Field-Effect Transistor Biosensors for Biomedical Applications: Recent Advances and Future Prospects
<p>Fabrication of nanopore-extended field-effect transistor (nexFET) in dual-barrel quartz nanopipettes by depositing pyrolytic carbon in one of the barrels before electrodeposition of polypyrrole (PPy) at the carbon-coated nanopipette tip [<a href="#B65-sensors-19-04214" class="html-bibr">65</a>].</p> "> Figure 2
<p>Indium-tin oxide nanowires (ITO-NW) FETs were fabricated by (<b>A</b>) coating indium and tin film onto gold film and (<b>B</b>) defining pattern of the devices by E-beam lithography before (<b>C</b>) treating them with controlled parameters in tubular furnace to (<b>D</b>) form ITO nanowires [<a href="#B66-sensors-19-04214" class="html-bibr">66</a>]. Reprinted from Biosensors and Bioelectronics, 105, Shariati, The Field Effect Transistor DNA Biosensor Based on ITO Nanowires in Label-Free Hepatitis B Virus Detecting Compatible with CMOS Technology, 58–64, Copyright 2018, with permission from Elsevier.</p> "> Figure 3
<p>Fabrication process of ZnO-FET biosensors by the nozzle-jet printing method [<a href="#B67-sensors-19-04214" class="html-bibr">67</a>]. Reprinted from Journal of Colloid and Interface Science, 506, Bhat et al., Nozzle-Jet Printed Flexible Field-Effect Transistor Biosensor for High Performance Glucose Detection, 188–196, Copyright 2017, with permission from Elsevier Elsevier.</p> "> Figure 4
<p>Fabrication process of ZnO-FET biosensors by the radio-frequency magnetron-sputtering method [<a href="#B69-sensors-19-04214" class="html-bibr">69</a>]. Reprinted from Journal of Colloid and Interface Science, 498, Ahmad et al., ZnO Nanorods Array Based Field-Effect Transistor Biosensor for Phosphate Detection, 292–297, Copyright 2017, with permission from Elsevier.</p> "> Figure 5
<p>Schematic model of the AlGaN/GaN high electron mobility transistor (HEMT) with the active channel and gate electrode, which is functionalized with receptors, are passivated separately. Only these two components of this FET biosensor are exposed to the analytes [<a href="#B74-sensors-19-04214" class="html-bibr">74</a>].</p> "> Figure 6
<p>Fabrication of black phosphorus (BP)-FET biosensors with passivation of the Al<sub>2</sub>O<sub>3</sub> dielectric layer on the surface of exfoliated BP nanosheets to prevent them from being oxidized prior to surface modification of Au nanoparticles and probe immobilization of Anti-Immunoglobulin G (Anti-IgG) [<a href="#B81-sensors-19-04214" class="html-bibr">81</a>]. Reprinted from Biosensors and Bioelectronics, 89, Chen et al., Field-Effect Transistor Biosensors with Two-Dimensional Black Phosphorus Nanosheets, 505–510, Copyright 2017, with permission from Elsevier.</p> "> Figure 7
<p>Integration of a custom-made microfilter to platinum nanoparticles (PtNPs)-decorated reduced graphene oxide (rGO) FET biosensors [<a href="#B88-sensors-19-04214" class="html-bibr">88</a>]. Reprinted from Biosensors and Bioelectronics, 91, Lei et al., Detection of Heart Failure-Related Biomarker in Whole Blood with Graphene Field Effect Transistor Biosensor, 1–7, Copyright 2017, with permission from Elsevier.</p> "> Figure 8
<p>Surface modification of silicon nanowire surface with mixed-SAMs constituting of APTES and PEG-silane [<a href="#B109-sensors-19-04214" class="html-bibr">109</a>]. Reprinted with permission from Nano Letters, 15, Gao et al., General Strategy for Biodetection in High Ionic Strength Solutions Using Transistor-Based Nanoelectronic Sensors, 2143–2148. Copyright 2015 American Chemical Society.</p> "> Figure 9
<p>Surface modification of the CNT network surface with mixed-SAMs constituting of PBA and mPEG-pyrene [<a href="#B107-sensors-19-04214" class="html-bibr">107</a>]. Reprinted from Sensors and Actuators B: Chemical, 255, Filipiak et al., Highly Sensitive, Selective and Label-Free Protein Detection in Physiological Solutions Using Carbon Nanotube Transistors with Nanobody Receptors, 1507–1516, Copyright 2018, with permission from Elsevier.</p> ">
Abstract
:1. Introduction:
2. Evolution of Nanotransducers for FET-Based Sensors
3. Antibody and its Fragments as Bio-Probes for FET Immunosensors
4. Nucleic Acid Probes for FET Biosensors
5. Conclusions and Future Prospects
Acknowledgments
Conflicts of Interest
References
