Towards Point-of-Care Heart Failure Diagnostic Platforms: BNP and NT-proBNP Biosensors
<p>Schematic of a sandwich-type BNP immunoassay used with an ECL immunosensor [<a href="#B60-sensors-19-05003" class="html-bibr">60</a>]. Glassy carbon electrodes, modified with Au nanoflowers, are functionalized with primary antibodies. Secondary antibodies are conjugated to single wall carbon nanohorns linked to bimettalic nanocubes and loaded with a novel self-catalyzed luminescence emitter.</p> "> Figure 2
<p>Electrochemical and optical nanobiosensing of BNP and Nt-proBNP.</p> "> Figure 3
<p>Schematic of the optimization of a LFIA for the point-of-care detection of BNP [<a href="#B66-sensors-19-05003" class="html-bibr">66</a>]. (<b>A</b>) a thin conjugate pad added to get a complete release of GNP-Ab; (<b>B</b>) LFIA principle; (<b>C</b>) adjustment of GNP diameter to increase the signal; (<b>D</b>) adjustment of the concentration of the test line to increase the signal.</p> "> Figure 4
<p>Schematic of a BNP immunoassay on a rGO FET decorated with PtNPsfor signal amplification. The biosensor employs a custom-made microfilter and polycarbonate membranes to allow measurement in whole blood by removing blood cells [<a href="#B79-sensors-19-05003" class="html-bibr">79</a>].</p> "> Figure 5
<p>Extended gate electric double layer (EDL) FET biosensor [<a href="#B80-sensors-19-05003" class="html-bibr">80</a>]. (<b>a</b>) schematic illustration of the biosensor; (<b>b</b>) real image of the hand-held measurement system integrating the sensor array chip.</p> ">
Abstract
:1. Introduction
2. Diagnostics in Heart Failure
2.1. HF-Specific Cardiac Biomarkers
2.1.1. Cardiac Biomarkers
2.1.2. Natriuretic Peptides: BNP and NT-proBNP
2.2. Traditional Immunoassay BNP Tests
2.2.1. Radioimmunoassays
2.2.2. Fluorescent-Based Immunoassays
2.2.3. ELISA
2.2.4. ECLIA
2.3. Need for Point of Care Testing
3. Biosensors for BNP Detection
3.1. Optical Immunosensors
3.1.1. Surface Plasmon Based Biosensors
3.1.2. Optical Intensity Based Biosensors
3.2. Electrochemical
3.2.1. Potentiometric
3.2.2. Amperometric
3.2.3. Impedance-Based
3.2.4. Conductometric
4. Limitations for POCT
Environmental Factors
5. Conclusions
Funding
Conflicts of Interest
References
- World Health Organization. Cardiovascular Diseases (CVDs); WHO: Geneva, Switzerland, 2017. [Google Scholar]
- American Heart Association. Cardiovascular Disease. A Costly Burden for America Projections Through 2035; American Heart Association: Dallas, TX, USA, 2017. [Google Scholar]
- National Heart, Lung, and Blood Institute. What Is Heart Failure? NHLBI: Maryland, MD, USA, 2015.
- American Heart Association. Warning Signs of Heart Failure; American Heart Associatio: Dallas, TX, USA, 2017. [Google Scholar]
- Tresch, D.D. Clinical manifestations, diagnostic assessment, and etiology of heart failure in elderly patients. Clin. Geriatr. Med. 2000, 16, 445–456. [Google Scholar] [CrossRef]
- Iwaz, J.A.; Maisel, A.S. Recent advances in point-of-care testing for natriuretic peptides: Potential impact on heart failure diagnosis and management. Expert Rev. Mol. Diagn. 2016, 16, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Swap, C.J.; Nagurney, J.T. Value and limitations of chest pain history in the evaluation of patients with suspected acute coronary syndromes. JAMA 2005, 294, 2623–2629. [Google Scholar] [CrossRef] [PubMed]
- Egom, E.E. BNP and Heart Failure: Preclinical and Clinical Trial Data. J. Cardiovasc. Transl. Res. 2015, 8, 149–157. [Google Scholar] [CrossRef]
- Chun, A.A.; McGee, S.R. Bedside diagnosis of coronary artery disease: A systematic review. Am. J. Med. 2004, 117, 334–343. [Google Scholar] [CrossRef]
- Liquori, M.E.; Christenson, R.H.; Collinson, P.O.; Defilippi, C.R. Cardiac biomarkers in heart failure. Clin. Biochem. 2014, 47, 327–337. [Google Scholar] [CrossRef]
- Gaggin, H.K.; Januzzi, J.L., Jr. Biomarkers and diagnostics in heart failure. Biochim. Biophys. Acta 2013, 1832, 2442–2450. [Google Scholar] [CrossRef]
- Van Kimmenade, R.R.; Januzzi, J.L., Jr. Emerging biomarkers in heart failure. Clin. Chem. 2012, 58, 127–138. [Google Scholar] [CrossRef]
