
- Deiab, I.; Assaleh, K.; Hammad, F. On modeling of tool wear using sensor fusion and polynomial classifiers. Mech. Syst. Sig. Process 2009, 23, 1719–1729. [Google Scholar]
- Kuljanic, E.; Totis, G.; Sortino, M. Development of an intelligent multisensor chatter detection system in milling. Mech. Syst. Sig. Process 2009, 23, 1704–1718. [Google Scholar]
- Kuljanic, E.; Sortino, M.; Totis, G. Multisensor approaches for chatter detection in milling. J. Sound Vib 2008, 312, 672–693. [Google Scholar]
- Tarng, Y.S.; Chen, M.C. An intelligent sensor for detection of milling chatter. J. Intell. Manuf 1994, 5, 193–200. [Google Scholar]
- Rivera, J.; Herrera, G.; Chacon, M.; Acosta, P.; Carrillo, M. Improved progressive polynomial algorithm for self-adjustment and optimal response in intelligent sensors. Sensors 2008, 8, 7410–7427. [Google Scholar]
- Hernández, W. Improving the responses of several accelerometers used in a car under performance tests by using Kalman filtering. Sensors 2001, 1, 38–52. [Google Scholar]
- Rangel-Magdaleno, J.J.; Romero-Troncoso, R.J.; Osornio-Rios, R.A.; Cabal-Yepez, E. Novel oversampling technique for improving signal-to-quantization noise ratio on accelerometer-based smart jerk sensors in CNC applications. Sensors 2009, 9, 3767–3789. [Google Scholar]
- Granados-Lieberman, D.; Romero-Troncoso, R.J; Cabal-Yepez, E.; Osornio-Rios, R.A.; Franco-Gasca, L.A. A real-time smart sensor for high-resolution frequency estimation in power systems. Sensors 2009, 9, 7412–7429. [Google Scholar]
- Rivera, J.; Carrillo, M.; Chacón, M.; Herrera, G.; Bojorquez, G. Self-calibration and optimal response in intelligent sensors design based on artificial neural networks. Sensors 2007, 7, 1509–1529. [Google Scholar]
- Jong-Duk, S.; Gang, N.; Bo-Suk, Y.; Don-Ha, H.; Dong-Sik, K. Development of smart sensors system for machine fault diagnosis. Expert Syst 2009. [Google Scholar] [CrossRef]
- Boothroyd, G.; Knigth, W.A. Fundamentals of Machining and Machine Tools, 2nd ed; Marcel Dekker: New York, NY, USA, 1989. [Google Scholar]
- Sumit, K.S.; Mingyuan, C. Relationship between tool flank wear area and component forces in single point turning. J. Mat. Proc. Tech 2002, 128, 210–215. [Google Scholar]
- Li, X. Real-time tool wear condition monitoring in turning. Int. J. Prod. Res 2001, 39, 981–992. [Google Scholar]
- Li, X.; Tso, S.K. Real-Time tool condition monitoring using wavelet transforms and fuzzy techniques. IEEE Trans. Syst. Man. Cybern. Part C Appl. Rev 2000, 30, 352–357. [Google Scholar]
- Reñones, A.; de Miguel, L.J.; Peran, J.R. Experimental analysis of change detection algorithms for multitooth machine tool fault detection. Mech. Syst. Sig. Process 2009, 23, 2320–2335. [Google Scholar]
- Romero-Troncoso, R.J.; Herrera-Ruiz, G.; Terol-Villalobos, I.; Jauregui-Correa, J.C. FPGA based on-line tool breakage detection system for CNC milling machines. Mechatronics 2004, 14, 439–454. [Google Scholar]
- Franco-Gasca, L.A.; Herrera-Ruiz, G.; Peniche-Vera, R.; Romero-Troncoso, R.J.; Leal-Tafolla, W. Sensorless tool failure monitoring system for drilling machines. Int. J. Mach. Tools Manuf 2006, 46, 381–386. [Google Scholar]
