Forensic Speaker Verification Using Ordinary Least Squares
<p>Fourier spectrum and linear predictive coding (LPC) envelope for a given audio signal.</p> "> Figure 2
<p>Q-Q Plot for dispersion for a given data regarding a normal distribution.</p> "> Figure 3
<p>Structure developed for forensic speaker comparison, based on ordinary least squares (OLS), including all three phases.</p> "> Figure 4
<p>Audio frequency spectrum for: (<b>a</b>) confronted; (<b>b</b>) reference.</p> "> Figure 5
<p>Formants (N = 19) extracted from both audios: (<b>a</b>) confronted; (<b>b</b>) reference.</p> "> Figure 6
<p>Smoothing the formants using an MAV filter for: (<b>a</b>) confronted audio; (<b>b</b>) reference audio.</p> "> Figure 7
<p>Q-Q plot of the formants comparing the confronted with the reference audios: (<b>a</b>) formant <span class="html-italic">F0</span> and (<b>b</b>) formant <span class="html-italic">F1</span>.</p> "> Figure 8
<p>Q-Q plot of the formants comparing the confronted with the reference audios: (<b>a</b>) formant <span class="html-italic">F2</span> and (<b>b</b>) formant <span class="html-italic">F3</span>.</p> "> Figure 9
<p>Q-Q plot of the formants comparing the confronted with the reference audios: (<b>a</b>) formant <span class="html-italic">F15</span> and (<b>b</b>) formant <span class="html-italic">F16</span>.</p> "> Figure 10
<p>Q-Q plot of the formants comparing the confronted with the reference audios: (<b>a</b>) formant <span class="html-italic">F17</span> and (<b>b</b>) formant <span class="html-italic">F18</span>.</p> "> Figure 11
<p>XY straight line for: (<b>a</b>) formant <span class="html-italic">F0</span> and (<b>b</b>) formant <span class="html-italic">F1</span>.</p> "> Figure 12
<p>XY straight line for: (<b>a</b>) formant <span class="html-italic">F2</span> and (<b>b</b>) formant <span class="html-italic">F3</span>.</p> "> Figure 13
<p>XY straight-line for: (<b>a</b>) formant <span class="html-italic">F15</span> and (<b>b</b>) formant <span class="html-italic">F16</span>.</p> "> Figure 14
<p>XY straight line for: (<b>a</b>) formant <span class="html-italic">F17</span> and (<b>b</b>) formant <span class="html-italic">F18</span>.</p> ">
Abstract
:1. Introduction
- This study developed a novel method suitable for speaker verification, which is an unpublished method that takes advantage of the combination of the formants, LPC, and OLS to generate results for decision-making in a forensic context;
- The robustness of the developed model is demonstrated by generating positive results, even with atypical situations such as noise, uneven speech time, quality, and textual independence;
- All scenarios that were preliminarily tested have indicated a 100% success rate, considering a limited dataset (Brazilian Portuguese), reducing the possibility of false positives.
2. Signal Analysis
2.1. Fourier Transform and Windowing
2.2. Linear Predictive Coding
2.3. Least Ordinary Squares Method
2.4. Statistical Comparison Criteria
2.5. Q–Q Plot
3. Proposed Method
3.1. Phase 1: Acquisition of Contested Audios and Reference
- #1 “O rato roeu a roupa do rei de Roma”;
- #2 “O macaco mordeu a macacada no monte Maia”;
- #3 “O macaco mordeu o sapato”.
3.2. Phase 2: Formants Extraction
3.3. Phase 3: OLS and Statistical Comparison
4. Experimental Results
4.1. Validating the Model
4.2. Practical Results
5. Comparison with Other State-Of-The-Art Solutions
6. Final Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Juang, B.H.; Furui, S. Automatic recognition and understanding of spoken language—A first step toward natural human-machine communication. Proc. IEEE 2000, 88, 1142–1165. [Google Scholar] [CrossRef]
- Pegoraro, T.F. Algoritmos Robustos de Reconhecimento de voz Aplicados a Verificação de Locutor. 2000. Available online: http://www.repositorio.unicamp.br/handle/REPOSIP/259689 (accessed on 26 July 2018).