- Choudhary, R.; Iqbal, N.; Khusro, F.; Higginbotham, E.; Green, E.; Maisel, A. Heart failure biomarkers. J. Cardiovasc. Transl. Res. 2013, 6, 471–484. [Google Scholar] [CrossRef]
- Clerico, A.; Fontana, M.; Zyw, L.; Passino, C.; Emdin, M. Comparison of the diagnostic accuracy of brain natriuretic peptide (BNP) and the N-terminal part of the propeptide of BNP immunoassays in chronic and acute heart failure: A systematic review. Clin. Chem. 2007, 53, 813–822. [Google Scholar] [CrossRef]
- Maisel, A.S.; Peacock, W.F.; McMullin, N.; Jessie, R.; Fonarow, G.C.; Wynne, J.; Mills, R.M. Timing of immunoreactive B-type natriuretic peptide levels and treatment delay in acute decompensated heart failure: An ADHERE (Acute Decompensated Heart Failure National Registry) analysis. J. Am. Coll. Cardiol. 2008, 52, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Peacock, W.F.; Emerman, C.L.; Costanza, M.R.; Diercks, D.B.; Lopatin, M.; Fonarow, G. Acute heart failure mortality is dependent on time to intravenous vasoactive administration. J. Card. Fail. 2006, 12, S117. [Google Scholar] [CrossRef]
- Altintas, Z.; Fakanya, W.; Tothill, I. Cardiovascular disease detection using bio-sensing techniques. Talanta 2014, 128, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2017, 136, e137–e161. [Google Scholar]
- Tan, L.; Lewis, N.; Barker, D. Definition, Diagnosis, Epidemiology, Etiology and Pathophysiology of Heart Failure. In Heart Failure in Clinical Practice; Springer: London, UK, 2010; pp. 1–19. [Google Scholar]
- Braunwald, E. Heart failure. JACC Heart Fail. 2013, 1, 1–20. [Google Scholar] [CrossRef]
- Dhingra, R.; Vasan, R.S. Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers. Trends Cardiovasc. Med. 2017, 27, 123–133. [Google Scholar] [CrossRef]
- Morrow, D.A.; de Lemos, J.A. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation 2007, 115, 949–952. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Shadjou, N.; Soleymani, J.; Omidinia, E.; de la Guardia, M. Optical immunosensing of effective cardiac biomarkers on acute myocardial infarction. TrAC Trends Anal. Chem. 2013, 51, 158–168. [Google Scholar] [CrossRef]
- Dattagupta, A.; Immaneni, S. ST2: Current status. Indian Heart J. 2018, 70, S96–S101. [Google Scholar] [CrossRef]
- Mueller, T.; Leitner, I.; Egger, M.; Haltmayer, M.; Dieplinger, B. Association of the biomarkers soluble ST2, galectin-3 and growth-differentiation factor-15 with heart failure and other non-cardiac diseases. Clin. Chim. Acta 2015, 445, 155–160. [Google Scholar] [CrossRef]
- Daamen, M.; Brunner-la Rocca, H.; Tan, F.; Hamers, J.; Schols, J. Clinical diagnosis of heart failure in nursing home residents based on history, physical exam, BNP and ECG: Is it reliable? Eur. Geriatr. Med. 2017, 8, 59–65. [Google Scholar] [CrossRef]
- McCullough, P. B-Type Natriuretic Peptide and Clinical Judgment in Emergency Diagnosis of Heart Failure: Analysis From Breathing Not Properly (BNP) Multinational Study. Circulation 2002, 106, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Oremus, M.; Don-Wauchope, A.; McKelvie, R.; Santaguida, P.L.; Hill, S.; Balion, C.; Booth, R.; Brown, J.A.; Ali, U.; Bustamam, A.; et al. BNP and NT-proBNP as prognostic markers in persons with chronic stable heart failure. Heart Fail. Rev. 2014, 19, 471–505. [Google Scholar] [CrossRef] [PubMed]
- Costello-Boerrigter, L.C.; Boerrigter, G.; Redfield, M.M.; Rodeheffer, R.J.; Urban, L.H.; Mahoney, D.W.; Jacobsen, S.J.; Heublein, D.M.; Burnett, J.C., Jr. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: Determinants and detection of left ventricular dysfunction. J. Am. Coll. Cardiol. 2006, 47, 345–353. [Google Scholar] [CrossRef]
- Richards, A.M.; Doughty, R.; Nicholls, M.G.; MacMahon, S.; Sharpe, N.; Murphy, J.; Espiner, E.A.; Frampton, C.; Yandle, T.G.; Australia-New Zealand Heart Failure Group. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: Prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. Australia-New Zealand Heart Failure Group. J. Am. Coll. Cardiol. 2001, 37, 1781–1787. [Google Scholar]