- Salgado, D.R.; Alonso, F.J. Tool wear detection in turning operations using singular spectrum analysis. J. Mater. Process. Technol 2006, 171, 451–458. [Google Scholar]
- Romero-Troncoso, R.J.; Herrera-Ruiz, G.; Terol-Villalobos, I.; Jauregui-Correa, J.C. FPGA based on-line tool breakage detection system for CNC milling machines. Mechatronics 2004, 14, 439–454. [Google Scholar]
Experiment | Feed rate f (mm/rev) | Depth of cut ap (mm) | Cutting speed vc (m/min) | Tool | Inserts with different tool-wear degree |
---|---|---|---|---|---|
1 | 0.3333 | 1.5 | 72 | Coated Carbide CNMG433MA Medium Cutting | 10 inserts from new, medium tool-wear to broken |
2 | 0.2778 | ||||
3 | 0.2222 | ||||
4 | 0.1667 | ||||
5 | 0.1111 | ||||
6 | 0.3333 | 2.5 | |||
7 | 2.0 | ||||
8 | 1.5 | ||||
9 | 1.0 | ||||
10 | 0.5 |
Current based-estimation error (mm2) | Vibration based-estimation error (mm2) | Current and Vibration based estimation error (mm2) | |||
---|---|---|---|---|---|
Mean (μ) | Standard deviation (σ) | Mean (μ) | Standard deviation (σ) | Mean (μ) | Standard deviation (σ) |
0.0207 | 0.0118 | 0.0139 | 0.0105 | 0.0053 | 0.0036 |
Experiment | Feed rate f (mm/rev) | Depth of cut ap (mm) | Cutting speed vc (m/min) | Current and Vibration based estimation absolute error (mm2) | |
---|---|---|---|---|---|
Mean (μ) | Standard deviation (σ) | ||||
1 | 0.3333 | 1.5 | 72 | 0.0053 | 0.0036 |
2 | 0.2778 | 0.0396 | 0.0533 | ||
3 | 0.2222 | 0.0599 | 0.0503 | ||
4 | 0.1667 | 0.0671 | 0.0631 | ||
5 | 0.1111 | 0.0650 | 0.0796 | ||
6 | 0.3333 | 2.5 | 0.0719 | 0.0504 | |
7 | 2.0 | 0.0228 | 0.0255 | ||
8 | 1.5 | 0.0053 | 0.0036 | ||
9 | 1.0 | 0.0575 | 0.0663 | ||
10 | 0.5 | 0.0701 | 0.0902 |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Trejo-Hernandez, M.; Osornio-Rios, R.A.; Romero-Troncoso, R.d.J.; Rodriguez-Donate, C.; Dominguez-Gonzalez, A.; Herrera-Ruiz, G. FPGA-Based Fused Smart-Sensor for Tool-Wear Area Quantitative Estimation in CNC Machine Inserts. Sensors 2010, 10, 3373-3388. https://doi.org/10.3390/s100403373
Trejo-Hernandez M, Osornio-Rios RA, Romero-Troncoso RdJ, Rodriguez-Donate C, Dominguez-Gonzalez A, Herrera-Ruiz G. FPGA-Based Fused Smart-Sensor for Tool-Wear Area Quantitative Estimation in CNC Machine Inserts. Sensors. 2010; 10(4):3373-3388. https://doi.org/10.3390/s100403373
Chicago/Turabian StyleTrejo-Hernandez, Miguel, Roque Alfredo Osornio-Rios, Rene de Jesus Romero-Troncoso, Carlos Rodriguez-Donate, Aurelio Dominguez-Gonzalez, and Gilberto Herrera-Ruiz. 2010. "FPGA-Based Fused Smart-Sensor for Tool-Wear Area Quantitative Estimation in CNC Machine Inserts" Sensors 10, no. 4: 3373-3388. https://doi.org/10.3390/s100403373
APA StyleTrejo-Hernandez, M., Osornio-Rios, R. A., Romero-Troncoso, R. d. J., Rodriguez-Donate, C., Dominguez-Gonzalez, A., & Herrera-Ruiz, G. (2010). FPGA-Based Fused Smart-Sensor for Tool-Wear Area Quantitative Estimation in CNC Machine Inserts. Sensors, 10(4), 3373-3388. https://doi.org/10.3390/s100403373