Fusion of Spectroscopy and Cobalt Electrochemistry Data for Estimating Phosphate Concentration in Hydroponic Solution
<p>Concept art of newly developed calibration model combining near infrared (NIR) and cobalt electrodes using a multilayer neural network structure to detect phosphate concentrations in paprika hydroponic solutions.</p> "> Figure 2
<p>Developed cobalt rod-based electrodes (<b>a</b>) and the measurement system of cobalt electrodes used in this study (<b>b</b>).</p> "> Figure 3
<p>Block diagram of the proposed algorithms.</p> "> Figure 4
<p>Example of a feed-forward back-propagation ANN model.</p> "> Figure 5
<p>Calibration plot for linking a cobalt-electrode response to PO<sub>4</sub><sup>3−</sup> concentrations.</p> "> Figure 6
<p>Test sample prediction results using the Nikolsky–Eisenman equation-based model with the electromotive force (EMF) response of cobalt electrodes.</p> "> Figure 7
<p>Test sample prediction results using ANN analysis with the EMF response of cobalt electrodes.</p> "> Figure 8
<p>Intensity values of the NIR band for each PO<sub>4</sub><sup>-</sup> concentration. (<b>a</b>); PO<sub>4</sub> absorption wavelength band in 920 to 970 nm (<b>b</b>); PO<sub>4</sub> absorption wavelength band in 1040 to 1140 nm (<b>c</b>).</p> "> Figure 9
<p>Comparison of partial least squares regression (PLSR) (Moving average 11and standard normal variate (SNV)) and principal components regression (PCR) (Moving average 11 and multiplicative scatter correction MSC) performance according to number of principal components.</p> "> Figure 10
<p>Calibration and test sample prediction results with PLSR analysis performed using the combined data.</p> "> Figure 11
<p>Calibration and test sample prediction results with PCR analysis performed using the combined data.</p> "> Figure 12
<p>Prediction results of the test samples and calibration model developed using a PC-NN model on the combined data.</p> ">
Abstract
:1. Introduction
1.1. Ion Monitoring in Hydroponic Solution
1.2. Phosphate Detection in Hydroponic Solution
1.3. Data Fusion Approach for Multi-Sensor System
2. Materials and Methods
2.1. Preparation of Nutrient Solution Sample
2.2. Data Acquisition and Analysis Using Cobalt Electrodes and NIR Spectroscopy
2.2.1. Phosphate Prediction Model Using Cobalt Electrode
2.2.2. Prediction Model of Phosphate Ion by NIR Spectrum PLSR and PCR
2.3. Development of Data Fusion Model for Phosphate Sensing
3. Results
3.1. Cobalt Electrode Reaction
3.2. Development of PLSR and PCR Prediction Model using NIR Spectroscopy Data
3.3. Phosphate Detection via Data Fusion
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
No. | Concentrations (mg/L) | No. | Concentrations (mg/L) | No. | Concentrations (mg/L) | No. | Concentrations (mg/L) |
---|---|---|---|---|---|---|---|
1 | 1268.5 | 21 | 1055.7 | 41 | 781.8 | 61 | 792.1 |
2 | 1048.1 | 22 | 243.1 | 42 | 552.0 | 62 | 116.8 |
3 | 1353.2 | 23 | 244.8 | 43 | 1.6 | 63 | 236.3 |
4 | 767.3 | 24 | 1377.7 | 44 | 2.2 | 64 | 1313.2 |
5 | 22.5 | 25 | 18.8 | 45 | 315.7 | 65 | 242.2 |
6 | 5.1 | 26 | 20.2 | 46 | 313 | 66 | 717.5 |