- Vasan, R.S.; Benjamin, E.J.; Larson, M.G.; Leip, E.P.; Wang, T.J.; Wilson, P.W.; Levy, D. Plasma natriuretic peptides for community screening for left ventricular hypertrophy and systolic dysfunction: The Framingham heart study. JAMA 2002, 288, 1252–1259. [Google Scholar] [CrossRef]
- Maisel, A.S.; Koon, J.; Krishnaswamy, P.; Kazenegra, R.; Clopton, P.; Gardetto, N.; Morrisey, R.; Garcia, A.; Chiu, A.; De Maria, A. Utility of B-natriuretic peptide as a rapid, point-of-care test for screening patients undergoing echocardiography to determine left ventricular dysfunction. Am. Heart J. 2001, 141, 367–374. [Google Scholar] [CrossRef]
- Davis, M.; Espiner, E.; Richards, G.; Billings, J.; Town, I.; Neill, A.; Drennan, C.; Richards, M.; Turner, J.; Yandle, T. Plasma brain natriuretic peptide in assessment of acute dyspnoea. Lancet 1994, 343, 440–444. [Google Scholar] [CrossRef]
- Januzzi, J.L., Jr.; Sakhuja, R.; O’Donoghue, M.; Baggish, A.L.; Anwaruddin, S.; Chae, C.U.; Cameron, R.; Krauser, D.G.; Tung, R.; Camargo, C.A., Jr.; et al. Utility of amino-terminal pro-brain natriuretic peptide testing for prediction of 1-year mortality in patients with dyspnea treated in the emergency department. Arch. Intern. Med. 2006, 166, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Maisel, A.S.; Krishnaswamy, P.; Nowak, R.M.; McCord, J.; Hollander, J.E.; Duc, P.; Omland, T.; Storrow, A.B.; Abraham, W.T.; Wu, A.H.; et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med. 2002, 347, 161–167. [Google Scholar]
- Moe, G.W.; Howlett, J.; Januzzi, J.L.; Zowall, H.; Canadian Multicenter Improved Management of Patients With Congestive Heart Failure Study Investigators. N-terminal pro-B-type natriuretic peptide testing improves the management of patients with suspected acute heart failure: Primary results of the Canadian prospective randomized multicenter IMPROVE-CHF study. Circulation 2007, 115, 3103–3110. [Google Scholar] [PubMed]
- Mueller, C.; Scholer, A.; Laule-Kilian, K.; Martina, B.; Schindler, C.; Buser, P.; Pfisterer, M.; Perruchoud, A.P. Use of B-type natriuretic peptide in the evaluation and management of acute dyspnea. N. Engl. J. Med. 2004, 350, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.; Girod, J.P.; Lee, M.J.; Starling, R.C.; Young, J.B.; Van Lente, F.; Francis, G.S. Plasma B-type natriuretic peptide levels in ambulatory patients with established chronic symptomatic systolic heart failure. Circulation 2003, 108, 2964–2966. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Sung, M.I.; Ho, C.H.; Liu, H.H.; Chen, C.M.; Chiang, S.R.; Chao, C.M.; Liu, W.L.; Hsing, S.C.; Cheng, K.C. The prognostic value of N-terminal proB-type natriuretic peptide in patients with acute respiratory distress syndrome. Sci. Rep. 2017, 7, 44784. [Google Scholar] [CrossRef] [Green Version]
- Anand, I.S.; Fisher, L.D.; Chiang, Y.T.; Latini, R.; Masson, S.; Maggioni, A.P.; Glazer, R.D.; Tognoni, G.; Cohn, J.N.; Val-He, F.T.I. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 2003, 107, 1278–1283. [Google Scholar] [CrossRef] [Green Version]
- Maeda, K.; Tsutamoto, T.; Wada, A.; Mabuchi, N.; Hayashi, M.; Tsutsui, T.; Ohnishi, M.; Sawaki, M.; Fujii, M.; Matsumoto, T.; et al. High levels of plasma brain natriuretic peptide and interleukin-6 after optimized treatment for heart failure are independent risk factors for morbidity and mortality in patients with congestive heart failure. J. Am. Coll. Cardiol. 2000, 36, 1587–1593. [Google Scholar] [CrossRef] [Green Version]
- Neuhold, S.; Huelsmann, M.; Strunk, G.; Stoiser, B.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Moertl, D.; Berger, R.; Pacher, R. Comparison of copeptin, B-type natriuretic peptide, and amino-terminal pro-B-type natriuretic peptide in patients with chronic heart failure: Prediction of death at different stages of the disease. J. Am. Coll. Cardiol. 2008, 52, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Bettencourt, P.; Azevedo, A.; Pimenta, J.; Frioes, F.; Ferreira, S.; Ferreira, A. N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation 2004, 110, 2168–2174. [Google Scholar] [CrossRef] [Green Version]