- Abdel-Hamid, O.; Mohamed, A.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional Neural Networks for Speech Recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1533–1545. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Ahmad, N.; Zhou, X.; Iqbal, K.; Ali, S.M. DWT features performance analysis for automatic speech recognition of Urdu. SpringerPlus 2014, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Furui, S. Speaker Recognition in Smart Environments. In Human-Centric Interfaces for Ambient Intelligence; Academic Press: Cambridge, MA, USA, 2010; Chapter 7; pp. 163–184. ISBN 9780123747082. [Google Scholar]
- Braid, A.C.M. Fonética Forense, 2nd ed.; Millennium: Campinas, Brazil, 2003. [Google Scholar]
- Chou, W.; Recchione, M.C.; Zhou, Q. Automatic Speech/Speaker Recognition over Digital Wireless Channels. U.S. Patent 6,336,090, 1 January 2002. [Google Scholar]
- Ajili, M.; Bonastre, J.F.; Kheder, W.B.; Rossato, S.; Kahn, J. Homogeneity Measure Impact on Target and Non-target Trials in Forensic Voice Comparison. In Proceedings of the INTERSPEECH 2017, Stockholm, Sweden, 20–24 August 2017; pp. 2844–2848. [Google Scholar]
- Koval, S. Formants matching as a robust method for forensic speaker identification. In Proceedings of the International Conference on Speech and Computer (SPECOM), St. Petersburg, Russia, 25–29 June 2006. [Google Scholar]
- Rodman, R.; McAllister, D.; Bitzer, D.; Cepeda, L.; Abbitt, P. Forensic speaker identification based on spectral moments. Forensic Linguist. 2002, 9, 22–43. [Google Scholar] [CrossRef] [Green Version]
- Becker, T.; Jessen, M.; Grigoras, C. Forensic speaker verification using formant features and Gaussian mixture models. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH 2008, Brisbane, Australia, 22–26 September 2008; pp. 1505–1508. [Google Scholar]
- Leuzzi, F.; Tessitore, G.; Delfino, S.; Fusco, C.; Gneo, M.; Zambonini, G.; Ferilli, S. A statistical approach to speaker identification in forensic phonetics field. In Proceedings of the International Workshop on New Frontiers in Mining Complex Patterns, Riva del Garda, Italy, 19 September 2016. [Google Scholar] [CrossRef]
- Gold, E.; Hughes, V. Front-end approaches to the issue of correlations in forensic speaker comparison. In Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS), Glasgow, UK, 10–14 August 2015. [Google Scholar]
- Bulgakova, E.V.; Sholokhov, A.V. Semi-automatic speaker verification system. Sci. Tech. J. Inf. Technol. Mech. Opt. 2016, 16, 284–289. [Google Scholar] [CrossRef]
- Irum, A.; Salman, A. Speaker Verification Using Deep Neural Networks: A Review. Int. J. Mach. Learn. Comput. 2019, 9, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Devi, J.S. Language and Text Independent Speaker Recognition System using Artificial Neural Networks and Fuzzy Logic. Int. J. Recent Technol. Eng. 2019, 7, 327–330. [Google Scholar]
- Chung, J.S.; Nagrani, A.; Zisserman, A. VoxCeleb2: Deep Speaker Recognition. In Proceedings of the INTERSPEECH 2018, Hyderabad, India, 2–6 September 2018; pp. 1086–1090. [Google Scholar] [CrossRef]
- Dhakal, P.; Damacharla, P.; Javaid, A.Y.; Devabhaktuni, V. A Near Real-Time Automatic Speaker Recognition Architecture for Voice-Based User Interface. Mach. Learn. Knowl. Extr. 2019, 1, 504–520. [Google Scholar] [CrossRef] [Green Version]
- Gujarati, D.N.; Porter, D.C. Econometria Básica, 5th ed.; Bookman: Porto Alegre, Brazil, 2008. [Google Scholar]
- Rituerto-González, E.; Mínguez-Sánchez, A.; Gallardo-Antolín, A.; Peláez-Moreno, C. Data Augmentation for Speaker Identification under Stress Conditions to Combat Gender-Based Violence. Appl. Sci. 2019, 9, 2298. [Google Scholar] [CrossRef]
- Smith, H.M.J.; Baguley, T.S.; Robson, J.; Dunn, A.K.; Stacey, P.C. Forensic voice discrimination by lay listeners: The effect of speech type and background noise on performance. Appl. Cogn. Psychol. 2019, 33, 272–287. [Google Scholar] [CrossRef]
- Krobba, A.; Debyeche, M.; Selouani, S.A. Multitaper chirp group delay Hilbert envelope coefficients for robust speaker verification. Multimed. Tools Appl. 2019, 78, 19525. [Google Scholar] [CrossRef]
- Rahman, M. Applications of Fourier Transforms to Generalized Functions; WIT Press: Southampton, UK, 2011. [Google Scholar]
- Bailey, D.H.; Swarztrauber, P.N. A fast method for the numerical evaluation of continuous Fourier and Laplace transforms. SIAM J. Sci. Comput. 1994, 15, 1105–1110. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Buck, J.R.; Schafer, R.W. Discrete-Time Signal Processing, 3rd ed.; Prentice Hall Press: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Leme, A.L.M.; Marcelino, M.A.; Prado, P.P.L.D. Margens de tolerância e valores de referência para os formantes de vogais orais para uso em terapias de voz para surdos em computador comercial. CoDAS 2016, 28, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, K.M.M. Window Functions and Their Applications in Signal Processing; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Essenwanger, O.M. Elements of Statistical Analysis; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Aparna, R.; Chithra, P.L. Role of Windowing Techniques in Speech Signal Processing for Enhanced Signal Cryptography. Available online: https://www.researchgate.net/profile/Aparna_Ramdoss/publication/323127358_Role_of_Windowing_Techniques_in_Speech_Signal_Processing_For_Enhanced_Signal_Cryptography/links/5a81c158a6fdcc6f3ead632d/Role-of-Windowing-Techniques-in-Speech-Signal-Processing-For-Enhanced-Signal-Cryptography.pdf (accessed on 10 October 2019).