7 | 105.1 | 27 | 63.5 | 47 | 543.9 | 67 | 1071.6 |
8 | 19.4 | 28 | 2.0 | 48 | 318.0 | 68 | 1029 |
9 | 11.9 | 29 | 767.3 | 49 | 117.1 | 69 | 1049.4 |
10 | 7.7 | 30 | 60.3 | 50 | 254.9 | 70 | 1312.5 |
11 | 541 | 31 | 118.4 | 51 | 14.1 | 71 | 775.9 |
12 | 788.1 | 32 | 54.7 | 52 | 516.8 | 72 | 1353.7 |
13 | 288.9 | 33 | 1061.8 | 53 | 250 | 73 | 115.6 |
14 | 237.4 | 34 | 16.5 | 54 | 258.5 | 74 | 55.8 |
15 | 248.1 | 35 | 527.2 | 55 | 774.1 | 75 | 30.1 |
16 | 250.0 | 36 | 530.6 | 56 | 775.5 | 76 | 53.5 |
17 | 313.5 | 37 | 1306.5 | 57 | 1359.9 | 77 | 28.7 |
18 | 4.3 | 38 | 832.9 | 58 | 520.8 | 78 | 749.1 |
19 | 305.7 | 39 | 976.5 | 59 | 758.7 | 79 | 221.0 |
20 | 757.9 | 40 | 59.6 | 60 | 60.4 | 80 | 531.9 |
References
- Gagnon, V.; Maltais-Landry, G.; Puigagut, J.; Chazarenc, F.; Brisson, J. Treatment of hydroponics wastewater using constructed wetlands in winter conditions. Water Air Soil Pollut. 2010, 212, 483–490. [Google Scholar] [CrossRef]
- Lone, M.I.; He, Z.; Stoffella, P.J.; Yang, X. Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J. Zhejiang Univ. Sci. B 2008, 9, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Savvas, D.; Manos, G. Automated composition control of nutrient solution in closed soilless culture systems. J. Agric. Eng. Res. 1999, 73, 29–33. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, W.-K.; Roh, M.-Y.; Kang, C.-I.; Park, J.-M.; Sudduth, K.A. Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes. Comput. Electron. Agric. 2013, 93, 46–54. [Google Scholar] [CrossRef]
- Jung, D.H.; Kim, H.J.; Cho, W.J.; Park, S.H.; Yang, S.H. Validation testing of an ion-specific sensing and control system for precision hydroponic macronutrient management. Comput. Electron. Agric. 2019, 156, 660–668. [Google Scholar] [CrossRef]
- Bamsey, M.; Graham, T.; Thompson, C.; Berinstain, A.; Scott, A.; Dixon, M. Ion-Specific Nutrient Management in Closed Systems: The Necessity for Ion-Selective Sensors in Terrestrial and Space-Based Agriculture and Water Management Systems. Sensors 2012, 12, 13349–13392. [Google Scholar] [CrossRef] [PubMed]
- Bailey, B.J.; Haggett, B.G.D.; Hunter, A.; Albery, W.J.; Svanberg, L.R. Monitoring nutrient film solutions using ion-selective electrodes. J. Agric. Eng. Res. 1988, 40, 129–142. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Alegret, S.; Cáceres, R.; Casadesús, J.; Marfà, O.; del Valle, M. Application of a potentiometric electronic tongue to fertigation strategy in greenhouse cultivation. Comput. Electron. Agric. 2007, 57, 12–22. [Google Scholar] [CrossRef]
- Gieling, T.H.; van Straten, G.; Janssen, H.J.J.; Wouters, H. ISE and Chemfet sensors in greenhouse cultivation. Sensors Actuators B Chem. 2005, 105, 74–80. [Google Scholar] [CrossRef]
- Kim, H.J.; Sudduth, K.A.; Hummel, J.W.; Drummond, S.T. Validation testing of a soil macronutrient sensing system. Trans. ASABE 2013, 56, 23–31. [Google Scholar] [CrossRef]
