Interactive OCT-Based Tooth Scan and Reconstruction
<p>Our scanning process starts at a destined region of a tooth and advances it in a designed order. Each scan consists of injecting an infrared signal of various frequencies, of measuring frequency responses, of collecting depth responses using fast Fourier transform [<a href="#B18-sensors-19-04234" class="html-bibr">18</a>], and of volumetrically identifying the boundary. After the first scan, our system initiates the Super 4-point-congruent-set method (4PCS) [<a href="#B19-sensors-19-04234" class="html-bibr">19</a>] with the gyro-tracking orientation to align the newly scanned point cloud with the existing for immediate visualization. Finally, we can apply Poisson surface reconstruction [<a href="#B20-sensors-19-04234" class="html-bibr">20</a>] for the tooth surface.</p> "> Figure 2
<p>(<b>a</b>) Our optical coherent tomography (OCT) device consists of a scanning probe and a main frame while both are connected with an optical fiber. The main frame generates infrared rays of various frequencies, controls the scanning direction, transforms and processes the receiving coherent responses, stitches multiple scans, and reconstructs the tooth while the probe targets rays at the destined region, collects their responses, and tracks the scanning posture. (<b>b</b>) Because the injector has a small caliber, it cannot cover the entire tooth. It has a short operation range, and it cannot penetrate the entire tooth as shown in the left. Additionally, the light scatters when it is far from the source to limit its operation range, and thus, the top-down scanning in the right cannot precisely reconstruct the surface and we should scan it from the side. (<b>c</b>) The left shows the snapshot of our calibration setting with a manually moving stage and the probe, and the right is the multi-shot calibration scheme, where the needle is placed at designated grid points with a spacing of 0.5 mm.Hardware for Swept-Source Optical Coherence Tomography</p> "> Figure 3
<p>(<b>a</b>) This illustrates our two designed scanning orders based on the size of its occlusal surface where the left shows the location and viewing direction of two representative teeth; the middle is for the one of a small occlusal surface, and the right is for the one of a large surface. (<b>b</b>) There are two parallel streams: data transfer and GPU computation. While transferring a slice of scanning data (DT), GPUs also compute fast Fourier transform (FFT), optical rectification (Re), and boundary detection (BD). At the end of scanning, GPUs finalize the last slice, do the alignment, and show the stitched point cloud.Effective and robust scanning ordering</p> "> Figure 4
<p>(<b>a</b>) This shows the rectification results of traditional radial and tangential distortion removal (blue crosses), thin-plate spline (TPS) interpolation (purple stars), hybrid of both (green pluses), and ground truth (red circles). Their averaging errors are as <math display="inline"><semantics> <mrow> <mn>6.96</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>2.58</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>1.52</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> mm, and their maximal deviations are <math display="inline"><semantics> <mrow> <mn>3.95</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>1.44</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>7.67</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> mm. (<b>b</b>) This shows the relation between the alignment success rate and the number of samples (top) and computation time (bottom).Rectification analysis</p> "> Figure 5
<p>This shows the sequential reconstructed results of a side of a living incisor, an isolated incisor, an isolated premolar, and an isolated molar along with their depth responses in the designed scanning order, where green marks newly added points and blue marks the already existing points.Reconstructed point clouds of teeth during the scanning process</p> "> Figure 6
<p>This illustrates the precision analysis when using the model constructed by the state-of-art digital intraoral scanner Carestream’s CS 3600 [<a href="#B4-sensors-19-04234" class="html-bibr">4</a>] as ground truth for the living incisor and the isolated incisor, premolar, and molar teeth, where the average deviations are 8.71, <math display="inline"><semantics> <mrow> <mn>27.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>28.4</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>30.6</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m, respectively, and the maximal are <math display="inline"><semantics> <mrow> <mn>38.3</mn> </mrow> </semantics></math>, 263, 135, and 235 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m, respectively. The <b>left</b> shows the reconstruction surface; the <b>right top</b> shows the visualization of height differences at the cutting line, where blue marks the results reconstructed by the state-of-art, and red marks those by ours; and the <b>right bottom</b> visualizes the reconstruction errors while comparing to the model generated by the state-of-art using the rainbow coloring scheme.Precision comparison</p> "> Figure 7
<p>(<b>a</b>–<b>c</b>) The run time of each stage at various scans using a CPU (the top) and a GPU (the bottom) for the incisor, premolar, and molar teeth and (<b>d</b>–<b>f</b>) the statistics of our user study in the time of operation in the unit of seconds with/without using the visualization system.Run time analysis</p> ">
Abstract
:1. Introduction
2. Overview
3. Swept-Source Optical Coherent Tomography
3.1. Injection and Reception Calibration
3.2. Three-Axis Posture Tracking Gyro
4. Interactive Dental Scanning
4.1. Boundary Detection
4.2. Parallelize Point-Cloud Alignment
4.3. Effective Scanning Order
4.4. Streamlined Data Transfer and Computation
5. Surface Reconstruction
6. Results
6.1. Ablation Study
6.2. Reconstruction Precision and Efficiency
6.3. Robustness of Scanning Ordering and Gyros
6.4. Usability Study
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
OCT | Optical Coherence Tomography |
GPU | Graphics Processing Unit |
4PCS | Super 4-Point-Congruent-Set |
LIDAR | light detection and ranging |
FFT | Fast Fourier Transform |
CT | Computed Tomography |
MRI | Magnetic Resonance Imaging |
SSOCT | Swept-Source Optical Coherent Tomography |
AFG | Arbitrary Function Generator |
ADC | Analog-to-Digital Converter |
TPS | Thin-Plate Spline |
RANSAC | RANdom SAmple Consensus |
DT | Transfer a slice of scanning data (DT) |
Re | Optical Rectification (Re) |
BD | Boundary Detection |
References
- Snavely, N.; Seitz, S.M.; Szeliski, R. Modeling the world from internet photo collections. Int. J. Comput. Vis. 2008, 80, 189–210. [Google Scholar] [CrossRef]
- Schönberger, J.L.; Radenović, F.; Chum, O.; Frahm, J. From single image query to detailed 3D reconstruction. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5126–5134. [Google Scholar]
- Autodesk Inc. Autodesk 123D apps. 2019. Available online: https://www.autodesk.com/solutions/123d-apps (accessed on 1 April 2019).