- Esch, T.; Vary, P. Efficient musical noise suppression for speech enhancement system. In Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009; pp. 4409–4412. [Google Scholar]
- Singhal, S. High quality audio coding using multipulse LPC. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Albuquerque, NM, USA, 3–6 April 1990; pp. 1101–1104. [Google Scholar]
- Bradbury, J. Linear Predictive Coding; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- O’Shaughnessy, D. Linear predictive coding. IEEE Potentials 1988, 7, 29–32. [Google Scholar] [CrossRef]
- Chougala, M.; Kuntoji, S. Novel text independent speaker recognition using LPC based formants. In Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; pp. 510–513. [Google Scholar]
- Kim, C.; Seo, K.D.; Sung, W. A robust formant extraction algorithm combining spectral peak picking and root polishing. Eurasip J. Appl. Signal Process. 2006. [Google Scholar] [CrossRef]
- Snell, R.C.; Milinazzo, F. Formant location from LPC analysis data. IEEE Trans. Speech Audio Process. 1993, 1, 129–134. [Google Scholar] [CrossRef]
- Wald, A. A note on Regression Analysis. Ann. Math. Stat. 1947, 18, 586–589. [Google Scholar] [CrossRef]
- Lewis-Beck, C.; Lewis-Beck, M. Applied Regression: An Introduction; Sage Publications: Thousand Oaks, CA, USA, 2015; Volume 22. [Google Scholar]
- Goldberger, A.S. Econometric Theory; Goldberger Econometric Theory; John Wiley & Sons Inc.: New York, NY, USA, 1964. [Google Scholar]
- Seely, J.F.; El-Bassiouni, Y. Applying Wald’s variance component test. Ann. Stat. 1983, 11, 197–201. [Google Scholar] [CrossRef]
- Loy, A.; Follett, L.; Hofmann, H. Variations of Q–Q Plots: The power of our eyes! Am. Stat. 2016, 70, 202–214. [Google Scholar] [CrossRef]
- Marden, J.I. Positions and QQ plots. Stat. Sci. 2004, 19, 606–614. [Google Scholar] [CrossRef]
- Poddar, A.; Sahidullah, M.; Saha, G. Quality measures for speaker verification with short utterances. Digit. Signal Process. 2019, 88, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Dresch, A.A.G. Método para Reconhecimento de Vogais e Extração de Parâmetros Acústicos para Analises Forenses. Master’s Thesis, Universidade Tecnológica Federal do Paraná, Apucarana, Brazil, 2015. [Google Scholar]
- Panayotov, V.; Chen, G.; Povey, D.; Khudanpur, S.; Vassil, P. Librispeech: An ASR corpus based on public domain audio books. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 19–24 April 2015; pp. 5206–5210. [Google Scholar]
- Teyssier, P. História da língua portuguesa, Lisboa; Sá da Costa Editora: Lisbon, Portugal, 1982. [Google Scholar]
- Schütz, R. História da Língua Inglesa. Available online: https://www.sk.com.br/sk-historia-da-lingua-inglesa.html (accessed on 29 November 2018).