- Rius-Ruiz, F.X.; Andrade, F.J.; Riu, J.; Rius, F.X. Computer-operated analytical platform for the determination of nutrients in hydroponic systems. Food Chem. 2014, 147, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.H.; Kim, H.J.; Choi, G.L.; Ahn, T.I.; Son, J.E.; Sudduth, K.A. Automated Lettuce Nutrient Solution Management Using an Array of Ion-Selective Electrodes. Trans. ASABE 2015, 58, 1309–1319. [Google Scholar]
- Cho, W.J.; Kim, D.-W.; Jung, D.H.; Cho, S.S.; Kim, H.J. An automated water nitrate monitoring system based on ion-selective electrodes. J. Biosyst. Eng. 2016, 41, 75–84. [Google Scholar] [CrossRef]
- Cho, W.J.; Kim, H.J.; Jung, D.H.; Kang, C.I.; Choi, G.-L.; Son, J.-E. An Embedded System for Automated Hydroponic Nutrient Solution Management. Trans. ASABE 2017, 60, 1083–1096. [Google Scholar] [CrossRef]
- Lee, J.Y.; Rahman, A.; Azam, H.; Kim, H.S.; Kwon, M.J. Characterizing nutrient uptake kinetics for efficient crop production during Solanum lycopersicum var. cerasiforme Alef. growth in a closed indoor hydroponic system. PLoS One 2017, 12, e0177041. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Hummel, J.W.; Sudduth, K.A.; Birrell, S.J. Evaluation of phosphate ion-selective membranes and cobalt-based electrodes for soil nutrient sensing. Trans. ASABE 2007, 50, 415–425. [Google Scholar] [CrossRef]
- Xiao, D.; Yuan, H.-Y.; Li, J.; Yu, R.-Q. Surface-modified cobalt-based sensor as a phosphate-sensitive electrode. Anal. Chem. 1995, 67, 288–291. [Google Scholar] [CrossRef]
- Mimendia, A.; Gutiérrez, J.M.; Leija, L.; Hernández, P.R.; Favari, L.; Muñoz, R.; del Valle, M. A review of the use of the potentiometric electronic tongue in the monitoring of environmental systems. Environ. Model. Softw. 2010, 25, 1023–1030. [Google Scholar] [CrossRef]
- Ivanova, A.; Mikhelson, K.; Ivanova, A.; Mikhelson, K. Electrochemical Properties of Nitrate-Selective Electrodes: The Dependence of Resistance on the Solution Concentration. Sensors 2018, 18, 2062. [Google Scholar] [CrossRef]
- Tabacco, M.B.; DiGiuseppe, T.G. Optical chemical sensors for environmental control and system management. Adv. Sp. Res. 1996, 18, 125–134. [Google Scholar] [CrossRef]
- Patey, M.D.; Rijkenberg, M.J.A.; Statham, P.J.; Stinchcombe, M.C.; Achterberg, E.P.; Mowlem, M. Determination of nitrate and phosphate in seawater at nanomolar concentrations. TrAC Trends Anal. Chem. 2008, 27, 169–182. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Maleki, M.R.; De Baerdemaeker, J.; Ramon, H. On-line measurement of some selected soil properties using a VIS–NIR sensor. Soil Tillage Res. 2007, 93, 13–27. [Google Scholar] [CrossRef]
- Veum, K.S.; Sudduth, K.A.; Kremer, R.J.; Kitchen, N.R. Sensor data fusion for soil health assessment. Geoderma 2017, 305, 53–61. [Google Scholar] [CrossRef]
- Feudale, R.N.; Woody, N.A.; Tan, H.; Myles, A.J.; Brown, S.D.; Ferré, J. Transfer of multivariate calibration models: a review. Chemom. Intell. Lab. Syst. 2002, 64, 181–192. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Kuang, B.; De Baerdemaeker, J.; Ramon, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 2010, 158, 23–31. [Google Scholar] [CrossRef]