- Clark, L.C., Jr.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Tothill, I.E. Biosensors for Cancer Markers Diagnosis. Semin. Cell Dev. Biol. 2009, 20, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Ligler, F.S.; Taitt, C.R.; Shriver-Lake, L.C.; Sapsford, K.E.; Shubin, Y.; Golden, J.P. Array Biosensor for Detection of Toxins. Anal. Bioanal. Chem. 2003, 377, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Bunney, J.; Williamson, S.; Atkin, D.; Jeanneret, M.; Cozzolino, D.; Chapman, J.; Power, A.; Chandra, S. The Use of Electrochemical Biosensors in Food Analysis. Curr. Res. Nutr. Food. Sci. 2017, 5, 83–95. [Google Scholar] [CrossRef]
- Pantelopoulos, A.; Bourbakis, N.G. A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. IEEE Trans. Syst. Man Cybern. Syst. 2010, 40, 1–12. [Google Scholar] [CrossRef]
- Chaplin, M.F.; Bucke, C. Biosensors. In Enzyme Technology, 1st ed.; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical Biosensors: Recommended Definitions and Classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Bergveld, P. Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Trans. Biomed. Eng. 1970, BME-17, 70–71. [Google Scholar] [CrossRef]
- Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science 2001, 293, 1289–1292. [Google Scholar] [CrossRef]
- Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W.U.; Lieber, C.M. Multiplexed Electrical Detection of Cancer Markers with Nanowire Sensor Arrays. Nat. Biotechnol. 2005, 23, 1294–1301. [Google Scholar] [CrossRef]
- Patolsky, F.; Zheng, G.; Lieber, C.M. Fabrication of Silicon Nanowire Devices for Ultrasensitive, Label-Free, Real-Time Detection of Biological and Chemical Species. Nat. Protoc. 2006, 1, 1711–1724. [Google Scholar] [CrossRef]
- Stern, E.; Klemic, J.F.; Routenberg, D.A.; Wyrembak, P.N.; Turner-Evans, D.B.; Hamilton, A.D.; LaVan, D.A.; Fahmy, T.M.; Reed, M.A. Label-Free Immunodetection with CMOS-Compatible Semiconducting Nanowires. Nature 2007, 445, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-W.; Wu, C.-S.; Chuang, C.-K.; Pang, S.-T.; Pan, T.-M.; Yang, Y.-S.; Ko, F.-H. Real-Time and Label-Free Detection of the Prostate-Specific Antigen in Human Serum by a Polycrystalline Silicon Nanowire Field-Effect Transistor Biosensor. Anal. Chem. 2013, 85, 7912–7918. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Hung, C.-H.; Hsiao, C.-Y.; Lin, H.-C.; Ko, F.-H.; Yang, Y.-S. Poly-Silicon Nanowire Field-Effect Transistor for Ultrasensitive and Label-Free Detection of Pathogenic Avian Influenza DNA. Biosens. Bioelectron. 2009, 24, 3019–3024. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Duan, X.; Wei, Q.; Lieber, C.M. Directed Assembly of One-Dimensional Nanostructures into Functional Networks. Science 2001, 291, 630–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G.; Cao, A.; Lieber, C.M. Large-Area Blown Bubble Films of Aligned Nanowires and Carbon Nanotubes. Nat. Nanotechnol. 2007, 2, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Ho, J.C.; Jacobson, Z.A.; Yerushalmi, R.; Alley, R.L.; Razavi, H.; Javey, A. Wafer-Scale Assembly of Highly Ordered Semiconductor Nanowire Arrays by Contact Printing. Nano Lett. 2008, 8, 20–25. [Google Scholar] [CrossRef]
- Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C.M. Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices. Nature 2001, 409, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Panda, A.B.; Belman, N.; Efrima, S.; Golan, Y. A Semiconductor-Nanowire Assembly of Ultrahigh Junction Density by the Langmuir–Blodgett Technique. Adv. Mater. 2006, 18, 210–213. [Google Scholar] [CrossRef]
- Zheng, Z.; Gan, L.; Zhai, T. Electrospun Nanowire Arrays for Electronics and Optoelectronics. Sci. China Mater. 2016, 59, 200–216. [Google Scholar] [CrossRef]
- Weiss, N.O.; Duan, X. A Guide for Nanowire Growth. Proc. Natl. Acad. Sci. USA 2013, 110, 15171–15172. [Google Scholar] [CrossRef]