- Carestream Dental Inc. Carestream CS3600. 2019. Available online: https://www.carestreamdental.com/en-us/products/intraoral-scanners/cs-3600-dental/ (accessed on 1 April 2019).
- Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Shotton, J.; Hodges, S.; Freeman, D.; Davison, A.; et al. KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST ’11), Santa Barbara, CA, USA, 16–19 October 2011; pp. 559–568. [Google Scholar]
- Lai, K.; Bo, L.; Ren, X.; Fox, D. A large-scale hierarchical multi-view RGB-D object dataset. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1817–1824. [Google Scholar]
- Li, Y.; Dai, A.; Guibas, L.; Nießner, M. Database-Assisted Object Retrieval for Real-Time 3D Reconstruction. Comput. Graph. Forum 2015, 34, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Ijiri, T.; Yoshizawa, S.; Yokota, H.; Igarashi, T. Flower Modeling via X-ray Computed Tomography. ACM Trans. Graph. 2014, 33, 48. [Google Scholar] [CrossRef]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K. Optical Coherence Tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, J.M. Optical coherence tomography (OCT): A review. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 1205–1215. [Google Scholar] [CrossRef]
- Colston, B.; Sathyam, U.; Dasilva, L.; Everett, M.; Stroeve, P.; Otis, L. Dental OCT. Opt. Express 1998, 3, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, A.; Dichtl, S.; Hitzenberger, C.; Sattmann, H.; Robl, B.; Moritz, A.; Fercher, A.; Sperr, W. Polarization–sensitive optical coherence tomography of dental structures. Caries Res. 2000, 34, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Colston, B.; Everett, M.; Silva, L.; Otis, L.; Nathel, H. Optical Coherence Tomography for Diagnosing Periodontal Disease. Proc. SPIE 1997, 2973, 216–220. [Google Scholar]
- Baek, J.H.; Na, J.; Lee, B.H.; Choi, E.; Son, W.S. Optical approach to the periodontal ligament under orthodontic tooth movement: A preliminary study with optical coherence tomography. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, P.; Holtzman, J.; Epstein J, A. Optical diagnostics in the oral cavity: An overview. Oral Dis. 2010, 16, 717–728. [Google Scholar] [CrossRef] [PubMed]
- NVidia Inc. cuFFT. 2019. Available online: https://developer.nvidia.com/cufft (accessed on 1 April 2019).
- Mellado, N.; Aiger, D.; Mitra, N.J. Super 4pcs fast global pointcloud registration via smart indexing. Comput. Graph. Forum 2014, 33, 205–215. [Google Scholar] [CrossRef]
- Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson Surface Reconstruction. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing (SGP ’06), Cagliari, Italy, 26–28 June 2006; pp. 61–70. [Google Scholar]
- Potsaid, B.; Baumann, B.; Huang, D.; Barry, S.; Cable, A.E.; Schuman, J.S.; Duker, J.S.; Fujimoto, J.G. Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt. Express 2010, 18, 20029–20048. [Google Scholar] [CrossRef] [PubMed]
- Poddar, R.; Reddikumar, M. In vitro 3D anterior segment imaging in lamb eye with extended depth range swept source optical coherence tomography. Opt. Laser Technol. 2015, 67, 33–37. [Google Scholar] [CrossRef]
- Rother, C.; Kolmogorov, V.; Blake, A. Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 2004, 23, 309–314. [Google Scholar] [CrossRef]
- Kirk, R. Experimental Design: Procedures for the Behaviors Sciences, 2nd ed.; Brooks/Cole Publishing Company: Pacific Grove, CA, USA, 1982. [Google Scholar]
Without (s) | With (s) | Acc. | |
---|---|---|---|
Incisor | 10.5 | ||
%midrule Premolar | 14.8 | ||
Molar | 14.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.-C.; Lin, J.-Y.; Yao, C.-Y.; Lyu, D.-Y.; Lee, S.-Y.; Chen, K.-W.; Chen, I.-Y. Interactive OCT-Based Tooth Scan and Reconstruction. Sensors 2019, 19, 4234. https://doi.org/10.3390/s19194234
Lai Y-C, Lin J-Y, Yao C-Y, Lyu D-Y, Lee S-Y, Chen K-W, Chen I-Y. Interactive OCT-Based Tooth Scan and Reconstruction. Sensors. 2019; 19(19):4234. https://doi.org/10.3390/s19194234
Chicago/Turabian StyleLai, Yu-Chi, Jin-Yang Lin, Chih-Yuan Yao, Dong-Yuan Lyu, Shyh-Yuan Lee, Kuo-Wei Chen, and I-Yu Chen. 2019. "Interactive OCT-Based Tooth Scan and Reconstruction" Sensors 19, no. 19: 4234. https://doi.org/10.3390/s19194234
APA StyleLai, Y.-C., Lin, J.-Y., Yao, C.-Y., Lyu, D.-Y., Lee, S.-Y., Chen, K.-W., & Chen, I.-Y. (2019). Interactive OCT-Based Tooth Scan and Reconstruction. Sensors, 19(19), 4234. https://doi.org/10.3390/s19194234