- Cheng, V.; Kazanagra, R.; Garcia, A.; Lenert, L.; Krishnaswamy, P.; Gardetto, N.; Clopton, P.; Maisel, A. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: A pilot study. J. Am. Coll. Cardiol. 2001, 37, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Logeart, D.; Thabut, G.; Jourdain, P.; Chavelas, C.; Beyne, P.; Beauvais, F.; Bouvier, E.; Solal, A.C. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J. Am. Coll. Cardiol. 2004, 43, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Balion, C.; McKelvie, R.; Don-Wauchope, A.C.; Santaguida, P.L.; Oremus, M.; Keshavarz, H.; Hill, S.A.; Booth, R.A.; Ali, U.; Brown, J.A.; et al. B-type natriuretic peptide-guided therapy: A systematic review. Heart Fail. Rev. 2014, 19, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Sanchis-Gomar, F. Monitoring B-type natriuretic peptide in patients undergoing therapy with neprilysin inhibitors. An emerging challenge? Int. J. Cardiol. 2016, 219, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Motiwala, S.R.; Januzzi, J.L., Jr. The role of natriuretic peptides as biomarkers for guiding the management of chronic heart failure. Clin. Pharmacol. Ther. 2013, 93, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Mair, J.; Lindahl, B.; Giannitsis, E.; Huber, K.; Thygesen, K.; Plebani, M.; Mockel, M.; Muller, C.; Jaffe, A.S.; Biomarker Study Group of the European Society of Cardiology Acute Cardiovascular Care Association. Will sacubitril-valsartan diminish the clinical utility of B-type natriuretic peptide testing in acute cardiac care? Eur. Heart J. Acute Cardiovasc. Care 2017, 6, 321–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maisel, A.; Mueller, C.; Nowak, R.; Peacock, W.F.; Landsberg, J.W.; Ponikowski, P.; Mockel, M.; Hogan, C.; Wu, A.H.; Richards, M.; et al. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: Results from the BACH (Biomarkers in Acute Heart Failure) trial. J. Am. Coll. Cardiol. 2010, 55, 2062–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudoh, T.; Kangawa, K.; Minamino, N.; Matsuo, H. A new natriuretic peptide in porcine brain. Nature 1988, 332, 78–81. [Google Scholar] [CrossRef]
- Jourdain, P.; Jondeau, G.; Funck, F.; Gueffet, P.; Le Helloco, A.; Donal, E.; Aupetit, J.F.; Aumont, M.C.; Galinier, M.; Eicher, J.C.; et al. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: The STARS-BNP Multicenter Study. J. Am. Coll. Cardiol. 2007, 49, 1733–1739. [Google Scholar] [CrossRef]
- Maisel, A.S.; Daniels, L.B. Breathing not properly 10 years later: What we have learned and what we still need to learn. J. Am. Coll. Cardiol. 2012, 60, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Januzzi, J.L., Jr.; Camargo, C.A.; Anwaruddin, S.; Baggish, A.L.; Chen, A.A.; Krauser, D.G.; Tung, R.; Cameron, R.; Nagurney, J.T.; Chae, C.U.; et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am. J. Cardiol. 2005, 95, 948–954. [Google Scholar] [CrossRef]
- Blankenberg, S.; McQueen, M.J.; Smieja, M.; Pogue, J.; Balion, C.; Lonn, E.; Rupprecht, H.J.; Bickel, C.; Tiret, L.; Cambien, F.; et al. Comparative impact of multiple biomarkers and N-Terminal pro-brain natriuretic peptide in the context of conventional risk factors for the prediction of recurrent cardiovascular events in the Heart Outcomes Prevention Evaluation (HOPE) Study. Circulation 2006, 114, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Maalouf, R.; Bailey, S. A review on B-type natriuretic peptide monitoring: Assays and biosensors. Heart Fail. Rev. 2016, 21, 567–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, M.I.; Desmulliez, M.P. Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: A review. Lab Chip 2011, 11, 569–595. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yin, X.; Sun, D.; Xia, K.; Kang, C.; Chu, S.; Zhang, P.; Wang, H.; Qiu, Y. Detection of NT-pro BNP using fluorescent protein modified by streptavidin as a label in immunochromatographic assay. Sens. Bio-Sens. Res. 2016, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Liu, J.; Xie, L.; Wang, M.; Luo, J.; Cai, X. A fast and sensitive enzyme immunoassay for brain natriuretic peptide based on micro-magnetic probes strategy. Talanta 2010, 81, 1016–1021. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Xiong, C.; Chai, Y.; Yuan, R. An ultrasensitive electrochemiluminescence immunosensor for NT-proBNP based on self-catalyzed luminescence emitter coupled with PdCu@carbon nanohorn hybrid. Biosens. Bioelectron. 2017, 87, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Peacock, W.F.; Emerman, C.; Costanzo, M.R.; Diercks, D.B.; Lopatin, M.; Fonarow, G.C. Early Vasoactive Drugs Improve Heart Failure Outcomes. Congest. Heart Fail. 2009, 15, 256–264. [Google Scholar] [CrossRef]