- Fan, R.; Yang, X.; Xie, H.; Reeb, M.-A. Determination of nutrients in hydroponic solutions using mid-infrared spectroscopy. Sci. Hortic. (Amsterdam). 2012, 144, 48–54. [Google Scholar] [CrossRef]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Kweon, G.; Lund, E.D.; Maxton, C.; Lee, W.S.; Mengel, D.B. Comparison of soil phosphorus measurements. Trans. ASABE 2015, 58, 405–414. [Google Scholar]
- Xiao, F.; Qin, B. A Weighted Combination Method for Conflicting Evidence in Multi-Sensor Data Fusion. Sensors (Basel). 2018, 18, 1487. [Google Scholar] [CrossRef]
- Wu, Q.; Rao, N.S.V.; Barhen, J.; Iyengar, S.S.; Vaishnavi, V.K.; Qi, H.; Chakrabarty, K. On computing mobile agent routes for data fusion in distributed sensor networks. IEEE Trans. Knowl. Data Eng. 2004, 740–753. [Google Scholar] [CrossRef]
- Tsinganos, P.; Skodras, A. On the Comparison of Wearable Sensor Data Fusion to a Single Sensor Machine Learning Technique in Fall Detection. Sensors 2018, 18, 592. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Hu, G.; Gao, S.; Zhong, Y.; Gu, C. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter. Sensors 2018, 18, 488. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Suh, D.; Kim, H.; Suh, D. Hybrid Particle Swarm Optimization for Multi-Sensor Data Fusion. Sensors 2018, 18, 2792. [Google Scholar] [CrossRef] [PubMed]
- Gosav, S.; Praisler, M.; Birsa, M.L.; Gosav, S.; Praisler, M.; Birsa, M.L. Principal Component Analysis Coupled with Artificial Neural Networks—A Combined Technique Classifying Small Molecular Structures Using a Concatenated Spectral Database. Int. J. Mol. Sci. 2011, 12, 6668–6684. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Adamchuk, V.I.; Chen, S.; Mat Su, A.S.; Ismail, A.; Gan, Q.; Shi, Z.; Biswas, A. Simultaneous measurement of multiple soil properties through proximal sensor data fusion: A case study. Geoderma 2019, 341, 111–128. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Hummel, J.W.; Morgan, M.T.; Upadhyaya, S.K. On-the-go soil sensors for precision agriculture. Comput. Electron. Agric. 2004, 44, 71–91. [Google Scholar] [CrossRef] [Green Version]
- Pei, X.; Sudduth, K.; Veum, K.; Li, M.; Pei, X.; Sudduth, K.A.; Veum, K.S.; Li, M. Improving In-Situ Estimation of Soil Profile Properties Using a Multi-Sensor Probe. Sensors 2019, 19, 1011. [Google Scholar] [CrossRef]
- La, W.-J.; Sudduth, K.A.; Kim, H.J.; Chung, S.-O. Fusion of spectral and electrochemical sensor data for estimating soil macronutrients. Trans. ASABE 2016, 59, 787–794. [Google Scholar]
- Guresen, E.; Kayakutlu, G.; Daim, T.U. Using artificial neural network models in stock market index prediction. Expert Syst. Appl. 2011, 38, 10389–10397. [Google Scholar] [CrossRef]
- Jiang, Y. Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models. Energy 2009, 34, 1276–1283. [Google Scholar] [CrossRef]
- Poblete, T.; Ortega-Farías, S.; Moreno, A.M.; Bardeen, M. Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from an Unmanned Aerial Vehicle (UAV). Sensors 2017, 17, 2488. [Google Scholar] [CrossRef] [PubMed]
- Yeh, I.-C. Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 1998, 28, 1797–1808. [Google Scholar] [CrossRef]