Symbol | p-Value |
---|---|
‘NS’ (non-significant) | p > 0.1 |
‘*’ | 0.05 < p ≤ 0.1 |
‘**’ | 0.01 < p ≤ 0.05 |
‘***’ | p ≤ 0.01 |
Row | p-Value | Significance |
---|---|---|
Pitch (F0) | 4.45191E-17 | *** |
F1 | 3.0643E-08 | *** |
F2 | 5.21042E-15 | *** |
F3 | 3.28572E-22 | *** |
F4 | 8.03937E-11 | *** |
F5 | 1.63395E-11 | *** |
F6 | 9.19947E-14 | *** |
F7 | 8.38252E-14 | *** |
F8 | 2.15671E-10 | *** |
F9 | 1.75295E-08 | *** |
F10 | 7.46944E-09 | *** |
F11 | 6.53178E-08 | *** |
F12 | 7.18641E-07 | *** |
F13 | 2.64407E-07 | *** |
F14 | 2.29227E-06 | *** |
F15 | 1.23279E-05 | *** |
F16 | 1.24595E-06 | *** |
F17 | 1.37544E-05 | *** |
F18 | 0.000179185 | *** |
Suspect | Time(s) | Pitch | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | F18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4.52644 | NS | *** | *** | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | ||
2 | 5.715986 | * | *** | ** | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | * | NS |
3 | 4.5 | *** | *** | NS | * | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
4 | 4.457347 | *** | *** | *** | NS | NS | NS | NS | NS | * | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
5 | 2.942653 | *** | *** | ** | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
6 | 4.244014 | *** | *** | *** | *** | *** | *** | *** | *** | * | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
7 | 4.265351 | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
8 | 3.732018 | *** | NS | * | NS | NS | NS | NS | ** | ** | ** | ** | ** | *** | *** | *** | ** | * | * | ** |
9 | 3.092018 | *** | *** | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
10 | 4.154921 | NS | NS | NS | * | NS | NS | NS | NS | * | NS | NS | NS | NS | NS | NS | NS | |||
11 | 4.03068 | NS | * | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
12 | 5.118685 | NS | *** | NS | * | *** | *** | *** | *** | *** | ** | *** | ** | ** | ** | ** | * | ** | * | NS |
13 | 3.412018 | NS | NS | *** | *** | *** | *** | *** | ** | ** | * | * | * | NS | NS | NS | NS | NS | NS | NS |
14 | 3.966667 | NS | NS | NS | * | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
15 | 3.433333 | *** | * | NS | NS | NS | NS | ** | ** | NS | * | NS | NS | NS | NS | NS | NS | NS | NS | NS |
16 | 3.54 | ** | *** | *** | *** | *** | *** | *** | *** | ** | ** | ** | *** | ** | * | NS | NS | NS | NS | NS |
17 | 4.99068 | * | NS | * | NS | * | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | |
18 | 4.18 | * | *** | *** | *** | *** | ** | * | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
19 | 4.5 | *** | *** | *** | *** | ** | *** | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Suspect | Time(s) | Pitch | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | F18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 3.736961 | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
4 | 2.686667 | *** | *** | ** | NS | * | NS | NS | NS | * | ** | ** | ** | *** | *** | *** | *** | *** | ** | ** |
6 | 3.795986 | *** | *** | *** | *** | *** | *** | *** | *** | *** | ** | ** | *** | *** | *** | ** | * | NS | NS | NS |
10 | 4.64254 | NS | * | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | * | * | ** | ** | ||
12 | 4.265351 | *** | *** | NS | NS | NS | NS | NS | * | NS | ** | * | NS | NS | ** | NS | * | * | ** | * |
16 | 3.582653 | *** | *** | NS | NS | NS | ** | ** | *** | *** | *** | ** | ** | ** | * | * | NS | * | NS | NS |
17 | 3.86 | *** | * | *** | *** | *** | * | ** | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
18 | 3.54 | NS | * | *** | NS | NS | *** | * | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
19 | 3.22 | NS | NS | *** | *** | NS | * | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
20 | 5.097347 | *** | *** | ** | NS | ** | NS | NS | NS | NS | NS | NS | NS | * | * | NS | NS | * | NS | NS |
21 | 2.857347 | *** | *** | *** | NS | NS | NS | * | NS | * | ** | ** | ** | NS | NS | NS | NS | NS | NS | NS |
22 | 2.644014 | *** | *** | *** | *** | ** | ** | NS | NS | NS | NS | NS | NS | NS | NS | * | ** | * | ** | * |
23 | 4.03068 | ** | *** | * | NS | NS | NS | NS | ** | ** | ** | * | * | ** | * | NS | * | NS | NS | NS |
24 | 3.412018 | *** | *** | NS | ** | ** | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
25 | 3.113333 | NS | NS | NS | NS | NS | NS | NS | NS | NS | ** | *** | ** | ** | ** | ** | * | NS | NS | NS |