- Heath, J.R. Superlattice Nanowire Pattern Transfer (SNAP). Acc. Chem. Res. 2008, 41, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Lin, Z.; Huang, Y.; Duan, X. Nanowire Electronics: From Nanoscale to Macroscale. Chem. Rev. 2019, 119, 9074–9135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Lieber, C.M. Nano-Bioelectronics. Chem. Rev. 2016, 116, 215–257. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Hotani, K.; Hideshima, S.; Kuroiwa, S.; Nakanishi, T.; Hashimoto, M.; Mori, Y.; Osaka, T. Field Effect Transistor Biosensor Using Antigen Binding Fragment for Detecting Tumor Marker in Human Serum. Materials 2014, 7, 2490–2500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-H.; Chu, C.-J.; Teng, K.-N.; Su, Y.-J.; Chen, C.-D.; Tsai, L.-C.; Yang, Y.-S. Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA. Jpn. J. Appl. Phys. 2012, 51, 02BL02. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Chen, H.-C.; Yang, Y.-S.; Huang, C.-J.; Chan, H.W.-H.; Hu, W.-P. Improved DNA Detection by Utilizing Electrically Neutral DNA Probe in Field-Effect Transistor Measurements as Evidenced by Surface Plasmon Resonance Imaging. Biosens. Bioelectron. 2013, 41, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.-P.; Tsai, C.-C.; Yang, Y.-S.; Chan, H.W.-H.; Chen, W.-Y. Synergetic Improvements of Sensitivity and Specificity of Nanowire Field Effect Transistor Gene Chip by Designing Neutralized DNA as Probe. Sci. Rep. 2018, 8, 12598. [Google Scholar] [CrossRef]
- Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyaly, M.; Zhuang, X.; Lieber, C.M. Electrical Detection of Single Viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017–14022. [Google Scholar] [CrossRef]
- Zhang, G.-J.; Zhang, L.; Huang, M.J.; Luo, Z.H.H.; Tay, G.K.I.; Lim, E.-J.A.; Kang, T.G.; Chen, Y. Silicon Nanowire Biosensor for Highly Sensitive and Rapid Detection of Dengue Virus. Sens. Actuators B Chem. 2010, 146, 138–144. [Google Scholar] [CrossRef]
- Lin, C.-H.; Hsiao, C.-Y.; Hung, C.-H.; Lo, Y.-R.; Lee, C.-C.; Su, C.-J.; Lin, H.-C.; Ko, F.-H.; Huang, T.-Y.; Yang, Y.-S. Ultrasensitive Detection of Dopamine Using a Polysilicon Nanowire Field-Effect Transistor. Chem. Commun. 2008, 44, 5749–5751. [Google Scholar] [CrossRef]
- Wu, C.-C.; Ko, F.-H.; Yang, Y.-S.; Hsia, D.-L.; Lee, B.-S.; Su, T.-S. Label-Free Biosensing of a Gene Mutation Using a Silicon Nanowire Field-Effect Transistor. Biosens. Bioelectron. 2009, 25, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-Y.; Hsu, W.-Y.; Yang, Y.-S.; Huang, J.-W.; Chung, Y.-L.; Chen, H. Immobilized Rolling Circle Amplification on Extended-Gate Field-Effect Transistors with Integrated Readout Circuits for Early Detection of Platelet-Derived Growth Factor. Anal. Bioanal. Chem. 2016, 408, 4785–4797. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.-R.; Chen, H.-M.P.; Yang, Y.-S.; Lu, M.-P. Gas Sensing Ability on Polycrystalline-Silicon Nanowire. ECS J. Solid State Sci. Technol. 2018, 7, Q3104–Q3107. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.P.A.; Zheng, G.; Lieber, C.M. Subthreshold Regime Has the Optimal Sensitivity for Nanowire FET Biosensors. Nano Lett. 2010, 10, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Gao, X.P.A.; Lieber, C.M. Frequency Domain Detection of Biomolecules Using Silicon Nanowire Biosensors. Nano Lett. 2010, 10, 3179–3183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, C.-J.; Yeh, C.-S.; Liao, C.-K.; Tsai, L.-C.; Huang, C.-M.; Lin, H.-Y.; Shyue, J.-J.; Chen, Y.-T.; Chen, C.-D. Improving Nanowire Sensing Capability by Electrical Field Alignment of Surface Probing Molecules. Nano Lett. 2013, 13, 2564–2569. [Google Scholar] [CrossRef]
- Xie, P.; Xiong, Q.; Fang, Y.; Qing, Q.; Lieber, C.M. Local Electrical Potential Detection of DNA by Nanowire–Nanopore Sensors. Nat. Nanotechnol. 2012, 7, 119–125. [Google Scholar] [CrossRef]
- Gong, J.-R. Label-Free Attomolar Detection of Proteins Using Integrated Nanoelectronic and Electrokinetic Devices. Small 2010, 6, 967–973. [Google Scholar] [CrossRef]
- Jiang, X.; Tian, B.; Xiang, J.; Qian, F.; Zheng, G.; Wang, H.; Mai, L.; Lieber, C.M. Rational Growth of Branched Nanowire Heterostructures with Synthetically Encoded Properties and Function. Proc. Natl. Acad. Sci. USA 2011, 108, 12212–12216. [Google Scholar] [CrossRef]
- Stern, E.; Vacic, A.; Rajan, N.K.; Criscione, J.M.; Park, J.; Ilic, B.R.; Mooney, D.J.; Reed, M.A.; Fahmy, T.M. Label-Free Biomarker Detection from Whole Blood. Nat. Nanotechnol. 2010, 5, 138–142. [Google Scholar] [CrossRef]