- Wang, Z.; Wilkop, T.; Xu, D.; Dong, Y.; Ma, G.; Cheng, Q. Surface plasmon resonance imaging for affinity analysis of aptamer–protein interactions with PDMS microfluidic chips. Anal. Bioanal. Chem. 2007, 389, 819–825. [Google Scholar] [CrossRef]
- Kurita, R.; Yokota, Y.; Sato, Y.; Mizutani, F.; Niwa, O. On-Chip Enzyme Immunoassay of a Cardiac Marker Using a Microfluidic Device Combined with a Portable Surface Plasmon Resonance System. Anal. Chem. 2006, 78, 5525–5531. [Google Scholar] [CrossRef]
- Jang, H.R.; Wark, A.W.; Baek, S.H.; Chung, B.H.; Lee, H.J. Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform. Anal. Chem. 2014, 86, 814–819. [Google Scholar] [CrossRef]
- Teramura, Y.; Arima, Y.; Iwata, H. Surface plasmon resonance-based highly sensitive immunosensing for brain natriuretic peptide using nanobeads for signal amplification. Anal. Biochem. 2006, 357, 208–215. [Google Scholar] [CrossRef]
- Gong, Y.; Hu, J.; Choi, J.R.; You, M.L.; Zheng, Y.M.; Xu, B.; Wen, T.; Xu, F. Improved LFIAs for highly sensitive detection of BNP at point-of-care. Int. J. Nanomed. 2017, 12, 4455–4465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, B.; Kang, K.A. Biocompatible, nanogold-particle fluorescence enhancer for fluorophore mediated, optical immunosensor. Biosens. Bioelectron. 2006, 21, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, L.; Li, F.; Han, Y.L.; Lin, M.; Lu, T.J.; Xu, F. Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip 2013, 13, 4352–4357. [Google Scholar] [CrossRef] [PubMed]
- Rivas, L.; de la Escosura-Muñiz, A.; Serrano, L.; Altet, L.; Francino, O.; Sánchez, A.; Merkoçi, A. Triple lines gold nanoparticle-based lateral flow assay for enhanced and simultaneous detection of Leishmania DNA and endogenous control. Nano Res. 2015, 8, 3704–3714. [Google Scholar] [CrossRef]
- Lin, L.-K.; Uzunoglu, A.; Stanciu, L.A. Aminolated and Thiolated PEG-Covered Gold Nanoparticles with High Stability and Antiaggregation for Lateral Flow Detection of Bisphenol A. Small 2018, 14, 1702828. [Google Scholar] [CrossRef] [PubMed]
- Song, K.S.; Nimse, S.B.; Sonawane, M.D.; Warkad, S.D.; Kim, T. Ultra-Sensitive NT-proBNP Quantification for Early Detection of Risk Factors Leading to Heart Failure. Sensors (Basel) 2017, 17, 2116. [Google Scholar] [CrossRef] [Green Version]
- You, M.; Lin, M.; Gong, Y.; Wang, S.; Li, A.; Ji, L.; Zhao, H.; Ling, K.; Wen, T.; Huang, Y.; et al. Household Fluorescent Lateral Flow Strip Platform for Sensitive and Quantitative Prognosis of Heart Failure Using Dual-Color Upconversion Nanoparticles. ACS Nano 2017, 11, 6261–6270. [Google Scholar] [CrossRef]
- Yang, X.; Liu, L.; Hao, Q.; Zou, D.; Zhang, X.; Zhang, L.; Li, H.; Qiao, Y.; Zhao, H.; Zhou, L. Development and Evaluation of Up-Converting Phosphor Technology-Based Lateral Flow Assay for Quantitative Detection of NT-proBNP in Blood. PLoS ONE 2017, 12, e0171376. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, M.D.; Turner, B.L.; Rivera, K.R.; Menegatti, S.; Daniele, M. Quantum dot enabled lateral flow immunoassay for detection of cardiac biomarker NT-proBNP. Sens. Bio-Sens. Res. 2018, 21, 46–53. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, L.; Liu, B.; Su, E.; Chen, H.; Gu, Z.; Zhao, X. Quantitative detection of multiplex cardiac biomarkers with encoded SERS nanotags on a single T line in lateral flow assay. Sens. Actuators B Chem. 2018, 277, 502–509. [Google Scholar] [CrossRef]