- Chakraborty, D. Artificial neural network based delamination prediction in laminated composites. Mater. Des. 2005, 26, 1–7. [Google Scholar] [CrossRef]
- Khandelwal, M.; Singh, T.N. Prediction of blast-induced ground vibration using artificial neural network. Int. J. Rock Mech. Min. Sci. 2009, 46, 1214–1222. [Google Scholar] [CrossRef]
- Kishor, N.; Singh, S.P. Simulated response of NN based identification and predictive control of hydro plant. Expert Syst. Appl. 2007, 32, 233–244. [Google Scholar] [CrossRef]
- Yi, Q.; Huang, J.; Wang, F.; Wang, X. Evaluating the performance of PC-ANN for the estimation of rice nitrogen concentration from canopy hyperspectral reflectance. Int. J. Remote Sens. 2010, 31, 931–940. [Google Scholar] [CrossRef]
- Hemmateenejad, B.; Shamsipur, M. Quantitative structure-electrochemistry relationship study of some organic compounds using PC-ANN and PCR. Internet Electron. J. Mol. Des. 2004, 3, 316–334. [Google Scholar]
- Gemperline, P.J.; Long, J.R.; Gregoriou, V.G. Nonlinear multivariate calibration using principal components regression and artificial neural networks. Anal. Chem. 1991, 63, 2313–2323. [Google Scholar] [CrossRef]
- Zhai, Y.; Cui, L.; Zhou, X.; Gao, Y.; Fei, T.; Gao, W. Estimation of nitrogen, phosphorus, and potassium contents in the leaves of different plants using laboratory-based visible and near-infrared reflectance spectroscopy: comparison of partial least-square regression and support vector machine regression met. Int. J. Remote Sens. 2013, 34, 2502–2518. [Google Scholar] [CrossRef]
- Balabin, R.M.; Safieva, R.Z.; Lomakina, E.I. Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction. Chemom. Intell. Lab. Syst. 2007, 88, 183–188. [Google Scholar] [CrossRef]
- Sonneveld, C. Composition of nutrient solutions. Hydroponic Prod. Veg. Ornamentals. Embryo Publ. Athens, Greece 2002, 179–210. [Google Scholar]
- Destainville, A.; Champion, E.; Bernache-Assollant, D.; Laborde, E. Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate. Mater. Chem. Phys. 2003, 80, 269–277. [Google Scholar] [CrossRef]
- Raynaud, S.; Champion, E.; Bernache-Assollant, D.; Thomas, P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 2002, 23, 1065–1072. [Google Scholar] [CrossRef]
- Næs, T.; Kvaal, K.; Isaksson, T.; Miller, C. Artificial neural networks in multivariate calibration. J. Near Infrared Spectrosc. 1993, 1, 1–11. [Google Scholar] [CrossRef]
- Karlik, B.; Olgac, A.V. Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artif. Intell. Expert Syst. 2011, 1, 111–122. [Google Scholar]
- Kim, H.J.; Sudduth, K.A.; Hummel, J.W. Soil macronutrient sensing for precision agriculture. J. Environ. Monit. 2009, 11, 1810–1824. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Hummel, J.W.; Birrell, S.J. Evaluation of Nitrate and Potassium Ion- Selective Membranes for Soil Macronutrient Sensing. Trans. Asabe 2006, 1–21. [Google Scholar]
- Kim, H.J.; Kim, D.-W.; Kim, W.K.; Cho, W.-J.; Kang, C.I. PVC membrane-based portable ion analyzer for hydroponic and water monitoring. Comput. Electron. Agric. 2017, 140, 374–385. [Google Scholar] [CrossRef]