- Ajayan, P.M. Nanotubes from Carbon. Chem. Rev. 1999, 99, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Heller, I.; Kong, J.; Heering, H.A.; Williams, K.A.; Lemay, S.G.; Dekker, C. Individual Single-Walled Carbon Nanotubes as Nanoelectrodes for Electrochemistry. Nano Lett. 2005, 5, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Krapf, D.; Quinn, B.M.; Wu, M.-Y.; Zandbergen, H.W.; Dekker, C.; Lemay, S.G. Experimental Observation of Nonlinear Ionic Transport at the Nanometer Scale. Nano Lett. 2006, 6, 2531–2535. [Google Scholar] [CrossRef] [PubMed]
- Gooding, J.J.; Chou, A.; Liu, J.; Losic, D.; Shapter, J.G.; Hibbert, D.B. The Effects of the Lengths and Orientations of Single-Walled Carbon Nanotubes on the Electrochemistry of Nanotube-Modified Electrodes. Electrochem. Commun. 2007, 9, 1677–1683. [Google Scholar] [CrossRef]
- Heller, I.; Janssens, A.M.; Mannik, J.; Minot, E.D.; Lemay, S.G.; Dekker, C. Identifying the Mechanism of Biosensing with Carbon Nanotube Transistors. Nano Lett. 2008, 8, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.J.; Coleman, K.S.; Azamian, B.R.; Bagshaw, C.B.; Green, M.L.H. Chemical and Biochemical Sensing with Modified Single Walled Carbon Nanotubes. Chem. Eur. J. 2003, 9, 3732–3739. [Google Scholar] [CrossRef]
- Gooding, J.J.; Wibowo, R.; Liu, J.; Yang, W.; Losic, D.; Orbons, S.; Mearns, F.J.; Shapter, J.G.; Hibbert, D.B. Protein Electrochemistry Using Aligned Carbon Nanotube Arrays. J. Am. Chem. Soc. 2003, 125, 9006–9007. [Google Scholar] [CrossRef]
- Li, J.; Ng, H.T.; Cassell, A.; Fan, W.; Chen, H.; Ye, Q.; Koehne, J.; Han, J.; Meyyappan, M. Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection. Nano Lett. 2003, 3, 597–602. [Google Scholar] [CrossRef]
- Tsang, S.C.; Davis, J.J.; Green, M.L.H.; Hill, H.A.O.; Leung, Y.C.; Sadler, P.J. Immobilization of Small Proteins in Carbon Nanotubes: High-Resolution Transmission Electron Microscopy Study and Catalytic Activity. J. Chem. Soc. Chem. Commun. 1995, 17, 1803–1804. [Google Scholar] [CrossRef]
- Davis, J.J.; Green, M.L.H.; Hill, H.A.O.; Leung, Y.C.; Sadler, P.J.; Sloan, J.; Xavier, A.V.; Tsang, S.C. The Immobilisation of Proteins in Carbon Nanotubes. Inorg. Chim. Acta 1998, 272, 261–266. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Zhao, F.; Xu, Z.; Dong, S. The Direct Electron Transfer of Glucose Oxidase and Glucose Biosensor Based on Carbon Nanotubes/Chitosan Matrix. Biosens. Bioelectron. 2005, 21, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Star, A.; Gabriel, J.-C.P.; Bradley, K.; Gruner, G. Electronic Detection of Specific Protein Binding Using Nanotube FET Devices. Nano Lett. 2003, 3, 459–463. [Google Scholar] [CrossRef]
- Star, A.; Tu, E.; Niemann, J.; Gabriel, J.-C.P.; Joiner, C.S.; Valcke, C. Label-Free Detection of DNA Hybridization Using Carbon Nanotube Network Field-Effect Transistors. Proc. Natl. Acad. Sci. USA 2006, 103, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, L. Towards Chirality-Pure Carbon Nanotubes. Nanoscale 2010, 2, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Z.; Sun, H.; Gao, C. Superstructured Assembly of Nanocarbons: Fullerenes, Nanotubes, and Graphene. Chem. Rev. 2015, 115, 7046–7117. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Chandran, G.T.; Li, X.; Ogata, A.; Penner, R.M. Electrically Transduced Sensors Based on Nanomaterials (2012–2016). Anal. Chem. 2017, 89, 249–275. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef]
- Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. [Google Scholar] [CrossRef]
- Chen, S.; Liu, L.; Zhou, J.; Jiang, S. Controlling Antibody Orientation on Charged Self-Assembled Monolayers. Langmuir 2003, 19, 2859–2864. [Google Scholar] [CrossRef]
- Chou, W.-C.; Hu, W.-P.; Yang, Y.-S.; Chan, H.W.-H.; Chen, W.Y. Neutralized Chimeric DNA Probe for the Improvement of GC-Rich RNA Detection Specificity on the Nanowire Field-Effect Transistor. Sci. Rep. 2019, 9, 11056. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, C.; Jiang, S.; Hu, G.; Li, X.; Zou, Y.; Liu, H.; Li, J.; Li, Z.; Wang, X.; et al. Graphene Foam Field-Effect Transistor for Ultra-Sensitive Label-Free Detection of ATP. Sens. Actuators B Chem. 2019, 284, 125–133. [Google Scholar] [CrossRef]
- Thakur, B.; Zhou, G.; Chang, J.; Pu, H.; Jin, B.; Sui, X.; Yuan, X.; Yang, C.-H.; Magruder, M.; Chen, J. Rapid Detection of Single E. coli Bacteria Using a Graphene-Based Field-Effect Transistor Device. Biosens. Bioelectron. 2018, 110, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Ren, R.; Zhang, Y.; Nadappuram, B.P.; Akpinar, B.; Klenerman, D.; Ivanov, A.P.; Edel, J.B.; Korchev, Y. Nanopore Extended Field-Effect Transistor for Selective Single-Molecule Biosensing. Nat. Commun. 2017, 8, 586. [Google Scholar] [CrossRef] [PubMed]