- Pan, M.; Gu, Y.; Yun, Y.; Li, M.; Jin, X.; Wang, S. Nanomaterials for Electrochemical Immunosensing. Sensors (Basel) 2017, 17, 1041. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, B.; Ghani, M.; Shoushtari, A.M.; Rabiee, M. Electrochemical biosensors based on nanofibres for cardiac biomarker detection: A comprehensive review. Biosens. Bioelectron. 2016, 78, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Huang, J.; Sanchez, D.; Schwartzman, D.; Lee, S.; Yun, M. High yield two-dimensional (2D) polyaniline layer and its application in detection of B-type natriuretic peptide in human serum. Sens. Actuators B Chem. 2016, 230, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.M.; Xiao, M.M.; Li, Y.T.; Xu, L.; Zhang, H.; Zhang, Z.Y.; Zhang, G.J. Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosens. Bioelectron. 2017, 91, 1–7. [Google Scholar] [CrossRef]
- Sarangadharan, I.; Wang, S.L.; Tai, T.Y.; Pulikkathodi, A.K.; Hsu, C.P.; Chiang, H.H.K.; Liu, L.Y.M.; Wang, Y.L. Risk stratification of heart failure from one drop of blood using hand-held biosensor for BNP detection. Biosens. Bioelectron. 2018, 107, 259–265. [Google Scholar] [CrossRef]
- Yi, W.; Liang, W.; Li, P.; Li, S.; Zhang, Z.; Yang, M.; Chen, A.; Zhang, B.; Hu, C. Application of a Fab fragment of monoclonal antibody specific to N-terminal pro-brain natriuretic peptide for the detection based on regeneration-free electrochemical immunosensor. Biotechnol. Lett. 2011, 33, 1539–1543. [Google Scholar] [CrossRef]
- Liang, W.; Li, Y.; Zhang, B.; Zhang, Z.; Chen, A.; Qi, D.; Yi, W.; Hu, C. A novel microfluidic immunoassay system based on electrochemical immunosensors: An application for the detection of NT-proBNP in whole blood. Biosens. Bioelectron. 2012, 31, 480–485. [Google Scholar] [CrossRef]
- Serafín, V.; Torrente-Rodríguez, R.; González-Cortés, A.; García de Frutos, P.; Sabaté, M.; Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J. An electrochemical immunosensor for brain natriuretic peptide prepared with screen-printed carbon electrodes nanostructured with gold nanoparticles grafted through aryl diazonium salt chemistry. Talanta 2017, 179, 131–138. [Google Scholar] [CrossRef]
- Prasad, S.; Selvam, A.P.; Reddy, R.K.; Love, A. Silicon nanosensor for diagnosis of cardiovascular proteomic markers. J. Lab. Autom. 2013, 18, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Ceylan, O.; Mishra, G.K.; Yazici, M.; Cakmakci, R.C.; Niazi, J.H.; Qureshi, A.; Gurbuz, Y. Development of Hand-Held Point-of-Care Diagnostic Device for Detection of Multiple Cancer and Cardiac Disease Biomarkers. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018. [Google Scholar]
- Lee, I.; Luo, X.; Huang, J.; Cui, X.; Yun, M. Detection of Cardiac Biomarkers Using Single Polyaniline Nanowire-Based Conductometric Biosensors. Biosensors 2012, 2, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.; Zhang, X.; Wang, J. Signal Amplification for Nanobiosensing. In NanoBiosensing: Principles, Development and Application; Ju, H., Zhang, X., Wang, J., Eds.; Springer New York: New York, NY, USA, 2011. [Google Scholar]
- Wan, Y.; Su, Y.; Zhu, X.; Liu, G.; Fan, C. Development of electrochemical immunosensors towards point-of-care diagnostics. Biosens. Bioelectron. 2013, 47, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dincer, C.; Bruch, R.; Kling, A.; Dittrich, P.S.; Urban, G.A. Multiplexed Point-of-Care Testing—xPOCT. Trends Biotechnol. 2017, 35, 728–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gubala, V.; Harris, L.F.; Ricco, A.J.; Tan, M.X.; Williams, D.E. Point of care diagnostics: Status and future. Anal. Chem. 2012, 84, 487–515. [Google Scholar] [CrossRef] [PubMed]
- Ritzi-Lehnert, M. Development of chip-compatible sample preparation for diagnosis of infectious diseases. Expert Rev. Mol. Diagn. 2012, 12, 189–206. [Google Scholar] [CrossRef]
- Peacock, P.M.; Zhang, W.J.; Trimpin, S. Advances in Ionization for Mass Spectrometry. Anal. Chem. 2017, 89, 372–388. [Google Scholar] [CrossRef]
- Sin, M.L.; Mach, K.E.; Wong, P.K.; Liao, J.C. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev. Mol. Diagn. 2014, 14, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Undar, A.; Zahn, J.D. A microfluidic device for continuous, real time blood plasma separation. Lab Chip 2006, 6, 871–880. [Google Scholar] [CrossRef]