Tank | Chemicals Used | Amount (Per 2 L) |
---|---|---|
A | KNO3 | 48 g |
5[Ca(NO3)2 · 2H2O]NH4NO3 | 140.4 g | |
NH4NO3 | 9.6 g | |
EDTA-Fe(EDTAFeNa·3H2O) | 1.29 g | |
B | KNO3 | 48 g |
KH2PO4 | 27.2 g | |
Mg(NO3)2·6H2O | 6.4 g | |
MgSO4 · 7H2O | 49.4 g | |
H3BO3 | 0.31 g | |
MnO4 · 5H2O | 0.484 g | |
ZnSO4 · 7H2O | 0.228 g | |
CuSO4 · 5H2O | 0.04 g | |
(NH4)6Mo7O24 · 4H2O | 0.018 g |
Name | Equation | Derivative | ||
---|---|---|---|---|
Logistic | (1) | (2) | ||
Tanh | (3) | (4) | ||
ReLu | (5) | (6) |
Cases. | Hidden-1 | Hidden-2 | Learning Rate | ||
---|---|---|---|---|---|
Number of Nodes | Activation Function | Number of Nodes | Activation Function | ||
1 | 30 | Logistic | 25 | Tanh | 0.002 |
2 | 35 | Tanh | 25 | ReLu | 0.001 |
3 | 30 | Tanh | 20 | Logistic | 0.003 |
4 | 35 | Logistic | 30 | ReLu | 0.001 |
5 | 35 | ReLu | 25 | Logistic | 0.002 |
6 | 30 | Logistic | 25 | Tanh | 0.001 |
7 | 25 | ReLu | 20 | ReLu | 0.003 |
Pre-Processing | PLSR | PCR | ||
---|---|---|---|---|
Calibration Results | Test Results | Calibration Results | Test Results | |
Raw | RMSE: 261.06 | RMSE: 378.58 | RMSE: 253.08 | RMSE: 353.37 |
R2: 0.64 | R2: 0.28 | R2: 0.64 | R2: 0.36 | |
Smoothing moving average 11 | RMSE: 261.41 | RMSE: 370.58 | RMSE: 327.45 | RMSE: 394.71 |
R2: 0.64 | R2: 0.31 | R2: 0.44 | R2: 0.20 | |
Smoothing moving average 11 + SNV | RMSE: 260.66 | RMSE: 342.02 | RMSE: 328.48 | RMSE: 381.70 |
R2: 0.64 | R2: 0.34 | R2: 0.44 | R2: 0.26 | |
Smoothing moving average 11 + MSC | RMSE: 282.05 | RMSE: 370.35 | RMSE: 260.30 | RMSE: 329.06 |
R2: 0.58 | R2: 0.30 | R2: 0.64 | R2: 0.37 |
Cases. | Training Results | Test Results |
---|---|---|
1 | R2: 0.84, RMSE: 103.23 | R2: 0.81, RMSE: 136.52 |
2 | R2: 0.87, RMSE: 121.24 | R2: 0.85, RMSE: 135.22 |
3 | R2: 0.79, RMSE: 143.17 | R2: 0.74, RMSE: 174.62 |
4 | R2: 0.88, RMSE: 107.23 | R2: 0.82, RMSE: 127.23 |
5 | R2: 0.80, RMSE: 154.24 | R2: 0.75, RMSE: 182.87 |
6 | R2: 0.90, RMSE: 96.70 | R2: 0.89, RMSE: 119.50 |
7 | R2: 0.89, RMSE: 102.33 | R2: 0.75, RMSE: 144.76 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, D.-H.; Kim, H.-J.; Kim, H.S.; Choi, J.; Kim, J.D.; Park, S.H. Fusion of Spectroscopy and Cobalt Electrochemistry Data for Estimating Phosphate Concentration in Hydroponic Solution. Sensors 2019, 19, 2596. https://doi.org/10.3390/s19112596
Jung D-H, Kim H-J, Kim HS, Choi J, Kim JD, Park SH. Fusion of Spectroscopy and Cobalt Electrochemistry Data for Estimating Phosphate Concentration in Hydroponic Solution. Sensors. 2019; 19(11):2596. https://doi.org/10.3390/s19112596
Chicago/Turabian StyleJung, Dae-Hyun, Hak-Jin Kim, Hyoung Seok Kim, Jaeyoung Choi, Jeong Do Kim, and Soo Hyun Park. 2019. "Fusion of Spectroscopy and Cobalt Electrochemistry Data for Estimating Phosphate Concentration in Hydroponic Solution" Sensors 19, no. 11: 2596. https://doi.org/10.3390/s19112596
APA StyleJung, D.-H., Kim, H.-J., Kim, H. S., Choi, J., Kim, J. D., & Park, S. H. (2019). Fusion of Spectroscopy and Cobalt Electrochemistry Data for Estimating Phosphate Concentration in Hydroponic Solution. Sensors, 19(11), 2596. https://doi.org/10.3390/s19112596