- Shariati, M. The Field Effect Transistor DNA Biosensor Based on ITO Nanowires in Label-Free Hepatitis B Virus Detecting Compatible with CMOS Technology. Biosens. Bioelectron. 2018, 105, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Bhat, K.S.; Ahmad, R.; Yoo, J.-Y.; Hahn, Y.-B. Nozzle-Jet Printed Flexible Field-Effect Transistor Biosensor for High Performance Glucose Detection. J. Colloid Interface Sci. 2017, 506, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Fathollahzadeh, M.; Hosseini, M.; Norouzi, M.; Ebrahimi, A.; Fathipour, M.; Kolahdouz, M.; Haghighi, B. Immobilization of Glucose Oxidase on ZnO Nanorods Decorated Electrolyte-Gated Field Effect Transistor for Glucose Detection. J. Solid State Electrochem. 2018, 22, 61–67. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahn, M.-S.; Hahn, Y.-B. ZnO Nanorods Array Based Field-Effect Transistor Biosensor for Phosphate Detection. J. Colloid Interface Sci. 2017, 498, 292–297. [Google Scholar] [CrossRef]
- Bao, Z.; Sun, J.; Zhao, X.; Li, Z.; Cui, S.; Meng, Q.; Zhang, Y.; Wang, T.; Jiang, Y. Top-Down Nanofabrication of Silicon Nanoribbon Field Effect Transistor (Si-NR FET) for Carcinoembryonic Antigen Detection. Int. J. Nanomed. 2017, 12, 4623–4631. [Google Scholar] [CrossRef]
- Ma, S.; Li, X.; Lee, Y.-K.; Zhang, A. Direct Label-Free Protein Detection in High Ionic Strength Solution and Human Plasma Using Dual-Gate Nanoribbon-Based Ion-Sensitive Field-Effect Transistor Biosensor. Biosens. Bioelectron. 2018, 117, 276–282. [Google Scholar] [CrossRef]
- Ma, S.; Lee, Y.-K.; Zhang, A.; Li, X. Label-Free Detection of Cordyceps Sinensis Using Dual-Gate Nanoribbon-Based Ion-Sensitive Field-Effect Transistor Biosensor. Sens. Actuators B Chem. 2018, 264, 344–352. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Legallais, M.; Morisot, F.; Cazimajou, T.; Mouis, M.; Salem, B.; Stambouli, B.; Ternon, C. On the Development of Label-Free DNA Sensor Using Silicon Nanonet Field-Effect Transistors. Proceedings 2017, 1, 312. [Google Scholar] [CrossRef]
- Chu, C.-H.; Sarangadharan, I.; Regmi, A.; Chen, Y.-W.; Hsu, C.-P.; Chang, W.-H.; Lee, G.-Y.; Chyi, J.-I.; Chen, C.-C.; Shiesh, S.-C.; et al. Beyond the Debye Length in High Ionic Strength Solution: Direct Protein Detection with Field-Effect Transistors (FETs) in Human Serum. Sci. Rep. 2017, 7, 5256. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-C.; Chen, Y.-W.; Sarangadharan, I.; Hsu, C.-P.; Chen, C.-C.; Shiesh, S.-C.; Lee, G.-B.; Wang, Y.-L. Editors’ Choice—Field-Effect Transistor-Based Biosensors and a Portable Device for Personal Healthcare. ECS J. Solid State Sci. Technol. 2017, 6, Q71–Q76. [Google Scholar] [CrossRef]
- Kao, W.-C.; Chen, Y.-W.; Chu, C.-H.; Chang, W.-H.; Shiesh, S.-C.; Wang, Y.-L.; Lee, G.-B. Detection of C-reactive Protein on an Integrated Microfluidic System by Utilizing Field-Effect Transistors and Aptamers. Biomicrofluidics 2017, 11, 044105. [Google Scholar] [CrossRef]
- Sinha, A.; Tai, T.-Y.; Lee, G.-B.; Wang, Y.-L. Integrated Microfluidic System with Field Effect Transistor for Automatic Detection of Multiple Cardiovascular Biomarkers. In IEEE Micro Electro Mechanical Systems; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Stock, D.; Muntze, G.M.; Figge, S.; Eickhoff, M. Ion Sensitive AlGaN/GaN Field-Effect Transistors with Monolithically Integrated Wheatstone Bridge for Temperature- and Drift Compensation in Enzymatic Biosensors. Sens. Actuators B Chem. 2018, 263, 20–26. [Google Scholar] [CrossRef]
- Jang, H.-J.; Lee, T.; Song, J.; Russell, L.; Li, H.; Dailey, J.; Searson, P.C.; Katz, H.E. Electronic Cortisol Detection Using an Antibody-Embedded Polymer Coupled to a Field-Effect Transistor. ACS Appl. Mater. Interfaces 2018, 10, 16233–16237. [Google Scholar] [CrossRef]
- Jeong, G.; Oh, J.; Jang, J. Fabrication of N-Doped Multidimensional Carbon Nanofibers for High-Performance Cortisol Biosensors. Biosens. Bioelectron. 2019, 131, 30–36. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, R.; Pu, H.; Chang, J.; Mao, S.; Chen, J. Field-Effect Transistor Biosensors with Two-Dimensional Black Phosphorus Nanosheets. Biosens. Bioelectron. 2017, 89, 505–510. [Google Scholar] [CrossRef]