- Mulvaney, S.P.; Cole, C.L.; Kniller, M.D.; Malito, M.; Tamanaha, C.R.; Rife, J.C.; Stanton, M.W.; Whitman, L.J. Rapid, femtomolar bioassays in complex matrices combining microfluidics and magnetoelectronics. Biosens. Bioelectron. 2007, 23, 191–200. [Google Scholar] [CrossRef]
- Dimov, I.K.; Garcia-Cordero, J.L.; O’Grady, J.; Poulsen, C.R.; Viguier, C.; Kent, L.; Daly, P.; Lincoln, B.; Maher, M.; O’Kennedy, R.; et al. Integrated microfluidic tmRNA purification and real-time NASBA device for molecular diagnostics. Lab Chip 2008, 8, 2071–2078. [Google Scholar] [CrossRef] [Green Version]
- Karuwan, C.; Sukthang, K.; Wisitsoraat, A.; Phokharatkul, D.; Patthanasettakul, V.; Wechsatol, W.; Tuantranont, A. Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip. Talanta 2011, 84, 1384–1389. [Google Scholar] [CrossRef]
- Sin, M.L.; Liu, T.; Pyne, J.D.; Gau, V.; Liao, J.C.; Wong, P.K. In situ electrokinetic enhancement for self-assembled-monolayer-based electrochemical biosensing. Anal. Chem. 2012, 84, 2702–2707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, R.H.; Yang, H.; Choi, J.R.; Gong, Y.; Feng, S.S.; Pingguan-Murphy, B.; Huang, Q.S.; Shi, J.L.; Mei, Q.B.; Xu, F. Advances in paper-based sample pretreatment for point-of-care testing. Crit. Rev. Biotechnol. 2017, 37, 411–428. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Akay, A.; Wei, H.; Wang, S.; Pingguan-Murphy, B.; Erlandsson, B.; Li, X.; Lee, W.; Hu, J.; Wang, L.; et al. Advances in Smartphone-Based Point-of-Care Diagnostics. Proc. IEEE 2015, 103, 236–247. [Google Scholar] [CrossRef]
- Berg, B.; Cortazar, B.; Tseng, D.; Ozkan, H.; Feng, S.; Wei, Q.; Chan, R.Y.; Burbano, J.; Farooqui, Q.; Lewinski, M.; et al. Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays. ACS Nano 2015, 9, 7857–7866. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Cui, X.; Gong, Y.; Xu, X.; Gao, B.; Wen, T.; Lu, T.J.; Xu, F. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point-of-care. Biotechnol. Adv. 2016, 34, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.R.; Hu, J.; Feng, S.; Abas, W.A.W.; Pingguan-Murphy, B.; Xu, F. Sensitive biomolecule detection in lateral flow assay with a portable temperature-humidity control device. Biosens. Bioelectron. 2016, 79, 98–107. [Google Scholar] [CrossRef]
Cardiac Biomarker | Pathophysiological Model | Cut-off Value | Diagnosis | Prognosis | Therapy | Cardio-Specific |
---|---|---|---|---|---|---|
BNP | Cardiac Myocyte Stress | 400 pg/mL | + | + | + | Yes |
NT-proBNP | Cardiac Myocyte Stress | 0.25–2 ng/mL | + | + | + | Yes |
MR-proANP | Cardiac Myocyte Stress | 120 pmol/L | + | + | ? | Yes |
Troponins | Myocyte Injury and Necrosis | 0.01–0.1 ng/mL | + | + | ? | Yes |
Copeptin | Neurohormonal Activation | - | - | + | - | No |
Myeloperoxidase | Oxidative Stress | 350 ng/mL | - | + | ? | No |
NGAL | Renal Dysfunction | - | - | + | - | No |
C-Reactive Protein | Inflammatory | ng/mL | - | + | ? | No |
Tumor necrosis factor | Inflammatory | 0.0036 ng/mL | - | + | ? | No |
sST2 | Adverse Cardiac Remodeling: cardiac stress, inflammation, and fibrosis | 35 ng/mL | - | + | ? | No |
Ref | Technique | BNP Type | Stability | Reproducibility | Sensitivity | Selectivity | Sample Used | Incubation (min) | Response Time | Functionalization | Surface Characterization |
---|---|---|---|---|---|---|---|---|---|---|---|
[58] | Fluorescence-based | NT-pro BNP | - | <10% intra/inter assay variability | Linear Range: 200–26,000 pg/mL Limit of Detection: 47 pg/mL | - | Human serum, plasma, and whole blood | - | 10 min | Covalent bonding (EDC/ NHS) | - |
[59] | Optical-intensity based | BNP | - | - | Limit of Detection: 10 pg/mL | - | Whole blood | - | - | Biotinylated anti-BNP Anti-bodies binded to streptavidin-coated MMPs | UV-vis spectro-photometry |
[60] | Electrochemi-luminiscence-based | NT-pro BNP | ±1.9%/12 cycles | 3.48% intra-assay precision 2.73% inter-assay precision | Linear Range: 0.1 pg/mL–25 ng/mL Limit of Detection: 0.05 pg/mL | Higher response than that to AFP, Col IV, and PSA | Undiluted human serum | 45 | - | Sandwich immunoassay: glassy carbon electrodes with NT-pro BNP Ab1 & PTC-Lu/PdCu@SWCNHs with Ab2 | SEM, XPS, and CV |
[63] | SPR-based | BNP | - | - | Linear Range: 5 pg/mL–100 ng/mL Limit of Detection: 5 pg/mL | - | Human serum | 30 | Real-time | BNP-modified Micro-channel by EDC/NHS covalent bonding | - |