26 | 2.835986 | *** | * | ** | NS | * | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Time(s) | Pitch | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | F18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p-valor | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
3.736961 | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Quality | Time(s) | Pitch | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | F18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
256kbps | 3.9 | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ** | ** | *** | ** | |||
128kbps | 3.817347 | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
64kbps | 3.752185 | *** | *** | *** | *** | *** | *** | *** | *** | *** | ** | ** | ** | * | * | NS | NS | NS |
Speed | Time(s) | Pitch | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | F18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VerySlow | 12.414671 | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ** | ** | ** | ** | |
Slow | 5.417347 | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
VeryFast | 2.708005 | *** | NS | ** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ** | ** |
Noise | Time(s) | Pitch | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | F18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Brown50 | 3.817347 | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |||||||||
Pink5 | 3.817347 | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |||||||||
White1 | 3.817347 | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Conditions | Time(s) | Pitch | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | F18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PhoneStreet | 3.646 | *** | *** | *** | NS | *** | ||||||||||||||
WhatsAppHome | 3.284 | *** | *** | *** | * | ** | *** | ** | *** | *** | *** | *** | *** | ** | *** | ** | ** | ** | ||
Sony_Restaurant | 3.903 | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
ComputerOffice | 4.139 | *** | *** | *** | *** | *** | *** | ** | *** | *** | *** | *** | ** | ** | ** | ** | ** | ** | ** |
Test # | Audio Name | Time(s) | p-value for F0 | Pitch | F1 | F2 | F3 | F4 |
---|---|---|---|---|---|---|---|---|
1 | 9023-296468 | 11.670 | 3.90716 × 10−6 | *** | NS | *** | *** | ** |
2 | 7859-102518 | 12.520 | 0.502099189 | NS | ** | NS | NS | NS |
3 | 7720-105167 | 10.160 | 0.014028753 | ** | NS | NS | *** | ** |
4 | 8447-284436 | 9.980 | 0.00285753 | *** | *** | ** | NS | NS |
5 | 14-212 | 13.570 | 0.225905533 | NS | NS | NS | NS | NS |
6 | 3906-184005 | 8.620 | 0.596373964 | NS | NS | * | NS | NS |
7 | 4044-9010 | 9.040 | 0.563113699 | NS | ** | ** | * | ** |
8 | 6300-39660 | 11.070 | 0.049729008 | ** | NS | NS | NS | NS |
9 | 7177-258977 | 12.730 | 1.64337 × 10−7 | *** | ** | ** | NS | NS |
10 | 8262-279161 | 10.980 | 0.004817798 | *** | NS | NS | NS | NS |
11 | 9000-282380 | 11.250 | 0.246992694 | NS | *** | *** | ** | *** |
12 | 152-87733 | 12.950 | 0.347284969 | NS | NS | NS | * | * |
13 | 218-131205 | 12.730 | 0.482158941 | NS | NS | NS | NS | NS |
14 | 398-123602 | 11.920 | 0.13380562 | NS | NS | NS | NS | NS |
15 | 444-138076 | 11.170 | 0.66022574 | NS | NS | NS | NS | |
16 | 511-131226 | 11.040 | 0.033288607 | ** | *** | * | NS | NS |
17 | 639-124526 | 12.450 | 0.255417428 | NS | NS | NS | NS | NS |
18 | 766-127193 | 10.980 | 0.891719784 | NS | *** | NS | NS | NS |
19 | 850-131003 | 11.140 | 0.001656815 | *** | NS | ** | NS | NS |
20 | 949-134657 | 9.460 | 0.080615174 | * | * | NS | NS | NS |
Methods | Execution Time (s) | Number Formants | Lines | Supported Formats |
---|---|---|---|---|
Present Method | 27.557 | 19 | 7590 | ALL AUDIO FILES |
PRAAT | 0.1 | 5 | 1193 | AIFC, AIFF, FLAC, NEXT/SUN, NIST, MP3 and WAV |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, T.J.; Vieira Filho, J.; de Oliveira, M.A. Forensic Speaker Verification Using Ordinary Least Squares. Sensors 2019, 19, 4385. https://doi.org/10.3390/s19204385
Machado TJ, Vieira Filho J, de Oliveira MA. Forensic Speaker Verification Using Ordinary Least Squares. Sensors. 2019; 19(20):4385. https://doi.org/10.3390/s19204385
Chicago/Turabian StyleMachado, Thyago J., Jozue Vieira Filho, and Mario A. de Oliveira. 2019. "Forensic Speaker Verification Using Ordinary Least Squares" Sensors 19, no. 20: 4385. https://doi.org/10.3390/s19204385
APA StyleMachado, T. J., Vieira Filho, J., & de Oliveira, M. A. (2019). Forensic Speaker Verification Using Ordinary Least Squares. Sensors, 19(20), 4385. https://doi.org/10.3390/s19204385