- Seshadri, P.; Manoli, K.; Schneiderhan-Marra, N.; Anthes, U.; Wierzchowiec, P.; Bonrad, K.; Franco, C.D.; Torsi, L. Low-Picomolar, Label-Free Procalcitonin Analytical Detection with an Electrolyte-Gated Organic Field-Effect Transistor Based Electronic Immunosensor. Biosens. Bioelectron. 2018, 104, 113–119. [Google Scholar] [CrossRef]
- Shi, W.; Yu, J.; Katz, H.E. Sensitive and Selective Pentacene-Guanine Field-Effect Transistor Sensing of Nitrogen Dioxide and Interferent Vapor Analytes. Sens. Actuators B Chem. 2018, 254, 940–948. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, R.; Pu, H.; Guo, X.; Chang, J.; Zhou, G.; Mao, S.; Kron, M.; Chen, J. Field-Effect Transistor Biosensor for Rapid Detection of Ebola Antigen. Sci. Rep. 2017, 7, 10974. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Lin, W.-S.; Wong, J.-C.; Hsu, W.-C.; Peng, Y.-S.; Chen, C.-L. Bottom-Up Assembly of Silicon Nanowire Conductometric Sensors for the Detection of Apolipoprotein A1, a Biomarker for Bladder Cancer. Microchim. Acta 2017, 184, 2419–2428. [Google Scholar] [CrossRef]
- Presnova, G.; Presnov, D.; Krupenin, V.; Grigorenko, V.; Trifonov, A.; Andreeva, I.; Ignatenko, O.; Egorov, A.; Rubtsova, M. Biosensor Based on a Silicon Nanowire Field-Effect Transistor Functionalized by Gold Nanoparticles for the Highly Sensitive Determination of Prostate Specific Antigen. Biosens. Bioelectron. 2017, 88, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Rubtsova, M.; Presnova, G.; Presnov, D.; Krupenin, V.; Grigorenko, V.; Egorov, A. Biosensor Based on a Nanowire Field-Effect Transistor for the Determination of Prostate Specific Antigen. Procedia Technol. 2017, 27, 234–235. [Google Scholar] [CrossRef]
- Lei, Y.-M.; Xiao, M.-M.; Li, Y.-T.; Xu, L.; Zhang, H.; Zhang, Z.-Y.; Zhang, G.-J. Detection of Heart Failure-Related Biomarker in Whole Blood with Graphene Field Effect Transistor Biosensor. Biosens. Bioelectron. 2017, 91, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Munief, W.-M.; Lu, X.; Teucke, T.; Wilhelm, J.; Britz, A.; Hempel, F.; Lanche, R.; Schwartz, M.; Law, J.K.Y.; Grandthyll, S.; et al. Reduced Graphene Oxide Biosensor Platform for the Detection of NT-ProBNP Biomarker in Its Clinical Range. Biosens. Bioelectron. 2019, 126, 136–142. [Google Scholar] [CrossRef]
- Islam, S.; Shukla, S.; Bajpaj, V.K.; Han, Y.-K.; Huh, Y.S.; Kumar, A.; Ghosh, A.; Gandhi, S. A Smart Nanosensor for the Detection of Human Immunodeficiency Virus and Associated Cardiovascular and Arthritis Diseases Using Functionalized Graphene-Based Transistors. Biosens. Bioelectron. 2019, 126, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Si, K.; Cheng, S.; Hideshima, S.; Kuroiwa, S.; Nakanishi, T.; Osaka, T. Multianalyte Detection of Cancer Biomarkers in Human Serum Using Label-Free Field Effect Transistor Biosensor. Sens. Mater. 2018, 30, 991–999. [Google Scholar]
- Islam, S.; Shukla, S.; Bajpaj, V.K.; Han, Y.-K.; Huh, Y.S.; Ghosh, A.; Gandhi, S. Microfluidic-Based Graphene Field Effect Transistor for Femtomolar Detection of Chlorpyrifos. Sci. Rep. 2019, 9, 276. [Google Scholar] [CrossRef]
- Berto, M.; Vecchi, E.; Baiamonte, L.; Condo, C.; Sensi, M.; Lauro, M.D.; Sola, M.; Stradis, A.D.; Biscarini, F.; Minafra, A.; et al. Label Free Detection of Plant Viruses with Organic Transistor Biosensors. Sens. Actuators B Chem. 2019, 281, 150–156. [Google Scholar] [CrossRef]
- Napoli, C.; Lai, S.; Giannetti, A.; Tombelli, S.; Baldini, F.; Barbaro, M.; Bonfiglio, A. Electronic Detection of DNA Hybridization by Coupling Organic Field-Effect Transistor-Based Sensors and Hairpin-Shaped Probes. Sensors 2018, 18, 990. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Xia, H.; Zauberman, J.; Tomaiuolo, M.; Ping, J.; Zhang, Q.; Ducos, P.; Ye, H.; Wang, S.; Yang, X.; et al. Detection of Sub-fM DNA with Target Recycling and Self-Assembly Amplification on Graphene Field-Effect Biosensors. Nano Lett. 2018, 18, 3509–3515. [Google Scholar] [CrossRef]