[64] | SPR-based | BNP | - | - | Linear Range: 1 aM–500 nM Limit of Detection: 1 aM | Non-specific adsorption | Undiluted human serum | 60 | Real-time | Sandwich immunoassay: EDC/NHS functionalizaton of BNP aptamers and 50 nm nanocubes with secondary anti-BNP | UV-vis spectroscopy and TEM |
[65] | SPR-based | BNP | - | - | Linear Range: 10–100 ng/mL Limit of Detection: 25 pg/mL | Non-specific adsorption in human plasma | BNP buffer solution + human plasma | - | Real-time | Sandwich immunoassay with EDC/NHS covalent bonding of primary anti-BNP | - |
[66] | SPR-based | BNP | - | - | Linear Range: 1 aM–500 nM Limit of Detection: 0.1 ng/mL | CRP, Myo, and cTnI | Human serum | 10–15 | - | Sandwich immunoassay | TEM + UV/vis spectro-photometry |
[67] | Fluorescence-based | BNP | - | - | Linear Range: 26–260 pg/mL Limit of Detection: 26 pg/mL | - | - | 5 | - | Sandwich immunoassay Functionalization of quartz fiber with anti-BNP (EDC/NHS) | - |
[71] | Fluorescence-based | NT-pro BNP | - | Less than 10% variation | Linear Range: 7–600 pg/mL Limit of Detection: 3.7 pg/mL | Low interference for hemoglobin, Bilirubin, intra-lipid, and biotin | Human plasma | 11 | - | Immobilized with oligonucleotides using 9G technology | - |
[78] | Potentiometric | BNP | - | for 20 devices | Linear Range: 50–200 pg/mL Nonlinear Range: 50–1000 pg/mL | ±5% for Myo, cTni, CK-MB | Serum | - | 1 min | Covalent bond (EDC/NHS) | SEM, AFM |
[79] | Potentiometric | BNP | Regenerated over one week and for 3 cycles | for 2 devices | Linear Range: 100 fM–1nM | <13% for BSA, D-Dimer, HAS | Whole Blood | 30 | 10 s | Covalent bond (EDC/NHS) | SEM, TEM, EDS, XPS |
[80] | Potentiometric | BNP | - | - | Linear Range: 0–1000 pg/mL | Spiked BNP concentrations in whole blood | Purified BNP + spiked BNP in whole blood+ whole blood | 5 | - | - | - |
[81] | Amperometric | NT-pro BNP | - | - | Linear Range: 0.04–2.5 ng/mL Limit of Detection: 0.03 ng/mL | - | Human serum | 16 | - | Biotin-avidin interactions + ferrite permanent magnet for magnetic nanoparticle immobilization | - |
[82] | Amperometric | NT-pro BNP | ±2.3% /month ±2.1%/50 cycles | - | Linear Range: 0.005–1.67 ng/mL 1.67–4 ng/mL Limit of Detection: 0.003 ng/mL | <4.3% for BSA, healthy serum, dopamine, v/v Tween 20, and vitamin C | Serum + Whole Blood | 18 | - | Sandwich immunoassay via biotin-avidin interactions + ferrite permanent magnet for magnetic nanoparticle immobilization | TEM, AFM, XPS |
[83] | Amperometric | BNP | Stable/25 days | 4.7%–6.4% for 5 devices | Linear Range: 0.014 and 15 ng/mL Limit of Detection: 4 pg/mL | No significant difference with CRP, cTnI, cTNT, L(a), TNF alpha, IL-8, NTproBNP, and AXL | Serum | 45 | - | Aryl diazonium salt chemistry using 4-amino-thiopheno | AFM, SEM, EDX |
[84] | Impedance-Based | BNP | - | for 3 devices | Linear Range: 1 ag/mL–10 ug/mL | No CRP cross-reactivity | Serum | 15 | Near real-time | Covalent bond between antibody-linkers and amine of thiol (DSP/DMSO) | Optical micrograph, SEM |
[86] | Conductometric | BNP | - | - | Linear Range: 50 fg/mL–3 ng/mL | High confidence for BSA + others | Serum | - | - | Covalent bond (EDC/NHS) | SEM, Raman spectroscopy |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alawieh, H.; El Chemaly, T.; Alam, S.; Khraiche, M. Towards Point-of-Care Heart Failure Diagnostic Platforms: BNP and NT-proBNP Biosensors. Sensors 2019, 19, 5003. https://doi.org/10.3390/s19225003
Alawieh H, El Chemaly T, Alam S, Khraiche M. Towards Point-of-Care Heart Failure Diagnostic Platforms: BNP and NT-proBNP Biosensors. Sensors. 2019; 19(22):5003. https://doi.org/10.3390/s19225003
Chicago/Turabian StyleAlawieh, Hussein, Trishia El Chemaly, Samir Alam, and Massoud Khraiche. 2019. "Towards Point-of-Care Heart Failure Diagnostic Platforms: BNP and NT-proBNP Biosensors" Sensors 19, no. 22: 5003. https://doi.org/10.3390/s19225003
APA StyleAlawieh, H., El Chemaly, T., Alam, S., & Khraiche, M. (2019). Towards Point-of-Care Heart Failure Diagnostic Platforms: BNP and NT-proBNP Biosensors. Sensors, 19(22), 5003. https://doi.org/10.3390/s19225003