- Mei, J.; Li, Y.-T.; Zhang, H.; Xiao, M.-M.; Ning, Y.; Zhang, Z.-Y.; Zhang, G.-J. Molybdenum Disulfide Field-Effect Transistor Biosensor for Ultrasensitive Detection of DNA by Employing Morpholino as Probe. Biosens. Bioelectron. 2018, 110, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, X.; Wang, Q.; Xiao, M.; Zhong, D.; Sun, W.; Zhang, G.; Zhang, Z. Ultrasensitive Monolayer MoS2 Field-Effect Transistor Based DNA Sensors for Screening of Down Syndrome. Nano Lett. 2019, 19, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Campos, R.; Borme, J.; Guerreiro, J.R.; Machado, G., Jr.; Cerqueira, M.F.; Petrovykh, D.Y.; Alpuim, P. Attomolar Label-Free Detection of DNA Hybridization with Electrolyte-Gated Graphene Field-Effect Transistors. ACS Sens. 2019, 4, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Fatin, M.F.; Ruslinda, A.R.; Gopinath, S.C.B.; Arshad, M.K.M. High-Performance Interactive Analysis of Split Aptamer and HIV-1 Tat on Multiwall Carbon Nanotube-Modified Field-Effect Transistor. Int. J. Biol. Macromol. 2019, 125, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Majd, S.M.; Salimi, A.; Astinchap, B. The Development of Radio Frequency Magnetron Sputtered P-Type Nickel Oxide Thin Film Field-Effect Transistor Device Combined with Nucleic Acid Probe for Ultrasensitive Label-Free HIV-1 Gene Detection. Sens. Actuators B Chem. 2018, 266, 178–186. [Google Scholar] [CrossRef]
- Singh, N.K.; Thungon, P.D.; Estrela, P.; Goswami, P. Development of an Aptamer-Based Field Effect Transistor Biosensor for Quantitative Detection of Plasmodium Falciparum Glutamate Dehydrogenase in Serum Samples. Biosens. Bioelectron. 2019, 123, 30–35. [Google Scholar] [CrossRef]
- Hao, Z.; Zhu, Y.; Wang, X.; Rotti, P.G.; DiMarco, C.; Tyler, S.R.; Zhao, X.; Engelhardt, J.F.; Hone, J.; Lin, Q. Real-Time Monitoring of Insulin Using a Graphene Field-Effect Transistor Aptameric Nanosensor. ACS Appl. Mater. Interfaces 2017, 9, 27504–27511. [Google Scholar] [CrossRef]
- Nakatsuka, N.; Yang, K.-A.; Abendroth, J.M.; Cheung, K.M.; Xu, X.; Yang, H.; Zhao, C.; Zhu, B.; Rim, Y.S.; Yang, Y.; et al. Aptamer–Field-Effect Transistors Overcome Debye Length Limitations for Small-Molecule Sensing. Science 2018, 362, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Hideshima, S.; Wustoni, S.; Kobayashi, M.; Hayashi, H.; Kuroiwa, S.; Nakanishi, T.; Osaka, T. Effect of Human Serum on the Electrical Detection of Amyloid-β Fibrils in Biological Environments Using Azo-Dye Immobilized Field Effect Transistor (FET) Biosensor. Sens. Biosens. Res. 2018, 17, 25–29. [Google Scholar] [CrossRef]
- Gutierrez-Sanz, O.; Andoy, N.M.; Filipiak, M.S.; Haustein, N.; Tarasov, A. Direct, Label-Free, and Rapid Transistor-Based Immunodetection in Whole Serum. ACS Sens. 2017, 2, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Andoy, N.M.; Filipiak, M.S.; Vettel, D.; Gutierrez-Sanz, O.; Tarasov, A. Graphene-Based Electronic Immunosensor with Femtomolar Detection Limit in Whole Serum. Adv. Mater. Technol. 2018, 3, 1800186. [Google Scholar] [CrossRef]
- Filipiak, M.S.; Rother, M.; Andoy, N.M.; Knudsen, A.C.; Grimm, S.; Bachran, C.; Swee, L.K.; Zaumseil, J.; Tarasov, A. Highly Sensitive, Selective and Label-Free Protein Detection in Physiological Solutions Using Carbon Nanotube Transistors with Nanobody Receptors. Sens. Actuators B Chem. 2018, 255, 1507–1516. [Google Scholar] [CrossRef]
- Hideshima, S.; Saito, M.; Fujita, K.; Harada, Y.; Tsuna, M.; Sekiguchi, S.; Kuroiwa, S.; Nakanishi, T.; Osaka, T. Label-free Detection of Allergens in Food via Surfactant-Induced Signal Amplification Using a Field Effect Transistor-Based Biosensor. Sens. Actuators B Chem. 2018, 254, 1011–1016. [Google Scholar] [CrossRef]
- Gao, N.; Zhou, W.; Jiang, X.; Hong, G.; Fu, T.-M.; Lieber, C.-M. General Strategy for Biodetection in High Ionic Strength Solutions Using Transistor-Based Nanoelectronic Sensors. Nano Lett. 2015, 15, 2143–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haustein, N.; Gutierrez-Sanz, O.; Tarasov, A. Analytical Model to Describe the Effect of Polyethylene Glycol on Ionic Screening of Analyte Charges in Transistor-Based Immusisssnosensing. ACS Sens. 2019, 4, 874–882. [Google Scholar] [CrossRef]
Transducer Material | Bioprobe | Target Molecule | Analyte | LOD | Linear Range | Ref. |
---|---|---|---|---|---|---|
Graphene foam | ATP Aptamer | ATP | 0.1 × HS | 0.5 pM | 0.5 pM–50 µM | [63] |
Reduced Graphene Oxide | Anti-E. coli | E. coli | Deionized water River water | 103 CFU/mL 104 CFU/mL | 103–105 CFU/mL | [64] |
Indium Tin Oxide Nanowire | DNA | HBV DNA | 100 mM PBS | 1 fM | 1 fM–10 µM | [66] |
Zinc Oxide Nanoribbon | GOx | Glucose | 100 mM PBS | 70 µM | 0.0–80 mM | [67] |
Zinc Oxide Nanoribbon | GOx | Glucose | 10 mM PBS | 3.8 µM | 10 µM–5 mM | [68] |
Zinc Oxide Nanoribbon | PyO | Phosphate | 0.02 M HEPES | 0.5 µM | 0.1 µM–7 mM | [69] |
Silicon Nanoribbon | Anti-CEA | CEA | 0.01 × PBS | 0.01 ng/mL | 0.01–100 ng/mL | [70] |
Silicon Nanoribbon | Anti-PSA | PSA | 100 mM PBS HS | 10 pM 100 pM | 10 pM–1 µM 100 pM–1 µM | [71] |
Silicon Nanoribbon | DNA | DNA of CorS | 0.1 × PBS | 50 pM | 50 pM–1 μM | [72] |
Aluminum Gallium Nitride | HIV-1 Aptamer Half anti-CEA CRP Aptamer CRP Aptamer Anti-NT-proBNP | HIV-1 RT CEA CRP CRP NT-proBNP | 1 × PBS 1 × PBS 1 × PBS HS HS | 1 fM–10 pM 100 fM–1 nM 1 fM–100 nM 0.34–23.2 mg/L 180.9 pg/mL– 5 ng/mL | [74] | |
Indium Tin Oxide | Anti-Cortisol | Cortisol | 1 × PBS | 1 pg/mL | 10 fg/mL–10 ng/mL | [79] |
Needle-like Carbon Nanofiber | Anti-Cortisol | Cortisol | PBS | 100 aM | 100 aM–10 nM | [80] |
Black Phosphorus | Anti-IgG | Human IgG | 0.01 × PBS | 10 ng/mL | 10–500 ng/mL | [81] |
Poly-3-hexyl-thiophene | Anti-PCT | PCT | PBS | 2.2 pM | 0.8 pM–4.7 nM | [82] |
Graphene | Human anti-EGP | EGP | 0.01 × PBS, HS, Human Plasma | 1 ng/mL | 1–444 ng/mL | [84] |
Silicon Nanowire | Anti-APOA1 | hAPOA1 | 0.01 × PBS | 1 ng/mL | 100 pg/mL–10 μg/mL | [85] |
Silicon Nanoribbon | Anti-PSA | PSA | 0.01 × PBS | 23 fg/mL | 23 fg/mL–500 ng/mL | [86] |
Reduced Graphene Oxide | Anti-BNP | BNP | 0.001 × PBS | 100 fM | 100 fM–1 nM | [88] |
Reduced Graphene Oxide | Anti-NT-proBNP | NT-proBNP | HS | 10 pg/mL | [89] | |
Graphene | Anti-p24 Anti-cTn1 Anti-CCP | p24-HIV cTn1 CCP | 50 mM PBS 50 mM PBS 50 mM PBS | 100 fg/mL 10 fg/mL 10 fg/mL | 1 fg/mL–1 μg/mL 1 fg/mL–1 μg/mL 1 fg/mL–1 μg/mL | [90] |
Silicon | Anti-AFP Anti-CYFRA 21-1 | AFP CYFRA 21-1 | HS HS | 10 ng/mL 1 ng/mL | 1–100 ng/mL 1–100 ng/mL | [91] |
Graphene | Anti-Chlorpyrifos | Chlorpyrifos | Standard PB | 1.8 fM | 1 fM–1 μM | [92] |
Pentacene | Anti-PPV | PPV | 50 mM PBS | 180 pg/mL | 5 ng/mL–50 μg/mL | [93] |
Organic | Hairpin-shaped DNA | DNA | TE 1 M NaCl | 100 pM | 100 pM–10 nM | [94] |
Graphene | Hairpin-shaped DNA | DNA | 5 × saline-sodium citrate | 5 fM | [95] | |
Molybdenum Disulfide | Phosphorodiamidate Morpholino Oligos | DNA | 0.5 × PBS 10 × diluted HS | 6 fM | 10 fM–1 nM 10 fM–1 pM | [96] |
Molybdenum Disulfide | DNA | DNA | 0.1 × PBS | 100 aM | 100 aM–1 fM | [97] |
Graphene | DNA | DNA | 10 mM PB, 150 mM NaCl, 50 mM MgCl2 | 25 aM | 1 aM–100 fM | [98] |
Multiwall Carbon Nanotubes | HIV-1 Aptamer | HIV-1 Tat | Blood sample | 600 pM | 0.2 nM–1 µM | [99] |
Nickel Oxide | DNA | HIV DNA | 0.01 M PBS | 0.3 aM | 1 aM–10 nM | [100] |
Silicon | PfGDH Aptamer | PfGDH | HS 50 mM K3PO4, 50 mM NaCl, 5 mM KCl, 2.5 mM MgCl2 | 48.6 pM 16.7 pM | 100 fM–10 nM 100 fM–10 nM | [101] |
Graphene | Insulin Aptamer | Insulin | PBS | 35 pM | 100 pM–1 µM | [102] |
Indium (III) Oxide | Dopamine Aptamer Serotonin Aptamer S1P Aptamer Glucose Aptamer Glucose Aptamer | Dopamine Serotonin Lipid S1P Glucose Glucose | 1 × PBS, 1 × aCSF 1 × PBS, 1 × aCSF 1 × HEPES 1 × Ringer buffer Whole blood diluted with 1 × Ringer buffer | 10−14–10−9 M 10−14–10−9 M 10 pM–100 nM 10 pM–10 nM 10 μM–1 mM | [103] | |
Silicon | Congo Red | Aβ fibrils | HS | 100 pM–10 μM | [104] | |
Metal Oxide | F(ab’)2 of anti-TSH | TSH | Serum | 500 fM | 500 fM–10 nM | [105] |
Graphene | F(ab’)2 of anti-TSH | TSH | Serum | 10 fM | 0.8 fM–1 nM | [106] |
Singlewall Carbon Nanotubes | Nanobody | GFP | 100 mM Tris | <1 pM–10 nM | [107] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, C.-A.; Chen, W.-Y. Field-Effect Transistor Biosensors for Biomedical Applications: Recent Advances and Future Prospects. Sensors 2019, 19, 4214. https://doi.org/10.3390/s19194214
Vu C-A, Chen W-Y. Field-Effect Transistor Biosensors for Biomedical Applications: Recent Advances and Future Prospects. Sensors. 2019; 19(19):4214. https://doi.org/10.3390/s19194214
Chicago/Turabian StyleVu, Cao-An, and Wen-Yih Chen. 2019. "Field-Effect Transistor Biosensors for Biomedical Applications: Recent Advances and Future Prospects" Sensors 19, no. 19: 4214. https://doi.org/10.3390/s19194214
APA StyleVu, C. -A., & Chen, W. -Y. (2019). Field-Effect Transistor Biosensors for Biomedical Applications: Recent Advances and Future Prospects. Sensors, 19(19), 4214. https://doi.org/10.3390/s19194214